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QCD sum rules for ρ mesons in vacuum and in-medium, re-examined
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An updated investigation of QCD sum rules for the first two moments of ρ-meson spectral functions, both in
vacuum and in-medium, is performed with emphasis on the role of the scale related to spontaneous chiral symmetry
breaking in QCD. It is demonstrated that these lowest moments of vector current spectral distributions do permit
an accurate sum-rule analysis with controlled input including QCD condensates of the lowest dimensions, whereas
higher moments are subject to uncertainties from higher dimensional condensates. Possible connections with
Brown-Rho scaling are discussed. The factorization approximation for four-quark condensates is shown not to
be applicable in any of the cases studied.
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I. INTRODUCTION

As the lowest “dipole” excitations of the QCD vacuum,
the light vector mesons (the ρ meson, in particular) have
traditionally played an important prototype role in calculations
and discussions based on QCD sum rules [1]. In-medium
versions of these sum rules have been used to set constraints
on the way in which vector-meson masses undergo possible
changes in dense and hot hadronic matter [2–4]. Questions
were raised, however, concerning the interpretation of such
studies. In-medium changes of meson properties, such as their
mass shifts in nuclear matter, have their primary origin in
long-distance physics described by meson-nucleon forward
scattering amplitudes [5] and not in the short-distance physics
represented by subleading terms of the operator product expan-
sion (see also related discussions in Refs. [6,7]). In-medium
QCD sum rules have nonetheless been further developed
and applied over the years [8–11], including studies with
emphasis on the density dependence of four-quark condensates
[12,13]. The present work aims in a different direction: namely
identifying the spontaneous chiral symmetry breaking scale,
4πfπ ∼ 1 GeV, and its possible change with increasing baryon
density, in the context of QCD sum rules for the lowest
moments of the vector-meson spectral functions.

The issue of in-medium changes of hadron properties
persists as a fundamental theme ever since the Brown-Rho
(BR) scaling hypothesis [14] was launched, establishing a
conceptual relationship between the shifts of hadron masses in
matter and the sliding scale of spontaneous chiral symmetry
breaking with changing thermodynamic conditions. Investiga-
tions along these lines included various model calculations
of vector-meson spectral functions at finite temperatures
and baryon densities (see Refs. [15–17] and further studies
concerning BR scaling in the context of in-medium QCD sum
rules, e.g., in Ref. [18]). Such calculations were performed
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with the aim of understanding the “low-mass enhancements”
observed in dilepton spectra produced in high-energy heavy-
ion collisions by the CERES/NA45 [19] and NA60 [20]
experiments at the CERN SPS. These explorations, primarily
focused on the behavior of the ρ meson in the strongly
interacting hadronic medium, were conducted for a long time
with two seemingly opposing quests: whether there is an in-
medium shift of the ρ meson or whether the strong collisional
broadening of the spectral function due to interactions of the ρ

meson with nucleons and mesons in the medium would render
the primary issue of a mass shift physically meaningless.

In the present article we point out that playing the notions
of “mass shift” and “broadening” against one another may
in fact not be the proper question to ask. For resonant states
such as the ρ meson, which start out with a large decay width
already in vacuum, identifying a mass in an even broader
in-medium spectral distribution makes sense only in terms
of the first moment of this spectral distribution. For the two
lowest spectral moments, however, quite accurate statements
can be made within the framework of QCD sum rules, as we
shall demonstrate. We propose therefore to abandon the “mass
shift” versus “broadening” dispute altogether and concentrate
on an analysis of spectral moments in the context of QCD sum
rules. Identifying the chiral symmetry breaking scale in such an
analysis, both in vacuum and in-medium, permits addressing
and examining the BR scaling hypothesis in a refined and
better focused way.

The strategy pursued in this article is an update of previous
work [21] that is in turn closely related to finite energy sum
rules (FESR) [22,23]. The advantage of these sum rules is
that they do not have to rely on the existence of a window
of stability for the Borel parameter usually employed in the
sum-rule analysis. Caution must nevertheless be exercised
with FESRs [24,25] concerning their sensitivity to high-energy
properties of spectral functions and the detailed modeling of
the transition between resonance and continuum regions, a
question that we shall also address. We concentrate here on
the ρ meson. Starting with vacuum sum rules for the ρ we
recall how the delineation of scales between resonance and
continuum parts of the spectral function can be related to
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the scale for spontaneous chiral symmetry breaking, 4πfπ �
1.2 GeV (the “chiral gap”), where fπ = 92.4 MeV is the pion
decay constant. In-medium sum rules are examined using
two complementary spectral functions as generic examples:
the one calculated in Ref. [4] using a chiral meson-nucleon
effective Lagrangian with vector mesons as explicit degrees
of freedom and the one calculated in Ref. [15] using a model
that emphasizes the role of particle-hole excitations, including
baryon resonances. Both types of spectral functions were
applied earlier [16,28] in descriptions of the CERES/NA45
dilepton data [19]. Updated versions of such spectral distribu-
tions have been used recently [29,30] in comparisons with the
more accurate NA60 data [20].

II. REMINDER OF QCD SUM RULES FOR
ISOVECTOR CURRENTS

We begin with a brief introductory recollection of the
QCD sum-rule approach for excitations carrying the quantum
numbers of the ρ meson, Jπ = 1− and isospin I = 1.
The corresponding quark current jµ(x) = 1

2 (ūγ µu − d̄γ µd)
figures in the current-current correlation tensor

�µν(q) = i

∫
d4x eiq·x〈T jµ(x)jν(0)〉. (1)

In vacuum this tensor can be reduced to a single scalar corre-
lation function, �(q2) = 1

3gµν�
µν . In a nuclear medium the

distinction needs to be made between longitudinal and trans-
verse correlation functions. For vanishing three-momentum
(qµ = (ω, �q = 0), the case considered here throughout), the
longitudinal and transverse correlation functions coincide and
will again be denoted as �(ω, �q = 0).

The next step is to write �(q2) as a twice subtracted
dispersion relation:

�(q2) = �(0) + �′(0) q2 + q4

π

∫
ds

Im�(s)

s2(s − q2 − iε)
. (2)

Alternatively, the same quantity is expressed at large spacelike
q2 = −Q2 < 0 in terms of the Wilson operator product
expansion (OPE):

12π2 �(q2 = −Q2)

= −c0 Q2 ln
(Q2

µ2

)
+ c1 + c2

Q2
+ c3

Q4
+ · · · . (3)

In vacuum and for the ρ-meson channel, the expansion
coefficients are given as:

c0 = 3

2

(
1 + αs

π

)
+ · · · ,

c1 = −9

2

(
m2

u + m2
d

)
, (4)

c2 = π2

2

〈αs

π
G2

〉
+ 6π2(mu〈ūu〉 + md〈d̄d〉).

These three leading coefficients are well determined. The
dominant perturbative QCD piece c0 is shown here including
just the standard O(αs) correction. At a later stage and in
all explicit calculations, the QCD corrections will be further
extended up to and including O(α3

s ) (see Appendix A).

The quark mass term c1 is small and can safely be neglected.
The coefficient c2 involves the QCD condensates of lowest
dimension four. The quark condensate times the quark mass
is given accurately through the Gell-Mann-Oakes-Renner
relation as

〈mu ūu + md d̄d〉 � mq〈ūu + d̄d〉
= −m2

π f 2
π = −(0.11 GeV)4. (5)

The gluon condensate 〈(αs/π ) G2〉 ∼ (0.3 GeV)4 is (far less
accurately) determined by charmonium sum rules. For a
detailed discussion see Ref. [31] where an upper limit

〈(αs/π ) G2〉1/4 <∼ 0.31 GeV

is given.
In-medium corrections to leading order in the baryon

density ρ are introduced by the replacement c2 → c2 + δc2(ρ),
with [2–4]

δc2 = 3π2
[
A1MN − 4

27M
(0)
N + 2σN

]
ρ. (6)

The first term in brackets is the leading density-dependent
perturbative QCD correction. It involves the first moment,
A1 = 2〈x〉u+d , of the parton distribution in the nucleon. Given
the empirical (MRST) [32,33] momentum fraction carried by
u and d quarks in the nucleon, 〈x〉u+d � 0.62 at Q2 = 1 GeV2,
we use A1 � 1.24 (see Appendix B).

The second term on the right-hand side of Eq. (6) is
the correction to the gluon condensate at finite density. It
is proportional to the nucleon mass in the chiral limit for
which we use M

(0)
N = 0.88 GeV from Ref. [34]. The third

term represents the leading density dependence of the quark
condensate. It is proportional to the nucleon sigma term,
σN = (45 ± 8) MeV [35]. By far the largest contribution to
δc2 evidently comes from the A1 term, so the large uncertainty
in σN has only relatively minor consequences.

Following these considerations the input for c2 and δc2 is
summarized in Table I. The in-medium sum-rule analysis will
be done at normal nuclear matter density, ρ = ρ0 = 0.17 fm−3.

The coefficient c3 involves four-quark condensates in the
following combination:

c3 = −6π3αs


〈(ūγµγ5λ

au − d̄γµγ5λ
ad)2〉

+ 2

9
〈(ūγµλau + d̄γµλad)

∑
q=u,d,s

q̄γ µλaq〉

 . (7)

TABLE I. Input summary.

Value Reference

MN 939 MeV
mq〈q̄q〉 −(0.11 GeV)4 GOR

〈 αs

π
G2〉 0.005 ± 0.004 GeV4 [31]

A1 1.237 [33]

M
(0)
N 0.88 GeV [34]

σN 45 ± 8 MeV [35]
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These condensates of dimension six are not known at any
reasonable level of precision. What is commonly done at this
point is to introduce a factorization approximation, truncating
intermediate states by the QCD ground state and writing

〈(q̄γµγ5λ
aq)2〉 = −〈(q̄γµλaq)2〉 = 16

9 κ 〈q̄q〉2, (8)

with κ introduced to parametrize deviations from exact
factorization (κ = 1). The in-medium analog including terms
linear in the density ρ becomes

c3 = −448

27
κ(ρ) π3αs

(
〈q̄q〉2 + σN 〈q̄q〉

mq

ρ

)
, (9)

with a density-dependent κ parameter.
Clearly, a QCD sum-rule analysis that aims for accuracy

must try to avoid the uncertain four-quark condensate piece c3

in the OPE hierarchy. This is indeed possible when considering
only the two lowest moments of the spectral function, Im�(s),
as follows. We introduce the dimensionless spectral function

R(s) = −12π

s
Im �(s). (10)

Note that, in vacuum, R(s) is identified with the observ-
able σ (e+e− → hadrons)/σ (e+e− → µ+µ−). Now assume
as usual that there exists a delineation scale s0 that separates
the low-mass resonance region (s � s0) from the high-mass
continuum (s > s0):

R(s) = Rρ(s) (s0 − s) + Rc(s) (s − s0). (11)

This step-function delineation between resonance and contin-
uum seems schematic on first sight. In practice, the transition
to the continuum is smooth and s0 should be considered as an
average scale characterizing the transition region. A detailed
analysis, to be described later, shows that the step-function
ansatz is equivalently as valid as a more realistic modeling of
the threshold “ramp,” e.g., by the dotted line in Fig. 1.

Let the high-mass continuum be subject to a perturbative
QCD treatment, following duality considerations:

Rc(s) → c0 for s > s0. (12)

0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

s [GeV  ]2

R
(s

)

resonance

continuum

FIG. 1. (Color online) Vector-isovector spectral function in vac-
uum showing the ρ resonance and continuum parts as described in
the text and compared to e+e− → π+ π− (ρ resonance region) and
e+e− → n π data with n even [26,27].

The next step is to perform a Borel transformation on Eqs. (2)
and (3), leading to

12π2�(0) +
∫ ∞

0
ds R(s) e−s/M2

= c0M2 + c1 + c2

M2
+ c3

2M4
+ · · · . (13)

Choose the (otherwise arbitrary) Borel scale parameter suffi-
ciently large, M >

√
s0, expand e−s/M2

and arrange term by
term in inverse powers of M. The result is a hierarchy of sum
rules for moments of the low-mass part of the spectral function
R(s): ∫ s0

0
ds Rρ(s) = s0 c0 + c1 − 12π2 �(0), (14)

∫ s0

0
ds sRρ(s) = s2

0

2
c0 − c2, (15)

∫ s0

0
ds s2Rρ(s) = s3

0

3
c0 + c3. (16)

These equations are written again to first order in αs , with
c0 = (3/2)(1 + αs/π ). Corrections to order α3

s are included by
the replacements c0 → c0 + (3/2)εn in the n-th moment, with
εn given explicitly in Appendix A. In the detailed calculations
the relevant running coupling is to be taken as αs(s0) with
s0 ∼ 1 GeV2, the onset scale for the (multipion) continuum
part of the quark-antiquark excitation spectrum. We use

αs(s0 ∼ 1 GeV2) = 0.50 ± 0.03, (17)

referring to the most recent NNLO ( MS ) analysis in
Refs. [36,37]. The error in αs(s0) is actually the major source
of uncertainty in the sum-rule calculation, all other corrections
being considerably smaller in magnitude relative to the leading
term.

The subtraction constant �(0) in Eq. (14) vanishes in
vacuum. At finite density this is the Landau term, �(0) = ρ

4MN
,

analogous to the Thomson limit in Compton scattering.
Note that even for a broad spectral distribution R(s), a

squared “mass” associated with the low-energy sector of this
spectrum can be defined through the ratio of the first and zeroth
moments, Eqs. (14) and (15) (see also Ref. [10]):

m̄2 =
∫ s0

0 ds sR(s)∫ s0

0 ds R(s)
. (18)

III. VACUUM SUM RULES

A. Identifying the spontaneous chiral symmetry breaking scale

Consider now first the sum rule for the isovector current-
current correlation function in vacuum. Following Ref. [23] we
start from the working hypothesis that the scale s0 delineating
low-energy and continuum parts of the vector-isovector quark-
antiquark spectrum should be identified with the scale for
spontaneous chiral symmetry breaking in QCD:

√
s0 = 4πfπ . (19)
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For illustration, recall the schematic (large Nc) example of a
zero-width ρ meson,

Rρ(s) = 12π2 m2
ρ

g2
δ
(
s − m2

ρ

)
, (20)

with the vector coupling constant g. Neglecting small quark
masses as well as QCD and condensate corrections in
Eqs. (14) and (15), one arrives at∫ s0

0
ds Rρ(s) = 3

2 s0 = 24π2f 2
π ,

(21)∫ s0

0
ds sRρ(s) = 3

4 s2
0 = 192π4f 4

π ,

and immediately recovers a celebrated current algebra result
(the KSRF relation [38]),

mρ =
√

2 gfπ, (22)

together with the universal vector coupling g = 2π .
Although this schematic example underlines the validity

of the hypothesis (19), a more detailed test using a realistic
spectral distribution R(s) and the full sum-rule analysis,
including corrections, must of course be performed. We do
this along the lines of Ref. [23] and update the results found
in that work.

The input is now the resonant ρ-meson spectral function
Rρ(s) calculated from one-loop chiral ππ dynamics with
gauge coupling to vector mesons [4,39]. The n-pion continuum
Rc(s) (with n � 4 even) is parametrized as in Eq. (11), with the
gap scale s0 to be determined by the sum rules for the lowest
two moments, Eqs. (14) and (15). The spectral function R(s)
is shown in comparison with experimental data in Fig. 1.

The analysis proceeds as follows. The equations for the two
lowest moments of R(s),∫ s0

0
ds Rρ(s) = s0

(
c0 + 3

2
ε0

)
+ c1, (23)

∫ s0

0
ds sRρ(s) = s2

0

2

(
c0 + 3

2
ε1

)
− c2, (24)

are solved to determine s0. For the zeroth moment Eq. (23)
gives

√
s0 = 1.13 ± 0.02 GeV. Overall consistency requires

that the same s0 results also from Eq. (24) within an error band
determined by the uncertainties of the input summarized in
Table I and Eq. (17). This test turns out to be successful. The
detailed analysis of uncertainties performed with Eq. (24)
for the first moment is shown in Fig. 2. The resulting√

s0 = 1.14 ± 0.01 GeV is within 2% of the empirical 4πfπ �
1.16 GeV using the physical value fπ = 92.4 MeV of the pion
decay constant. The postulate (19) identifying

√
s0 with the

scale characteristic of spontaneously broken chiral symmetry,
appears to be working quantitatively.

The relation between first and the zeroth moment,∫ s0

0
ds sRρ(s) = F(s0)

∫ s0

0
ds Rρ(s) (25)

1.08 1.10 1.12 1.14 1.16 1.18 1.20
1.2

1.3

1.4

1.5

1.6

1.7

s0 [GeV]

1st
m

om
en

t
[G

eV
  ]4

sR∫ (s) ds

FIG. 2. QCD sum-rule analysis of the ρ-meson spectral function
in vacuum. First moment (solid line, left-hand side of Eq.(24)) is
plotted versus right-hand side (grey band including uncertainties) as
function of the gap scale

√
s0 delineating low-mass resonance region

from high-mass continuum.

thus involves a uniquely determined function of s0:

F(s0) = s2
0

(
c0 + 3

2ε1
) − 2c2

2s0
(
c0 + 3

2ε0
) + 2c1

, (26)

up to the estimated uncertainties in the quantities ci and εn

[the largest error being associated with αs(s0)]. The squared
mass given by m̄2

ρ = F(s0) � 0.611 ± 0.013 GeV2 or m̄ρ �
0.78 ± 0.01 GeV, is very close to the physical ρ-meson mass
as expected. In fact the canonical relation m̄ρ = √

s0/2 =√
2 × 2πfπ turns out to be satisfied again at the 2% level,

demonstrating the smallness of the next-to-leading QCD
corrections and of the condensate term c2.

B. Sensitivity to continuum threshold modeling

The question arises whether the quantitatively successful
identification of the continuum threshold

√
s0 with the chiral

symmetry breaking scale (i.e., the consistency of the QCD
sum-rule analysis with current algebra results) is influenced by
the schematic step-function parametrization (11). A test can
be performed replacing the step function by a ramp function
to yield a smooth transition between resonance and continuum
region, as follows:

R(s) = Rρ(s) (s2 − s) + Rc(s) W (s), (27)

where the weight function, W (s), is defined as

W (x) =




0 for x � s1

x − s1

s2 − s1
for s1 � x � s2

1 for x � s2

. (28)

The step-function behavior is recovered for W (x) in the limit
s1 → s2.
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1 2 3 4 5 6
1.12

1.13

1.14

1.15

1.16

Slope of W (s) [GeV    ]

s 0
[G

eV
]

FIG. 3. Dependence of
√

s0 [determined from Eqs. (30)–(32)] on
the slope (s2 − s1)−1 of the ramp function W (s) describing the onset
of the continuum in the vacuum sum rule. The gray band indicates
the uncertainty range of the result obtained with step-function
parametrization of the continuum.

Using the function W (s), the modified sum rules for the
lowest two moments of the spectrum R(s) become∫ s2

0
ds Rρ(s) = s2

(
c0 + 3

2
ε0

)
+ c1 − 12π2�(0)

− [c0 − Rρ(s2)]
∫ s2

s1

ds W (s), (29)

∫ s2

0
ds sRρ(s) = s2

2

2

(
c0 + 3

2
ε1

)
− c2

− [c0 − Rρ(s2)]
∫ s2

s1

ds sW (s). (30)

Sets of intervals [s1, s2] are then determined so as to satisfy
both sum rules [Eqs. (29) and (30)], and the scale s0 defined
by

s0 = s1 + s2

2
, (31)

is now introduced to characterize the continuum threshold.
As shown in Fig. 3, the resulting

√
s0 is stable with respect

to variations in the slope (s2 − s1)−1 of the ramp function
W (s), thus confirming that the step-function parametrization
of the continuum is not restrictive: the smooth “ramping” into
the continuum1 produces values of

√
s0 that fall within the

narrow (less than 1 %) uncertainty band of the step-function
approach. We note at this point that the best fit to the empirical
spectral function has s2 − s1 � 1 GeV2 (see Fig. 1). It can be
concluded that the present sum-rule analysis and the observed
quantitative agreement of the continuum threshold with the
chiral gap 4πfπ do not depend on details of the threshold
modeling.

1In this test the uncertainties of αs(Q2) and of the gluon condensate
have been excluded for simplicity.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

s GeV

R
(s

)

nuclear
matter

vacuum

KKW

RW

Continuum

ρ

FIG. 4. (Color online) In-medium isovector vector spectral func-
tions at nuclear matter density, ρ0 = 0.16 fm−3, taken from Refs. [4]
(KKW) and [16] (RW). The ρ-meson spectrum in vacuum is also
shown for comparison.

IV. IN-MEDIUM SUM RULES

In this section the approach just described is applied anal-
ogously to vector current spectral functions at finite density.
We start again from Eqs. (23) and (24), now with inclusion
of �(0) = ρ

4MN
and the density-dependent corrections to the

condensate terms, c2 → c2 + δc2 [see Eq. (6)].
Two generic prototypes of in-medium isovector vector

spectral functions, Im�(ω = √
s, �q = 0; ρ), are used for

demonstration: the one derived from a chiral effective
Lagrangian with vector-meson couplings constrained by vec-
tor dominance [4] (referred to as KKW), and the one calcu-
lated with emphasis on particle-hole excitations incorporating
baryon resonances [16] (referred to as RW). The analysis is
performed at the baryon density of normal nuclear matter,
ρ = ρ0 = 0.17 fm−3. The KKW and RW spectral functions,
taken at this density, are shown in comparison in Fig. 4.

The KKW and RW in-medium spectral distributions both
consistently show a strong broadening as compared to the
vacuum ρ meson. They differ in details at the low-mass end of
the spectrum. Although KKW emphasizes the role of chiral in-
medium ππ interactions, RW focuses on the role of nucleon-
hole, �(1232)-hole, and N∗(1520)-hole excitations. At first
sight, none of these broad distributions permit identifying
an “in-medium mass” or a shift thereof with respect to the
ρ-meson mass in vacuum. This has generally led to the
conclusion of there being no ρ mass shift at finite density but
just an overwhelmingly large inelastic width due to interactions
of the coupled ρ ↔ ππ system with nucleons in the nuclear
medium.

We now perform the sum-rule analysis, first with step-
function continuum, for the two leading moments of the KKW
and RW spectral distributions:

∫ s∗
0

0
ds Rρ(s) = s∗

0

(
c0 + 3

2
ε0

)
+ c1 − 3π2ρ

MN

, (32)

∫ s∗
0

0
ds sRρ(s) = s∗

0
2

2

(
c0 + 3

2
ε1

)
− [c2 + δc2(ρ)] (33)
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FIG. 5. QCD sum-rule analysis of the KKW in-medium spectral
function [4]. First moment [solid line, left-hand side of Eq. (33)] is
plotted versus right-hand side (gray band including uncertainties) as
function of the in-medium gap scale

√
s∗

0 .

where the gap scale
√

s∗
0 is permitted to adjust itself to the in-

medium situation. Consistency of the first and zeroth spectral
moments is again tested and observed to be satisfied within the
uncertainties of the input. This determines s∗

0 at given density
ρ = ρ0. Effects of smooth ramping into the continuum will
again be examined later.

Figure 5 shows the outcome of this procedure for the
KKW spectral function. In this case, at nuclear matter density
ρ0, the in-medium gap scale

√
s∗

0 is indeed seen to be
shifted downward from its vacuum position,

√
s0 � 1.14 GeV

� 4πfπ . One finds√
s∗

0 = (1.00 ± 0.02) GeV (KKW at ρ = ρ0). (34)

For comparison, the cross-check with the sum rule for the
zeroth moment gives

√
s∗

0 = (1.02 ± 0.03) GeV, consistent
with Eq. (34).

The analog of Eq. (25) becomes:∫ s∗
0

0
ds sR(s, ρ) = F(s∗

0 , ρ)
∫ s∗

0

0
ds R(s, ρ) (35)

with

F(s∗
0 , ρ) = s∗

0
2(c0 + 3

2ε1
) − 2(c2 + δc2(ρ))

2
[
s∗

0

(
c0 + 3

2ε0
) + c1 − 3π2ρ/MN

] , (36)

The average in-medium “mass” determined from the ratio
F(s∗

0 , ρ) of the first and zeroth spectral moments is found
to be

m̄∗(ρ) =
√
F(s∗

0 , ρ) = (0.67 ± 0.02) GeV (37)

for the KKW spectral function at density ρ = ρ0. One notes
now that the ratio of in-medium and vacuum first spectral
moments behaves as

m̄∗

m̄ρvac

=
√

F(s∗
0 , ρ)

F(s0, ρ = 0)
� 0.85 ± 0.02 (38)

at ρ = ρ0.
The successful identification

√
s0 = 4πfπ in vacuum sug-

gests a corresponding generalization to the in-medium case:√
s∗

0 = 4πf ∗
π , in terms of the pion decay constant, f ∗

π ≡ ft (ρ),
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FIG. 6. QCD sum-rule analysis of the RW in-medium spectral
function [16]. First moment [solid line, left-hand side of Eq. (33)] is
plotted versus right-hand side (gray band including uncertainties) as
function of the in-medium gap scale

√
s∗

0 .

related to the time component of the axial current at finite
density. Then one observes

√
s∗

0/s0 = f ∗
π /fπ = 0.88 ± 0.02.

One finds, within uncertainties,

m̄∗

m̄ρvac

� f ∗
π

fπ

∼ 1 − (0.15 ± 0.02)
ρ

ρ0
, (39)

suggesting that the BR scaling tendency is indeed visible
for the KKW in-medium spectral function, contrary to first
impression when looking just at the very broad overall spectral
distribution [4]. In this context we refer to the subsequent
section for an update on the relationship between the in-
medium pion decay constant and the density dependence of
the chiral condensate.

The KKW spectrum is based entirely on chiral pion
dynamics with vector mesons. Baryon resonances are assumed
to develop large widths and “dissolve” in nuclear matter so they
become part of the continuous background. In contrast, the
RW spectral function starts from a different scenario in which
baryon resonances play a distinguished role, assuming that
they maintain their quasiparticle properties in matter. It is thus
instructive to conduct, as before, a corresponding sum-rule
analysis for the moments of the RW spectrum under such
aspects.

The result is displayed in Fig. 6. One deduces√
s∗

0 = (1.09 ± 0.01) GeV (RW at ρ = ρ0) (40)

and
√

s∗
0/s0 = 0.97 ± 0.01, together with m̄∗

m̄ρvac
� 0.96 ± 0.02

at ρ = ρ0. [For comparison, the sum rule for the zeroth moment
gives

√
s∗

0 = (1.11 ± 0.02) GeV, consistent with Eq. (40)].
So the RW spectral function exhibits dominantly broadening
with almost no in-medium shift of the ratio of the moments.
Notably, both RW- and KKW-based spectral functions work
quite well in comparison with dilepton data taken at SPS
energies (assuming models for the expansion dynamics of
the hot and dense matter that have their own uncertainties).
This implies that it is presumably not possible to distinguish
between the BR scaling scenario and other (opposing) views
from those data.
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FIG. 7. Dependence of
√

s∗
0 , as in Fig. 3, on the slope (s2 − s1)−1

of the ramp function W (s), now describing the onset of the continuum
in the in-medium sum rules. (Upper panel) Result for the KKW
spectral function. (Lower panel) Result for the RW spectral function.
The gray bands indicate the uncertainty ranges of the results obtained
with step-function parametrizations of the continuum.

The “ramping” test to establish stability with respect to the
modeling of the continuum is performed as for the vacuum
case described in the previous section, with the same ramping
function W (s) employed also for the in-medium case. The
results of this test for the KKW and RW spectral functions
are shown in Fig. 7. One finds again that the determination of√

s∗
0 , using a variety of smooth transitions to the continuum,

is insensitive to details of the threshold modeling within the
narrow band of uncertainties.

V. IN-MEDIUM PION DECAY CONSTANT AND CHIRAL
CONDENSATE: SHORT DIGRESSION

The present QCD sum-rule study asserts that the delineation
between low-energy resonance and high-energy continuum
parts of the spectral function is related to the chiral scale, 4πfπ ,
which acts as an order parameter for the spontaneously broken
chiral symmetry of the QCD vacuum. Its in-medium change
with increasing baryon density is of fundamental interest and
deserves an added short section with an updated discussion.

In the nuclear medium, the relevant quantity is the pion
decay constant ft (ρ) ≡ f ∗

π (ρ) related to the time component
of the axial vector current. Its connection with the density
dependent chiral (quark) condensate 〈ψ̄ψ〉ρ is determined
by the in-medium analog of the Gell-Mann-Oakes-Renner
relation,

f ∗
π

2
m∗

π
2 = −mq 〈ψ̄ψ〉ρ, (41)

to leading order in the quark mass. Here m∗
π (ρ) is the (charge

averaged) pion mass in the medium. A low-density theorem
gives the leading ρ dependence of the quark condensate as

〈ψ̄ψ〉ρ = 〈ψ̄ψ〉0

(
1 − σN

f 2
π m2

π

ρ

)
, (42)

where σN = 45 ± 8 MeV is the σ term of the nucleon.
Assuming that the pion mass is protected by its Goldstone
boson nature at low density, we expect to leading order in the
baryon density:

f ∗
π (ρ)

fπ

� 1 − σN

2m2
πf 2

π

ρ � 1 − ρ

6ρ0
� 0.83 (43)

at ρ = ρ0 = 0.16 fm−3 and taking σN = 45 MeV for
orientation.

A chiral perturbation theory treatment of in-medium pion
dynamics [40] suggested instead a difference between m∗

π and
the vacuum pion mass mπ , which translates into a stronger
density dependence of the pion decay constant, ft (ρ)/fπ =
1 − (0.26 ± 0.04)ρ/ρ0. However, the charge averaged in-
medium pion mass to leading order in the baryon density is
given by

m∗
π

2(ρ) = m2
π − T (+) ρ, (44)

with the isospin-even forward pion-nucleon amplitude T (+) =
4π (1 + mπ/MN ) a(+) taken at threshold, ω = mπ . Empiri-
cally [41], the corresponding scattering length a(+) = (1.6 ±
1.3) × 10−3 m−1

π is compatible with zero. This feature derives
from a subtle cancellation of nonleading terms that cannot be
handled accurately in baryon chiral perturbation theory. Taken
as an empirical constraint, T (+)(mπ ) � 0 implies m∗

π (ρ) � mπ

at low density and hence an approximate scaling of f ∗
π with

the square root of the in-medium chiral condensate as in
Eq. (43). This behavior is actually consistent with the observed
energy shifts in deeply bound states of pionic atoms [42] and
related theoretical calculations [43] (see also Ref. [44]).

A recent theoretical study [45] gives further support to these
considerations, through a more general derivation of ft (ρ) that
does not have to rely on a detailed evaluation of the charge
averaged in-medium pion mass. The basic result of Ref. [45]
is

f ∗
π (ρ) ≡ ft (ρ) = fπ

√
Z

Z∗
〈ψ̄ψ〉ρ
〈ψ̄ψ〉0

, (45)

where Z and Z∗ are the wave-function renormalization factors
of the pion in vacuum and in-medium, respectively. Their ratio
is determined by the pion self-energy �(ω, �q, ρ), as follows:

Z

Z∗ = 1 − ∂

∂ω2
�(ω, �q = 0, ρ)

∣∣∣∣
ω=0

. (46)

Using the low-density expression � = −T (+) ρ and the
parametrization T (+)(ω) = −σN/f 2

π + βω2 + · · · one arrives
at

f ∗
π (ρ)

fπ

� 1 −
(

σN

m2
πf 2

π

− β

2

)
ρ, (47)

to leading order in the density. With the slope β determined by
the constraint T (+)(ω = mπ ) = 0 and assuming higher-order
terms in the expansion of T (+) to be small, we arrive back at
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Eq. (43): f ∗
π (ρ0)/fπ = 0.83 ± 0.03 when the admittedly large

uncertainty of the nucleon σ term is included.
Higher-order corrections in the density ρ, calculated using

in-medium chiral perturbation theory [46], can be expressed
in terms of a density-dependent effective nucleon σ term
with a reduced value at normal nuclear matter density,
σ eff

N (ρ0) = (36 ± 9) MeV, leading to a 3–4% increase of the
ratio f ∗

π (ρ0)/fπ over the value (43).
Notably, the in-medium QCD sum-rule analysis assuming√

s∗
0 = 4πf ∗

π exhibits chiral scaling of this sort for the KKW
spectral distribution, whereas this is not observed for the RW
spectral function.

VI. NOTE ON FOUR-QUARK CONDENSATES

Given spectral functions that consistently satisfy the sum
rules for the zeroth and first moments, Eqs. (14) and (15),
one can turn to the second moment (16) and try to deduce
constraints for the four-quark condensate term c3, both in
vacuum and in-medium. In particular, one can discuss de-
viations from the frequently used factorization assumption for
those condensates. As mentioned, factorization means that the
intermediate states produced by the quark operators entering
Eq. (7) are truncated by the ground state (vacuum) only. Exact
factorization means κ = 1 in Eqs. (8) and (9).

When performing the consistency analysis including the
sum rule (16) for the second moment, it turns out in all cases
that the correction c3 is required to be much larger than the
value for a factorized four-quark condensate (with κ = 1):
factorization proves to be unrealistic under any circumstances.
For detailed estimates we take a value 〈q̄q〉 � −(0.2 GeV)3

and find the following results:

(i) In vacuum, a lower limit κ >∼ 4.5 is observed which
implies strong deviations from factorization.

(ii) For both types of spectral functions (KKW and RW)
the minimal κ required in-medium (typically κ >∼ 3) is
somewhat smaller than in vacuum.

The range of uncertainty is generally large in all cases, with
κ typically extending from its lower limit up to about twice
that value.

One concludes that the four-quark condensates, entering
the sum rule at the level of the second moment of the spectral
function, remain basically undetermined. This appears to be at
variance with reported attempts to constrain such dimension-
six condensates from Borel sum rules for the nucleon [47]. Our
findings confirm that the assumption of ground-state saturation
for four quark condensates should be handled with caution.
In the present work the sum rules are released from such a
dispute by restricting procedures to the 0th and 1st moments
of the spectral distribution for which quantitative statements
can indeed be made.

VII. SUMMARY AND CONCLUDING REMARKS

The present work re-emphasizes the usefulness of QCD
sum rules for moments of spectral functions (or, equivalently,
finite energy sum rules), with focus on the ρ meson both in

vacuum and in the nuclear medium. The sum rules for the two
lowest spectral moments involve only the leading (dimension-
four) QCD vacuum condensates as (small) corrections. With
inclusion of perturbative QCD terms up to order α3

s , these sum
rules permit an accurate quantitative analysis, unaffected by
the large uncertainties from condensates of higher dimension
(such as the four-quark condensates).

An important scale parameter in this analysis is the gap
separating low-energy (resonance) and high-energy (contin-
uum) regions of the spectral function. For the vector-isovector
current correlation function, identifying this gap with the
scale for spontaneous chiral symmetry breaking in vacuum,
4πfπ , reproduces time-honored current algebra relations and
chiral sum rules characteristic of low-energy QCD. The
corresponding in-medium sum rules for the lowest two spectral
moments permit to address the “mass shift” versus “collisional
broadening” issue from a new, more quantitative perspective,
meaningful even for broad spectral distributions such as that
of the ρ meson at nuclear matter density. Systematic tests have
been performed to confirm that the conclusions drawn from
such analysis do not depend on the detailed threshold modeling
of the transition between resonance and continuum parts of the
spectral distributions, even with strong in-medium broadening.

Two prototype examples of in-medium ρ-meson spectral
functions have been examined from this point of view in the
present article. Both of these show substantial broadening
and redistribution of strength into the low-mass region, as
compared to the vacuum spectrum. The sum-rule analysis of
the lowest spectral moments reveals qualitative differences
with respect to their BR scaling properties. At the same
time, both of these spectral distributions account quite well
for the low-mass enhancements observed in dilepton spectra
from high-energy nuclear collisions. So one must draw the
conclusion that BR scaling can presumably not be tested in
such measurements.

Given the consistency constraints derived from the first two
sum rules for the spectral moments, one can then proceed to the
third sum-rule equation in this hierarchy (involving the second
spectral moment and QCD condensates of dimension six) and
discuss limits for the four-quark condensates. The outcome of
this study demonstrates that the frequently used factorization
approximation for these condensates is questionable under any
circumstances, both in vacuum and in-medium.

In summary, we repeat that QCD sum rules for the first two
moments of vector spectral functions, when combined with the
spontaneous chiral symmetry breaking scale of low-energy
QCD, permit a quantitatively accurate analysis in vacuum,
consistent with well-established current algebra relations. The
in-medium analogs of these sum rules can be used routinely to
clarify and classify the properties of vector-meson spectral
functions in nuclear matter. An extension to temperature
dependent sum rules is in progress with special emphasis on the
interesting issue of ρ-a1 mixing in a thermal pionic heat bath.
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APPENDIX A: QCD CORRECTIONS

Following Ref. [23], the expression for the n-th moment
(with n = 0, 1, 2) of the spectral distribution in the isovector
(ρ-meson) channel is written∫ s0

0
ds snRρ(s) = sn+1

0

n + 1

(
c0 + 3

2
εn

)
+ (−1)ncn+1 − 12π2 �(0) δn0. (A1)

The leading perturbative QCD term on the r.h.s. has c0 =
3
2 (1 + αs

π
). The corrections to O(α3

s ) are

εn = a(2)
n

(αs

π

)2
+ a(3)

n

(αs

π

)3
, (A2)

with

a(2)
n = 1.641 + 2.250

n + 1
,

(A3)

a(3)
n = −10.28 + 11.38

n + 1
+ 1.69

(
6

(n + 1)2
− π2

)
.

In applications using (A1) the relevant coupling is αs(s0) with
s0 ∼ 1 GeV2. In practice we use αs(1 GeV2) = 0.50 ± 0.03
[36,37].

APPENDIX B: FIRST MOMENT OF QUARK
DISTRIBUTION

An accurate value of A1,

A1 = 2
∫ 1

0
dx x

(
u + ū + d + d̄

)
, (B1)

which determines the dominant part of the in-medium mod-
ifications in our sum rule analysis, is obtained from the
MRST2001 fits [33]. In this analysis parton distributions of the
proton are derived from measurements of structure functions
by the H1 and ZEUS collaborations at HERA, and by the D0
and CDF collaborations at the Tevatron, performing DGLAP
evolution. The parametrization of the parton distributions at
Q2 = 1 GeV2 is:

x uv = 0.158 x0.25(1 − x)3.33(1 + 5.61x0.5 + 55.49x),

x dv = 0.040 x0.27(1 − x)3.88(1 + 52.73x0.5 + 30.65x),

xS = 0.222 x−0.26(1 − x)7.10(1 + 3.42x0.5 + 10.30x),
(B2)

x� ≡ x(d̄ − ū)

= 1.195 x1.24(1 − x)9.10(1 + 14.05x − 45.52x2),

2ū = 0.4S − �,

2d̄ = 0.4S + �,

where uv and dv denote the valence u- and d-quark distri-
butions while 2ū and 2d̄ are the sea quark distributions. �

denotes the difference between d̄ and ū.
Using this parametrization, A1 at a 1 GeV scale is directly

calculated as

A1 = 2
∫ 1

0
dx x

(
uv + dv + 2ū + 2d̄

) = 1.2373. (B3)
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