
PHYSICAL REVIEW C 78, 055201 (2008)

Confinement and dynamical chiral symmetry breaking in QED3
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I. C. Cloët and C. D. Roberts
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA

(Received 20 June 2008; published 10 November 2008)

We establish that QED3 can possess a critical number of flavors, Nc
f , associated with dynamical chiral

symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization
are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity
entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between
the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and
fermion-photon vertex are used to illustrate these observations. The existence and value of Nc

f are contingent upon
the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter
for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the
analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable.
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I. INTRODUCTION

Analogous to quenched quantum chromodynamics (QCD),
quenched quantum electrodynamics in three dimensions (two
spatial and one temporal—QED3) is confining because it
has a nonzero string tension [1]. This feature persists in the
unquenched theory if massive fermions circulate in the photon
vacuum polarization [2]. That mass can either be explicit
or dynamical in origin. The possibility of dynamical mass
generation in the chiral limit theory is of material interest
because then QED3 has even greater qualitative similarity with
QCD.

Dynamical chiral symmetry breaking (DCSB) explains the
origin of constituent-quark masses in QCD and underlies the
success of chiral effective field theory [3]. Its importance
in QCD has ensured that the possibility of DCSB in QED3
has received much attention. The Dyson-Schwinger equations
(DSEs) provide a natural framework within which to explore
this and related phenomena. These methods are reviewed in
Refs. [4–8].

Interest was stimulated by a finding [9] that in QED3 with
Nf massless fermions a truncated system of DSEs yields
a critical number of flavors, Nc

f , such that DCSB is only
possible for Nf < Nc

f . A debate has subsequently ensued,
which focuses on the reliability of the truncations employed
and offers an alternative possibility; namely, that the mass
function does not vanish at some critical number of flavors but
is instead exponentially suppressed with increasing Nf [10].
Our analysis is intended to crystallize the issues and thereby
eliminate the points of contention.

It is notable that lattice-regularized QED3 suggests Nc
f > 1

[11], with a recent simulation hinting at Nc
f ∼ 1.5 [12].

This possibility is made interesting by a contentious [13]
proposed constraint [14] which places an upper bound on
the critical number of flavors in QED3; namely, Nc

f � 3/2.
In this connection we observe that an impediment to reliable

lattice calculations is the mass hierarchy feature of QED3; viz.,
any dynamically generated mass-scale is at least one order of
magnitude smaller than the natural scale, which is set by the
dimensioned coupling e2 (see, e.g., Ref. [15]).1

In parallel with its relevance as a tool through which to
develop insight into aspects of QCD, QED3 is also of interest in
condensed matter physics as an effective field theory for high-
temperature superconductors [16–18] and graphene [19,20].
Naturally, the nature of the theory at Nf = 2 is most interesting
for true electronic systems.

We describe some basic features of QED3 in Sec. II
and introduce the coupled DSEs relevant to our analysis.
Section III canvasses the issue of gauge covariance in
truncations of the DSEs. It also elucidates necessary and
sufficient conditions for the existence of a critical number of
flavors, in particular a collusion between Schwinger functions
at infrared momenta. This is illustrated using Ansätze for the
vacuum polarization and fermion-photon vertex in Sec. IV. In
addition, we introduce a model-independent order parameter
for deconfinement and demonstrate simultaneity of chiral
symmetry restoration and deconfinement. We expect that this
result remains valid with all consistent truncations. Section V
provides a summary and perspective.

II. COUPLED EQUATIONS

In three dimensions there are two inequivalent 2 × 2
representations of the Euclidean Clifford algebra {γµ, γν} =
2δµν . Hence, two-component spinors are sufficient to describe

1This is fortunately not the case in QCD, which possesses a
dimensionless but running coupling. Its evolution is determined by
a mass-scale whose magnitude is characteristic of all dynamically
generated mass-dimensioned quantities in the theory.
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spinorial representations of the Lorentz group. In this case,
however, a mass term of any origin is odd under parity
transformations. That can be avoided by employing four-
component spinors and a 4 × 4 representation of the Clifford
algebra, e.g., the set {γ1, γ2, γ4}, taken from four-dimensional
theories, with γ5 := −γ1γ2γ4. There are then two different
mass terms that can be written in the Lagrangian; viz., “mψ̄ψ”
and “mψ̄ 1

2 [γ3, γ5]ψ .” The former is obviously analogous to
the natural form in four dimensions and it is invariant under
parity transformations. We therefore define the theory through
this term.

In order to study confinement and DCSB we consider the
gap equations for the fermion and photon; namely, in a theory
with Nf fermions of mass m,

S(p)−1 = iγ · pA(p) + B(p), (1)

= [iγ · p + M(p)]/Z(p), (2)

= iγ · p + m + �(p), (3)

�(p) = e2
∫ 3

q

Dµν(p − q)γµS(q)�ν(q, p), (4)

where
∫ 3
q

= ∫
d3q/(2π )3 and, with q± = q ± k/2,

D−1
µν (k) = [δµν − (1 − 1/ξ )kµkν] + 	µν(k), (5)

	µν(k) = [k2δµν − kµkν]	(k) =: Tµν(k)k2	(k), (6)

= −Nf e2
∫ 3

q

tr γµS(q+)�ν(q+, q−)S(q−). (7)

Note: The massless theory is straightforwardly defined by
setting the Lagrangian mass m = 0 and the quenched theory
is obtained by writing 	(k) ≡ 0.

These equations are written in a general covariant gauge,
fixed by the parameter ξ . Plainly, they are coupled to each other
and to equations that we have not written explicitly; e.g., that
for the fermion-photon vertex, �µ. In order to draw reliable
conclusions from the analysis of these equations a systematic
and nonperturbative truncation scheme should be employed.
One such scheme was introduced in Refs. [21,22].

The coupling σ = e2 has mass-dimension one. Further-
more, QED3 is super-renormalizable and therefore, in contrast
to QCD, no ultraviolet divergence can arise whose regulariza-
tion would introduce a new mass-scale. Hence, σ sets the scale
in the massless theory and there is a direct connection between
σ and the scales of confinement and DCSB.

With the parametric dependence of the Schwinger functions
displayed explicitly, these features entail

σ S(p; m; σ ; Nf ) = S
(p

σ
;
m

σ
; 1; Nf

)
, (8)

	(p; m; σ ; Nf ) = 	
(p

σ
;
m

σ
; 1; Nf

)
, (9)

�µ(p, q; m; e2; Nf ) = �µ

(p

σ
,
q

σ
;
m

σ
; 1; Nf

)
; (10)

i.e., that the pointwise evolution of the theory’s Schwinger
functions at an arbitrary value of σ can be obtained through
scaling of their σ = 1 behavior. In consequence there cannot
be a phase transition associated with changes in σ : whether
QED3 is confining and/or exhibits DCSB is independent of

the coupling’s value. On the other hand, the state of the theory
can respond to changes in the dimensionless parameter Nf .

III. DCSB—THEORY

In bald terms DCSB is the existence in the chiral limit of
a M(p) �= 0 solution to Eq. (4). Such a solution expresses the
generation of mass from nothing solely through interactions.2

In order to determine whether that is possible one can begin by
analyzing the gap equations at leading order in the truncation
scheme of Refs. [21,22], which corresponds to using

�µ(p, q) = γµ. (11)

In this “rainbow-truncation” Eqs. (4) and (7) form a closed
set, which has long been the subject of scrutiny; see, e.g.,
Refs. [4,15], and references therein.

A. Landau gauge

Before reporting the results of such an analysis, we consider
it important to discuss whether there is a special choice
of gauge parameter for which Eq. (11) is most sound. If
so, then one can couple that particular gauge choice with
Eq. (11) and define the vertex in any other gauge via the
Landau-Khalatnikov-Fradkin (LKF) transform of Eq. (11)
[24–26]. This procedure was advocated in Ref. [2] because
it guarantees gauge covariance.

Landau gauge, ξ = 0, occupies this special place. In
Landau gauge the one-loop contribution to A(p) vanishes
in any number of dimensions [27]. Owing to the simplest
Ward-Takahashi identity, this feature amplifies the domain
whereupon Eq. (11) can be described as a pointwise accurate
approximation. Additionally, in the context of the reasonable
vertex Ansätze [28] that have been employed in DSE studies,
this means that sensitivity to model-dependent differences
between the forms is least noticeable in Landau gauge.
Moreover, whenever it is relevant, ξ = 0 is a fixed point
of the renormalization group; i.e., the gauge parameter is
momentum-independent. Indeed, it is always zero.

Numerous studies have tried to construct a model vertex
that guarantees gauge covariance of the fermion propagator
[2,15,28–40] and the photon vacuum polarization [2,34,40]
in QED3 and QED4. The lesson in the observations above is
that such attempts are misguided. Suppose a Landau gauge
Ansatz is truly correct, then its form in any other gauge is
precisely reproduced by the LKF-transform. If, on the other
hand, the Ansatz is wrong, then its in-built dependence on
the gauge parameter will not be better than that which is
obtained by defining the vertex in different gauges via the LKF
transform. Hence there is nothing to be learnt from exploring
the gauge parameter dependence of quantities obtained with a

2Whether the vacuum associated with this solution is preferred over
that corresponding to the M(p2) ≡ 0 solution; viz., has the higher
pressure, can subsequently be determined. It certainly does in QCD
[23].
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given vertex Ansatz.3 Our view is that irrespective of the choice
made for �µ, and there are good reasons to employ something
more sophisticated than Eq. (11), the Landau gauge results
define the model entirely.

B. Conditions for a critical number of flavors

In Ref. [9], in conjunction with free massless fermion
propagators, S(p) = −i/γ · p, Eq. (11) was used in Eqs. (6)
and (7) to obtain

	(k) = Nf σ
1

8k
. (12)

This result was subsequently inserted into Eq. (4) via Eq. (5)
and, subject to the further truncation A(p) ≡ 1, an equation
for M(p) obtained; viz., with σ = 1,

M(p) = 1

2π2p

∫ ∞

0
dq

qM(q)

q2 + M(q)2
ln

[
p + q + Nf

8

|p − q| + Nf

8

]
.

(13)

This procedure was described as providing the mass function
at leading-order in a 1/Nf -expansion and yields the result that
DCSB is only possible on the domain

Nf < Nc
f = 32

π2
= 3.24. (14)

This claim opened a debate, described in Sec. III of Ref. [4].
The other widely canvassed possibility is that the mass function
does not vanish but is instead merely exponentially suppressed
with increasing Nf [10]. One aim of the following analysis is
to eliminate the points of contention.

Given that 	(k) must be a monotonically decreasing
function in QED3, our first observation is that a critical number
of flavors, Nc

f , can only exist in the massless theory if in the
neighborhood of this value

1

	(k)

∣∣∣∣
k→0

Nf �Nc
f= 0. (15)

To establish this, consider the opposite; namely, 	(0; Nf �
Nc

f ) = α, for some α ∈ (0,∞). Under the conditions just
described

1 �
1

1 + 	(k)
�

1

1 + α
> 0, ∀k � 0. (16)

Equation (4) can only support a gap if the kernel possesses
sufficient support. A lower bound on the support is obtained
by employing the replacement: 	(k) → α. The equation thus
obtained is actually the same as the quenched equation except
for a rescaling of the coupling; viz., σ → σ̃ = σ/(1 + α). In

3In this connection it is materially important to bear in mind that
no vertex Ansatz can be consistent with perturbation theory if its
expression in other than Landau gauge omits an explicit dependence
on the gauge parameter; i.e., the correct vertex must possess a
dependence on ξ �= 0 in addition to that implicit in the fermion
propagator which arises through resolving the Ward-Takahashi
identity [36].

the quenched theory the coupling serves merely to set a mass-
scale and has no effect on whether or not chiral symmetry is
dynamically broken. Thus, if chiral symmetry is not broken
for 	(0; Nf � Nc

f ) = α, then there exists a N ′
f < Nc

f such
that 	(0; N ′

f ) = α̃ �= α and chiral symmetry is still unbroken.
Therefore, Nc

f cannot be a critical number of flavors. Hence
no monotonically decreasing function satisfying 	(k) � α <

∞,∀k � 0 can generate a critical number of flavors.
If a theory possesses a critical number of flavors, then in the

chiral limit and for Nf � Nc
f one can neglect in the Schwinger

functions all instances of feedback associated with B(p) �= 0.
Hence Eqs. (4) and (7) can be studied in the forms

B(p) =
∫ 3

q

Dµν(p − q)
B(q)

q2A(q)2

1

4
tr γµ�ν(q, p), (17)

p2A(p) = p2 +
∫ 3

q

Dµν(p − q)
1

q2A(q)

× 1

4
tr (−iγ · p)γµ(−iγ · q)�ν(q, p), (18)

	(k) = − Nf

2k2

∫ 3

q

1

q2+A(q+)q2−A(q−)

×tr [γµ(−iγ · q+)�ν(q+, q−)(−iγ · q−)]. (19)

(Note: Owing to Eqs. (8)–(10), here and hereafter we set
σ = e2 = 1.) In deriving Eqs. (17)–(19) we used the fact that
without feedback; i.e., for B(p) ≡ 0, all terms in �µ contain
a single power of the Dirac matrices. No term is present that
can drive the appearance of another structure. This entails that
the equations for A(p) and 	(k) form a closed, coupled pair,
one whose solutions will only ultimately influence the result
for B(p).

Consider Eqs. (18) and (19). Equation (12) describes
the polarization for p 
 1, on which domain one also has
A(p) − 1 ≈ 0. However, it is the behavior of these functions
for infrared momenta, p � 1, that is crucial to the existence or
otherwise of a gap. Reference [28] indicates the possibility that
in the absence of an explicit or dynamically generated fermion
mass, A(p) can possess homogeneous power-law behavior
in the infrared whilst nevertheless satisfying its perturbative
ultraviolet limit. We therefore consider the implications of

A(p) = a0p
δ, δ > 0, p � 1. (20)

Homogeneity entails A(ζp) = ζ δA(p). From this, the
absence of a fermion mass and, importantly, the Ward identity,
it follows that

�µ(ζp, ζq) = ζ δ �µ(p, q), p, q � 1. (21)

Subject to these considerations, inspection of Eq. (19) re-
veals that infrared momenta dominate the integration domain
therein. Therefore

	(ζk) = ζ−(1+δ)	(k), k � 1. (22)

Note: Dominance of infrared momenta cannot be argued for
δ < 0. Moreover, Eq. (22) is consistent with Eq. (15).

Equation (18) has a constant term on the left-hand side.
This is plainly the driving term associated with the ultraviolet
behavior A(p) = 1, p 
 1, and therefore cannot have any
impact on the infrared behavior of A(p), a result illustrated
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clearly in Ref. [40]. Hence, focusing on momenta within the
infrared domain, we substitute Eqs. (20)–(22) into Eq. (18)
and find

A(ζp) = ζ δ A(p) ; (23)

namely an internally consistent result. The value of δ depends
on the exact form of the dressed-fermion-photon vertex [40],
which is not completely constrained by the Ward-Takahashi
identity.

It is thus evident that if there exists a critical number of
flavors, Nc

f , then for Nf � Nc
f the fermion wave function

renormalization function and the photon vacuum polarization
are, for infrared momenta, homogeneous functions. They have
degree δ and [−(1 + δ)], respectively, a particular relationship
that is enforced by the Ward identity. The converse can also be
argued from Eqs. (4) and (7). If there exists a value of Nc

f such
that for Nf � Nc

f A(p) and 	(k) are homogeneous functions
at infrared momenta, then at this value of Nc

f chiral symmetry
is not broken. This is plain because DCSB would introduce an
infrared mass-scale, µ, and the wave function renormalization
and vacuum polarization would saturate at some constant value
for momenta less than this scale.

It follows that there can exist a critical number of flavors
for DCSB iff the fermion wave function renormalization
function and the photon vacuum polarization are homogeneous
functions at infrared momenta.4

These results have an important impact on Eq. (17); namely,
for any value of δ,

B(ζp) = B(p), p � 1. (24)

An infrared collusion is apparent in the theory: the infrared
anomalous dimensions of the wave function renormalization
and vacuum polarization cancel from the equation for the
scalar self-energy and the scaling behavior of the integrand
is ζ 0. Once again, the Ward identity driven result in Eq. (21)
is essential for this to occur. Equation (24) states that it is
consistent with homogeneity, Eqs. (21)–(23), for the scalar
part of the fermion self-energy to assume a constant value—
possibly nonzero—at infrared momenta in the neighborhood
of a critical number of flavors, Nc

f .
To underline the importance of this outcome, suppose

that the fermion wave function renormalization, fermion-
photon vertex, and photon vacuum polarization are treated
inconsistently; e.g., such that in Eq. (22) the exponent is
[−(1 + δ′)]. Then the integrand in Eq. (17) scales as ζ δ′−δ ,
in which case the only admissible solution is B(p) ≡ 0. Such
a result precludes the existence of a critical number of flavors.
This analysis reiterates and elucidates the observation of
Ref. [34].

4In the fermion gap equation one can represent a Higgs mass, η,
for the photon via an infrared singular polarization: 	H (k) = η2/k2.
Hence the discussion above also applies in that case. Reference [41]
can be viewed as a numerical verification of this.

IV. ILLUSTRATION

A. DCSB

In order to provide a straightforward illustration via the
fermion gap equation, Eq. (4), of the results discussed in
Sec. III, we adapt the vacuum polarization calculated from
numerical solutions of the gap equation in Ref. [2]; namely,

	(p, q; �P ) = P(p, q; �P )	(p − q), (25)

	(k) = Nf

[
1

8

1√
k2 + ςa2

+ ς b e−ck2

]
. (26)

In Eq. (26) we use a = 0.20, b = 0.088 and c = 7.8, which
owe their nonzero values to DCSB and were calculated [2] for
Nf = 1. Note: For a = 0 = b, Eq. (26) reduces to Eq. (12);
i.e., the leading order result in a 1/Nf -expansion.

In adapting this form to our purposes we have introduced
two new factors. The quantity

ς = e−2(Nf −1)/ρ, ρ = M(p = 0; Nf )

M(p = 0; Nf = 1)
(27)

allows a suppression of M(p) with increasing Nf to feed back
into the vacuum polarization. This enables a scenario in which
Eq. (15) can arise dynamically in concert with the appearance
of a critical number of flavors. We have also included the factor

P(p, q; �P ) =



1
2

[
1

A(p)
+ 1

A(q)

]
, �P = 1

1, �P = 0
, (28)

the presence of which permits the model to realise Eq. (22)
dynamically when �P = 1. Similar reasoning leads us to write

�µ(p, q) = V(p, q; �V )γµ, (29)

with

V(p, q; �V ) =
{ 1

2 [A(p) + A(q)] , �V = 1

1, �V = 0
. (30)

At this point our illustrative model for the gap equation is
completely specified.

We solve Eq. (4) with σ = e2 = 1, the Landau gauge photon
propagator obtained from Eqs. (5) and (26)–(28) and the
fermion-photon vertex in Eqs. (29) and (30). The left panel
of Fig. 1 describes the nature of DCSB in the model. It is
apparent that a critical number of fermion flavors exists if, and
only if, the vacuum polarization and vertex dressing conspire
at infrared momenta to completely eliminate the influence of
the fermion’s vector self-energy from the equation for the
scalar self-energy. Otherwise, M(p; Nf ) is merely suppressed
exponentially with increasing Nf .

The solid curves in Fig. 1 exhibit a sudden drop at
Nf = 1.55. This can be understood via Fig. 2, which depicts
the vacuum polarization of Eq. (26). As we advertised,
the polarization acquires a dependence on Nf because a
suppression of M(p) feeds back into the polarization through
ς . This mocks up a simultaneous self-consistent solution of
the fermion and photon gap equations. The domain on which
	(k) differs from the 1/Nf -result in Eq. (12) shrinks with
increasing Nf , until at Nf = 1.55, owing to the calculated
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FIG. 1. (Color online) Left panel: Calculated evolution of the dimensionless ratio ρ in Eq. (27) with the number of flavors, Nf : dotted
curve—(�P = 0, �V = 0) in Eqs. (26), (29), respectively, which represents the complete suppression of feedback into the gap equation from the
solutions of other DSEs; short-dashed curve—(�P = 1, �V = 0); long-dashed curve—(�P = 0, �V = 1); and solid curve—(�P = 1, �V = 1).
Only the last case, which allows a dynamical modification of the photon vacuum polarization and fermion-photon vertex to influence the
gap equation, exhibits a critical number of flavors: Nc

f = 3.24, Eq. (31). Short-dash–dot curve—For comparison, the result obtained via a
1/Nf -expansion. Right panel: The confinement order parameter κ(Nf ), Eq. (35). Simultaneity of chiral symmetry restoration and deconfinement
is a robust result.

self-consistent feedback, it no longer contributes measurably
to the fermion gap equation. Thereafter, this gap equation’s
solution also follows the 1/Nf -result.

The following observations are relevant. It is 	(p, q; 1)
in Eq. (25) that self-consistently realizes Eq. (22). Also, in
the left panel of Fig. 1, which depicts ρ, the solid and short-
dash–dot curves do not lie upon one another because of the
normalization factor in Eq. (27): it is plain from the figure that
our Ansätze yield a Nf = 1 result for the mass function which
is larger than that obtained in a 1/Nf expansion. The curves are
indistinguishable if for Nf � 1.55 we normalise our solution
via the Nf = 1 result obtained using the 1/Nf expansion.
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FIG. 2. (Color online) The polarization in Eq. (26) plotted as
k	(k) and calculated for a range of values of Nf : dot-dashed—
Nf = 1.2; short-dashed—Nf = 1.4; solid—Nf = 1.5; and dotted—
Nf � 1.55. The Nf -dependence owes to ς in Eq. (27) and is self-
consistently determined. Even with the much magnified axes scales
in this plot, for Nf � 1.55 the results are indistinguishable from each
other: they lie upon the 1/Nf -result in Eq. (12).

It is now clear that in the neighborhood of chiral symmetry
restoration Eq. (26) is identical to Eq. (12), and hence our
Ansätze yield

Nc
f = 32

π2
= 3.24 and δ

(
Nc

f

) = 1

12
= 0.083. (31)

We reemphasize that these values are typical but not definitive.
Extant studies suggest that a more sophisticated treatment of
the complex of relevant, coupled DSEs would yield results that
differ by <∼25%.

B. Confinement

Quenched QED3 is confining because it has a nonzero
string tension [1]. This feature persists in the unquenched
theory but only so long as 	(0) is finite [2]. As we have
seen, 	(0) is finite iff the fermions are massive: in QED3 only
massless fermions can screen completely.

The implications of this for the fermion two-point function
can be read from Sec. II of Ref. [3]. If one writes

S(p) = −iγ · pσV (p2) + σS(p2), (32)

then in the absence of confinement (x = p2)

d2

dx2
σV (x) > 0, ∀x > 0. (33)

On the other hand, S(p) describes a confined excitation

if ∃xc > 0 :
d2

dx2
σV (x)

∣∣∣∣
x=xc

= 0. (34)

These statements are associated with the realization of confine-
ment through a violation of the axiom of reflection positivity.
Any two-point Schwinger function with an inflexion point
at x = p2 > 0, Eq. (34), must breach the axiom of reflection
positivity. This entails that the associated elementary excitation
cannot appear in the Hilbert space of observables.
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FIG. 3. (Color online) Calculated evolution of ln(−σ ′
V ): solid

curve—calculated with Nf = 1; short-dashed curve—Nf = 1.5;
long-dashed curve—Nf = 2; and dashed curve—Nf = 4. The con-
spicuous maximum in ln(−σ ′

V ) for Nf = 1, 1.5, 2 signals fermion
confinement in the domain of Nf whereupon chiral symmetry is
dynamically broken. (Recall that e2 = 1.)

In Fig. 3 we depict the evolution of σ ′
V (x) calculated in the

model described in Sec. IV with three values of Nf below
Nc

f and another above. For Nf < Nc
f , chiral symmetry is

dynamically broken. The conspicuous maximum in (−σ ′
V ) for

Nf = 1, 1.5, 2 signals fermion confinement in the domain of
Nf whereupon chiral symmetry is dynamically broken. The
location of the minimum in σ ′

V (x), xc, migrates to x = 0 as
Nf → Nc −

f . One can identify xc as an order parameter for
deconfinement. Note: The location of the minimum positioned
farthest from x = p2 = 0 should be used. In an asymptotically
free theory, if there are any minima at all, then there will be
one most distant.

It is evident in the right panel of Fig. 1 that the quantity

κ(Nf ) = xc(Nf )

xc(Nf = 1)
(35)

exhibits precisely the same behavior as ρ(Nf ). The figure
demonstrates that when internally consistent feedback is
enabled, chiral symmetry is not dynamically broken and
the fermions are not confined for Nf � Nc

f . Plainly, the
chiral symmetry restoration and deconfinement transitions
are simultaneous in our illustrative model. The basic causal
connection is a dramatic change in the analytic properties
of the propagator which accompanies the disappearance of
a nonzero fermion scalar self-energy.

It is noteworthy that DSE studies of QCD, in rainbow-ladder
truncation with the model kernel of Ref. [42], find the same
results for these transitions at T �= 0 [43] and µ �= 0 [44].
In addition, Ref. [45] describes a model that exhibits a line
of simultaneous transitions in the physical quadrant of the
(T ,µ)-plane. Indeed, deconfinement and chiral symmetry
restoration are coincident in all self-consistent studies of
concrete models of continuum QCD that exhibit both phe-
nomena, and in numerical simulations of lattice-regularized
QCD [46]. The methods described herein could be employed
to extend the study of QED3 at nonzero-(T ,µ) in Ref. [47], and

explore whether and under which conditions chiral symmetry
restoration and deconfinement are coincident.

V. APERÇU

We argued that QED3 can possess a critical number of
flavors, Nc

f , above which dynamical chiral symmetry breaking
is impossible if, and only if, in the neighborhood of Nc

f the
fermion wave function renormalization and the photon vacuum
polarization are homogeneous functions at infrared momenta.
The Ward identity guarantees that the fermion-photon vertex
also possesses the homogeneity property and ensures a simple
relationship between the homogeneity degrees (anomalous
dimensions) of each of these functions. One cannot, however,
conclude from this analysis that QED3 must possess a critical
number of flavours. The existence and value of Nc

f are
contingent upon the precise form of the fermion-photon vertex.
Notwithstanding this, it is noteworthy that all extant studies
which employ a reasonable vertex Ansatz and treat QED3’s
gap equations consistently, yield a value Nc

f ∼ 3.5 .
This has the tendency to suggest that chiral symmetry is

dynamically broken for Nf = 2 QED3, the number relevant
in condensed matter applications of the theory. However, that
is not yet certain owing, e.g., to a preliminary estimate of Nc

f ∼
1.5 from recent simulations of noncompact lattice-QED3 [12].
This raises the question of whether a vertex Ansatz can be
found that leads to such a small value.

While our analysis does not establish the existence of Nc
f

it does obviate any further debate on the question of whether
the fermion mass vanishes at some finite Nf or is merely
exponentially damped with increasing Nf . We have elucidated
the conditions under which a critical number of flavors
can exist and the mechanism by which it then arises; viz.,
infrared collusion. All extant studies that report an exponential
suppression of M(0) have suppressed that mechanism.

Our discussion should also forestall any further consid-
eration of the gauge dependence of Nc

f and other physical
quantities. We have made plain that Landau gauge occupies
a special place in gauge theories. It is the gauge in which
any truncation or sound Ansatz for the fermion-photon vertex
can most reasonably be described as providing a pointwise
accurate approximation. The vertex in any other gauge should
then be defined as the Landau-Khalatnikov-Fradkin transform
of the Landau gauge Ansatz. The sensible implementation of
this procedure guarantees gauge covariance and hence renders
moot any question about the gauge dependence of gauge
invariant quantities.

In order to illustrate our arguments we employed a simple
model for the photon vacuum polarization and fermion-photon
vertex. Within this model we calculated Nc

f and the infrared
anomalous dimension. Furthermore, we introduced a new,
model-independent order parameter for the confinement of
elementary excitations. In our model deconfinement and chiral
symmetry restoration are coincident at Nc

f . This owes to
an abrupt change in the analytic properties of the two-point
fermion Schwinger function when a nonzero scalar self-energy
becomes impossible. It is plausible that this mechanism and
result persist in QED3 proper and, indeed, in general.
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