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Femtoscopy in relativistic heavy ion collisions and its relation to bulk properties of QCD matter
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By using a viscous hydrodynamic model coupled to a hadronic cascade code, numerous features of the
dynamics and equilibrium properties are explored for their impact on femtoscopic measurements. The equation
of state, viscous parameters, and initial conditions are investigated. We find that femtoscopy is affected by
numerous model features at the 10% level and that by including features and adjusting unknown parameters, one
can explain experimental source size measurements to better than 10%.
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I. OVERVIEW

The bulk properties of QCD matter, as created in relativistic
heavy ion collisions, largely manifest themselves in soft
hadronic observables of particles with transverse momentum
less than one GeV/c. These observables can be divided into
three classes: spectra, flow (or large-scale correlations), and
correlations at small relative momentum. This last class is
referred to as femtoscopy [1] since these correlations are used
to determine space-time characteristics of emitting sources.
Correlation functions, C(P, q), can be linked to the outgo-
ing phase-space distributions, or more precisely the source
function S(P, r), which describes the probability that two
particles with the same velocity, whose total momentum is P,
are separated by r in their asymptotic trajectory. Owing to their
inherent six-dimensional nature, correlations have proven to be
the most difficult of all Relativistic Heavy Ion Collider (RHIC)
observables to fit with full dynamic models. The measurements
are amenable to being fit by simple geometric models of
the final state, provided that the models incorporate strong
radial collective flow, and a rapid dissolution into a thermal
assortment of resonances [2–5]. However, many dynamic
models, especially hybrid hydrodynamic/cascade descriptions,
lead to more extended emission durations, which lead to
significantly different shapes for the outgoing phase-space
distributions.

The information in correlations is often reduced to Gaussian
source parameters, Rout, Rside, and Rlong, which are functions
of the transverse momentum kt and describe the shape of the
outgoing phase-space distribution of zero-rapidity particles
with a specific kt and a specific azimuthal angle. Here, Rlong

refers to the longitudinal dimension along the beam axis, Rout

describes the outward dimension parallel to the momentum,
and Rside refers to the sideward dimension perpendicular to
the beam and to the particle’s velocity. Asymptotically, the
Gaussian form fits the phase-space density to the form

f (p, r, t → ∞)

∼ exp

{
− (rout − vpt − a)2

2R2
out

− r2
side

2R2
side

− r2
long

2R2
long

}
. (1)

The term vpt + a is irrelevant for identical particles since
correlations are only sensitive to the relative position of two
particles of the same velocity. For nonidentical particles, one

would also be sensitive to the relative position of centroids for
the two species, a1 − a2.

This study focuses on how these parameters are affected
by choices made in modeling the reaction. The femtoscopic
relation to the equation of state has long been studied. First, a
stiffer equation of state leads to more rapid expansions, with
emission at earlier times and more confined to a brief burst.
The reduction in the mean emission time reduces Rlong, as the
system has less time to expand longitudinally before emission.
The increased suddenness leads to a shorter Rout relative to
Rside, as long-lived emission allows those particles emitted
earlier to move ahead of the later-emitted particles along the
outward direction. Furthermore, a softer equation of state leads
to higher entropy, and for fixed spectra, the entropy will grow
for increasing source volumes, V ∼ RoutRsideRlong. Since the
total entropy can be ascertained in a quasi-model-independent
fashion from spectra and source dimensions, and since entropy
is conserved during the expansion, the product of the three
dimensions is strongly linked to the equation of state [6].

Femtoscopic source sizes are also affected by nonequi-
librium aspects of the dynamics. Bulk viscosity, which
is expected to be significant in the neighborhood of the
critical temperature when the system struggles to maintain
equilibrium, lowers the effective pressure and thus increases
the entropy and leads to larger source dimensions. Shear
viscosity is mainly important at early times, when velocity
gradients are large and highly anisotropic. This leads to an
enhancement in the transverse components of the energy
tensor, which accelerates the transverse expansion and gives
smaller values of Rlong and Rout relative to Rside [7,8]. At
the earliest times, before even viscous hydrodynamics is
applicable, the pre-equilibrium state might be dominated
by longitudinal color fields. These fields can, in principle,
lead to exceptionally strong transverse components to the
stress-energy tensor, which would amplify the effects of
shear viscosity. The importance of early acceleration in
explaining the experimental Rout/Rside ratio has also been
studied by incorporating initial transverse flow into ideal
hydrodynamics [9] and by adding a strong repulsive potential
into microscopic cascade codes [10]. Free-streaming during
the first fm/c increases the transverse pressure relative to the
longitudinal pressure, which increases radial flow more than
elliptic flow [11]. This had been thought to make it difficult to
simultaneously fit both spectra and elliptic flow, though this
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was accomplished in Ref. [12]. This issue might be resolved
by better understanding the interface between the initial-state
description and the following hydrodynamic description.

The initial density profile also affects acceleration at early
times [12]. Within the typical nuclear cross-section (40 mb),
a single nucleon will interact with multiple nucleons from
the opposite beam. Depending on the theoretical picture
(e.g., color-glass-condensate-inspired or wounded nucleon),
the average radius of the initial fireball can vary by ∼10%,
with a more compact source being more explosive and leading
to smaller values of Rout/Rside.

To investigate these effects we apply a relativistic viscous
hydrodynamic model, which couples to a cascade code for
modeling the hadronic breakup stage and the decay of outgoing
resonances. The outgoing phase-space points for pions are
used to generate source functions, and, after convoluting with
the squared wave function, generate two-pion correlations.
These are then treated as data and fit to correlation functions
from Gaussian sources to extract Rout, Rside, and Rlong as a
function of kt . The hydrodynamic code uses Israel-Stewart
equations that are modified to allow one to tune to the
anisotropies of the initial stress-energy tensor. Both the hydro-
dynamic and cascade descriptions are built on an assumption
of azimuthal symmetry and boost invariance. This prohibits a
simultaneous analysis of elliptic flow, or a study of longitudinal
acceleration, which is known to affect results at the 5%–10%
level. In addition to investigating all of these sensitivities, we
compare data from the STAR Collaboration at RHIC. We
do find solutions that come close to the the data without
employing any particularly disquieting assumptions or any
parameters outside what we would consider a reasonable
range. Although this paper focuses on femtoscopy, the mean
pt of various calculations is also presented and compared to
data.

After reviewing details of the model in the next section,
the following section is devoted to the effects of varying
the equation of state, viscosities, and initial conditions. The
summary is devoted to drawing conclusions with an emphasis
on understanding what future improvements in models and
analysis are needed to reach rigorous quantitative statements
about the microscopic properties of the QCD matter formed in
relativistic heavy ion collisions.

II. THE MODEL

For generating interferometric source functions, phase-
space points are first generated from a viscous hydrodynamic
model, then fed into a cascade model, which models the
low-density hadronic stage of the collision. Both models
are written in terms of the variables τ, η, r , and φ, where
τ = √

t2 − z2 is the proper time, η = sinh−1(z/τ ) represents
the longitudinal position, and r and φ represent the radial
position and azimuthal angle. Both models were developed
by assuming radial symmetry and boost invariance, which
eliminates η and φ from consideration. By reducing the
dimensionality, both speed and accuracy are vastly improved.
The viscous hydrodynamic model is based on the formalism

in Ref. [13], with more details of this and of the three model
components provided in the following.

A. Viscous hydrodynamic model

First, a review of the modified Israel-Stewart formalism
described in Ref. [13] is presented. A basic description of
viscosity and the Navier-Stokes equation can be found in
Ref. [14]. Recently, Israel-Stewart hydrodynamics [15] has
been extended and applied to nuclear physics [16–20]. In ideal
hydrodynamics, the stress-energy tensor becomes Pδij when
viewed in the fluid rest frame (where latin indices refer to
spatial components only.) Viscous hydrodynamics deals with
the deviation of Tij from Pδij . For all the hydrodynamic
calculations here, the fluid rest frame is defined such that
T0i = 0, and diffusion of conserved particle numbers through
fluid elements is ignored. In the fluid frame the deviations
of Tij can be expressed through five independent traceless
components, ai , and the deviation of the trace, b:

b ≡ 1

3
(Txx + Tyy + Tzz) − P, a1 ≡ 1

2
(Txx − Tyy),

a2 ≡ 1√
12

(Txx + Tyy − 2Tzz), (2)

a3 ≡ Txy, a4 ≡ Txz, a5 ≡ Tyz.

The shear components ai are related on a one-to-one basis to
the five velocity gradients, ωi :

ω1 ≡ ∂xvx − ∂yvy, ω2 ≡ 1√
3

(∂xvx + ∂yvy − 2∂zvz),

ω3 ≡ (∂xvy + ∂yvx), ω4 ≡ (∂xvz + ∂zvx), (3)

ω5 ≡ (∂yvz + ∂zvy).

With these definitions, the Navier-Stokes equations become

ai = −ηωi, b = −ζ∇ · v. (4)

For Israel-Stewart equations of motion, ai and b are not fixed,
as is the case for Navier-Stokes equations, but instead are
dynamic objects. The ratios ai/σa and b/σb should decay
exponentially toward the Navier-Stokes values, where σa and
σb are related to the fluctuation of the stress-energy tensor at
fixed energy density,

σ 2
b ≡

∫
d3r〈b(0)b(r)〉, σ 2

a ≡
∫

d3r〈ai(0)ai(r)〉, (5)

where no sum is implied in the last expression. To restrict the
values of ai and b to ranges ±amax and ±bmax, respectively,
the Israel-Stewart equations are modified by mapping ai and
b to yi and x through hyperbolic tangents. The variables yi

and x will follow the Israel-Stewart equations and can become
arbitrarily large, whereas ai and b will be restricted:

dyi

dt
= − 1

τa

(yi − ηωi/σa), a = amax tanh

(
σay

amax

)
,

y =
√

y2
1 + y2

2 , ai = a
yi

y
, a =

√
a2

1 + a2
2, (6)

dx

dt
= − 1

τb

(x − ζ∇ · v/σb) , b = bmax tanh

(
σbx

bmax

)
.
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As derived in Refs. [13] and [21], the lifetimes, fluctuations,
and viscosities are not independent:

η = σ 2
a τa

T
, ζ = σ 2

b τb

T
. (7)

The equations of motion are solved by storing the velocities
and energy densities in a mesh defined by the radial coordinate.
Following the ideas of the one-dimensional calculation in
Ref. [22], we have that mesh points are not stored at equal
times but at varying times that enforce local simultaneity
(i.e., u · 	x = 0, where 	x is the four-vector describing the
separation of two neighboring mesh points). By using the
integrated distance along the mesh as measured by observers
moving with the fluid


 =
∫

d
, d
 =
√

−[dx − u(u · dx)]2, (8)

the acceleration in the fluid frame, which equals the rate of
change of the transverse rapidity, takes on a simple form

d

dτ
yi = a(
) = − ∂
Txx

T00 + Txx

. (9)

To maintain simultaneity between neighboring mesh points,
the time step depends on 
,

δτ (
) = δτ (
 = 0) exp

{∫ 


0
d
′a(
′)

}
. (10)

To complete the equations of motion, an expression is needed
for the evolution of the energy density. This is done by
considering the change in the internal energy within a cell
defined by adjacent mesh points and a fixed small rapidity
range δη. In the fluid frame, the volume of the cell is

	V = (τδη)2πR	
, (11)

where R is the radius as viewed in the laboratory frame. In
a time step dτ the volume increases because of increases in
both the longitudinal dimension d(τδη) and in the transverse
dimensions. Writing

d	V = d	Vx + d	Vz,

d	Vx ≡ (τδη)d(2πR	
), (12)

d	Vz = (2πR	
)d(τδη),

we have that the change in the internal energy of the cell is

d	U = −Txxd	Vx − Tzzd	Vz, (13)

where z is the longitudinal direction and x refers to the radial
direction. Given the internal energy and volume, one then
knows the local energy density ε, which closes the equations
of motion. For the ideal case, Tij = Pδij , one recovers dU =
−PdV , which implies entropy conservation. Indeed, when the
code was run in this limit, entropy was conserved to better than
0.2%.

The equation of state used for the runs shown here
consisted of three parts. For temperatures below 170 MeV,
the equation of state was that of a hadronic gas. For a
given cell, the pressure was calculated as a function of the
energy density and the density of five conserved charges.

The conserved charges were the number of strange plus
antistrange quarks, the number of baryons plus antibaryons, the
effective number of pions (e.g., a ρ meson counts as two pions),
the number of η mesons, and the number of ω mesons. Only
the standard octet mesons and octet and decuplet baryons were
considered (i.e., the π,K, η, ρ, ω,K∗, η′, ω, and φ mesons
and the p, n,�,�,�,	,�∗, �∗, and � baryons). The details
of which particle numbers were fixed was not particularly
important because the breakup density was chosen to be
400 MeV/fm3, which allowed the cells very little time to adjust
their chemistry before the evolution was taken over by the
cascade code.

For an intermediate range of energy densities, εh < ε <

εh + L, the equation of state was chosen to have a constant
speed of sound [i.e., P = Ph + c2

mixed(ε − εh), where εh is the
energy density of an equilibrated hadron gas with a temperature
of 170 MeV]. In the limit of cmixed = 0, the equation of state
becomes that of a first-order phase transition with latent heat
L. For energy densities above εh + L, the speed of sound
was bumped up to c2 = 0.3 to be consistent with lattice gauge
theory [23]. The simple form for the equation of state was used
so that by varying L and cmixed one could study the sensitivity
to the equation of state.

The ratio of the shear viscosity to entropy was fixed above
Tc. According to the KSS conjecture, this ratio should stay
above 1/4π [24]. Results for varying η/s are investigated in
Sec. III. The fluctuation σ 2

a was calculated by considering
fluctuations of a massless gas. This gives σ 2

a = (4π/5)T 2s.
The relaxation time from Eq. (7) is then τa = (5/4π )η/T s.
For ε < εh, the relaxation time was chosen as τa = 1/(nσ ),
with σ = 25 mb and n being the hadron density. This energy-
averaged cross section for a hadronic gas would be somewhat
higher than 25 mb, but much of that cross section would
be more forward peaked, which reduces the effectiveness of
collisions to thermalize the matter. It would not be surprising
if more sophisticated calculations of the relaxation time would
differ by a few tens of percent. The fluctuation σa was
determined by considering the fluctuations inside a hadron
gas,

σ 2
a =

∫
d3r Txy(0)Txy(r) = 1

V

∑
particles i

p2
i,xp

2
i,y

E2
i

=
∑

species α

(2jα + 1)
∫

d3p

(2π )3
fα(p)

p2
xp

2
y

E2
. (14)

The relaxation time is then given by Eq. (7). For the
intermediate region, εh < ε < εh + L, both η and σ 2

a

were chosen to vary linearly with the energy density from
the hadronic value at εh to the value for the lower end of the
plasma region. Relaxation times were then chosen according
to Eq. (7).

Bulk viscosities are expected to be negligible except near
Tc [25]. This can be understood by considering an isotropically
expanding thermalized gas (i.e., a Hubble expansion), which
for photons maintains a thermal form to the photon spectrum
with the temperature falling as ∼1/τ . For a nonrelativistic gas,
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a thermal form also ensues, but with the temperature falling
as 1/τ 2. If the shape of the momentum-space distribution is
already thermal, collisions are needed to maintain the thermal
value for Tii . Bulk viscosities thus disappear high above Tc,

where the temperatures far exceed the quark mass, and for
temperatures well below the pion mass.

In contrast, near Tc the degrees of freedom and the
condensed fields need to change to maintain equilibrium,
which leads to a bulk viscosity in that region [25,26]. The
bulk viscosity was chosen to be zero for ε > εh + L and for
ε < εh. In the middle of the mixed region, ε = εh + L/2, ζ

was set to a maximum value, ζmax. To make the bulk viscosity
a continuous function, it was chosen to linearly fall with energy
density above and below the maximum value so that it returned
to zero at the boundary of the mixed region. Arbitrarily, the
relaxation time was chosen to be 5h̄/(4πT ), which equals the
minimum relaxation time for the shear in the plasma phase
if one is at the KSS limit. The treatment of the effects of
bulk viscosity here are undoubtedly naive. Since the principal
source of bulk viscosity might be the nonequilibrium chiral
condensate, or σ field, relaxation times might be very large,
the response might be very nonlinear, and the behavior might
be oscillatory, which contradicts the Israel-Stewart assumption
that nonequilibrium deviations decay exponentially. Thus, the
investigations can probably only qualitatively describe the
impact of nonequilibrium effects toward the trace of the stress-
energy tensor. Bulk effects from nonequilibrium fields would
be better treated by a simultaneous solution of the respective
wave equations coupled to the hydrodynamic medium.

Figures 1 and 2 display the hydrodynamic evolution for the
default parameter set. The kinks in the collective transverse
rapidity shown in Fig. 1 arise from the region near Tc. As
the matter expands into a region with lower speed of sound a
pulse builds up similar to a tsunami. Bulk viscosity, which
lowers the effective pressure, 〈Tii〉 ≡ (1/3)(Txx + Tyy + Tzz),
in this region amplifies the pulse. The pulse largely dissipates

FIG. 1. (Color online) The transverse rapidity (upper panel) and
energy density (lower panel, multiplied by τ ) profiles for three times:
τ = 1 fm/c (solid line), τ = 3 fm/c (dashed line), and τ = 6 fm/c
(dotted line). The lower speed of sound near Tc causes a tsunami-like
pulse to grow; the pulse then largely dissipates before breakup.

〈
〈

〉
〉

FIG. 2. (Color online) Deviations of the stress-energy tensor from
viscous effects displayed as a function of r for three times: τ = 1 fm/c
(solid line), τ = 3 fm/c (dashed line), and τ = 6 fm/c (dotted line).
The effective pressure, 〈Tii〉 ≡ (Txx + Tyy + Tzz)/3, scaled by the
pressure (upper panel) deviates from unity owing to bulk viscosity,
which is only nonzero near Tc. The longitudinal components (Tzz −
〈Tii〉)/P begin at the saturation value of −1, enforced by Eq. (6).
The ratio moves toward zero as the velocity gradient lessens, but less
so for large r owing to the large viscosity at low density. The lower
panel shows that an anisotropy in (Txx − Tyy)/P grows mainly in the
region where the outgoing radial pulse creates a pulse in the radial
component of the velocity gradient.

by the time final breakup occurs as the rapidity profile becomes
linear and the energy density profile also becomes smooth.

Viscous effects on the stress-energy tensor are illustrated
in the three panels of Fig. 2. The effective pressure 〈Tii〉 is
displayed in the upper panel. Since the bulk viscosity is set to
zero outside the intermediate region, the ratio 〈Tii〉/P varies
from unity only in this region. If not for the saturation enforced
by Eq. (6), the effective pressure might fall below zero. The
size of the effect is enhanced by the pulse, which results in
large velocity gradients at the boundaries of the pulse. The
anisotropy of Tij is shown in the lower two panels. At τ0 the
anisotropy was inserted as a boundary condition with Tzz set
to zero, which equivalently gives (Tzz − 〈Tii〉)/P = −1, as
shown in the middle panel. This is also the saturated value
as enforced by Eq. (6) and is maintained for some time by
the large velocity gradients at early times. At the edge of the
fireball, where the matter is in the lower density hadronic
phase, the strong anisotropy remains because of the large
viscosity at low density. However, the behavior in this region
is somewhat irrelevant as it is below the breakup density
and is handled by the cascade description described in the
next section. The lower panel shows Txx − Tyy , which differs
from zero mainly near Tc because of the radial pulse. The
large variations shown in Fig. 2 shows how Navier-Stokes
treatments, which can lead to arbitrarily large deviations of
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the stress-energy tensor, are questionable at early times or in
the region of the radial pulse.

The hydrodynamic module was run until the entire system
fell below the breakup density. A sampling of emitted hadrons
was generated from the entire evolution. At each time step,
particles were generated from thermal surface emission of the
outermost cell whose energy density was above the breakup
density. The generation of particles was consistent with the
temperature, density, and the anisotropy of the stress-energy
tensor. When a cell’s energy density fell below the breakup
density, particles were emitted from that cell in the same
manner, except according to volume emission. To make such
emission consistent with the anisotropy of the stress-energy
tensor, the particles were first generated according to an
isotropic thermal distribution. The momenta px, py , and pz

as seen in the fluid frame were then scaled by factors λx, λy,

and λz, respectively, where

λi =
√

Tii/P . (15)

The same mechanism is used for surface emission, along with
an additional factor taking into account the rate at which the
particles leave the surface. For a given particle moving along
a collisionless trajectory, the momenta as measured in the
local rest frame should scale inversely with the time between
collisions. For each component of the momentum, plocal =
p0τ0/(τ + τc), where τ0 is the inverse velocity gradient at
the time of the last collision along the given direction and
τc is the time since the last collision. For nonrelativistic
particles one can derive the simple scaling form for the various
momenta. However, for lighter particles the simple scaling is
only approximately justified. Future versions of the program
will apply a more sophisticated mechanism for generating
particles.

B. Hadronic cascade model

For energy densities below 400 MeV/fm3, a cascade code
is used to describe the evolution. The cascade simulates
the evolution of the particles as straight-line trajectories,
punctuated by collisions whose probability is determined
by a combination of a fixed cross section of 15 mb, along
with resonant absorptions and decays. The resonant cross
sections use a simple Breit-Wigner form with fixed lifetimes,
and all collisions and decays are treated as s waves. Only
resonances from the standard meson octets or from the baryon
octet and decuplet are included. This is a simple treatment,
with no mean-field or Bose effects, but should provide a
sufficiently reasonable description of the breakup stage for
the interferometric studies presented here.

Particles are entered into the cascade description from a
Monte Carlo list generated by the hydrodynamic module.
Along with the list of particles, the cascade module is also
given a description of the position of the emitting surface as
a function of time. Any particle that returns to the interior of
the surface during the cascade description is deleted. If the
hydrodynamic code, with its inclusion of shear anisotropies,
is assumed to accurately model the behavior of a hadron
gas for energies near 400 MeV/fm3, this should provide a

fully consistent interface. For all of the parameter sets studied
here, the hypersurface from which particles are created by the
hydrodynamic module rapidly collapses, resulting in timelike
emission for the vast majority of particles. The percentage of
particles that are reabsorbed into the hypersurface during the
cascade is only about one percent.

One potential issue with many cascade codes is that
the finite interaction range (i.e., particles collide at a finite
interaction range of approximately

√
σ/π ), leads to viscous

effects [27]. Usually, such effects are minimized by over-
sampling the distribution by a factor Nsample, which reduces
the cross sections by 1/Nsample and the interaction ranges
by 1/

√
Nsample. However, in the cascade description applied

here, the interaction range is set to zero, thus eliminating
such numerical viscosities. This is accomplished by exploiting
boost invariance and azimuthal invariance, which allows the
trajectories to be treated as radii evolving as a function of the
proper time, r(τ ). When two particles have the same radius,
a probability is calculated for their colliding given the cross
section and the fact that the sampling covers 2π radians and one
unit of η. Given that the two radii are equal and that the other
coordinates are irrelevant given the symmetries, the effective
interaction range is zero. Furthermore, since any correlations
from collisions or resonant decays are spread out over a wide
range of η and φ, this treatment should come extremely close
to a true Boltzmann description even though particles are
represented on a one-to-one basis.

The algorithm is optimized by storing the information for
each particle in a list ordered by radius. A second ordered
list stores the list of pairs that will cross and is ordered by
crossing times. The crossings are executed in order of time,
and since the list is ordered, new crossings need only be
calculated for the nearest neighbors of those particles that
have crossed. When two particles cross, one needs to calculate
the probability that they collide or merge to form a resonance.
This is related to the ratio of the cross section to the area
of the cylinder over which the particles are spread, 2πrτ (under
the assumption that one unit of η is being modeled). The exact
probability is complicated by the relative angles of the particles
and relativistic effects and is given by

scattering probability = σ

2πRτ

√
−q2P 2

P0qx − Pxq0
,

P α = pα
1 + pα

2 , (16)

qα = (p1 − p2)α − P α P · (p1 − p2)

P 2
,

where x refers to the radial components.
All collisions before 25 fm/c are simulated, with decays

being performed until they are exhausted. Weak decays are
allowed to take place, except for charged kaons, pions, and
Klong mesons. The point at which each particle had its last
collision is recorded to be used for calculating spectra and
femtoscopic correlations. A sampling of phase-space points
is displayed in Fig. 3 for particles with transverse momentum
pt = 300 MeV/c and reveals a modest positive correlation
between the outward position and time. This is opposite to what
one expects for an inwardly burning source whose emitting
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FIG. 3. (Color online) Positions of last interaction for pions
with px = 300 MeV/c, py = 0 MeV/c. The outward position has a
modestly positive correlation with emission time. This correlation is
indicative of an exploding source. Even though the duration emission
is rather long, over 10 fm/c, the correlation allows Rout/Rside to be
close to unity.

surface would move inward with time. Instead, it suggests an
exploding source.

A glance at Fig. 3 reveals a strikingly different source than
that extracted from blast-wave models. First, both the average
lifetime and the duration of the emission are longer than
those determined by blast-wave models [2,4]. Second, whereas
the blast-wave analysis of Ref. [2] suggested a negative x-t
correlation, there is a modest positive correlation in Fig. 3.
Such a positive correlation was also seen in the AMPT
model [28], which is based on a cascade picture for both
partons and mesons. Since the hypersurface representing the
transition from hydrodynamics to the Boltzmann approach
has a negative x-t correlation, this emphasizes the importance
of accurately accounting for the breakup dynamics with a
microscopic model. An underestimate of the emission duration
for blast-wave models is expected if the blast-wave model
employed an x-t correlation of the wrong sign, as a positive
correlation allows one to maintain a small Rout/Rside ratio
despite a longer emission duration. The mean emission time is
associated with the ratio Rlong/vz,therm, where vz,therm is the
thermal velocity for longitudinal motion. Since blast-wave
analyses typically ignore shear effects and thus assume thermal
motion is locally isotropic, they would overestimate vz,therm

if in fact the local momentum distribution is broader in the
transverse plane than along the longitudinal direction. An
overestimate of vz,therm would lead to an underestimate of the
lifetime.

The algorithm is both efficient and accurate. The procedure
eliminates artifacts associated with particles interacting at a
finite separation, and running on a single CPU, an event
is performed in less than 10 s. However, the approach has
one numerical disadvantage. When calculating the value of
τ =

√
t2 − z2 at which two particles will reach the same

radius, one must solve quartic equations. Numerical errors for
such solutions are non-negligible, which occasionally leads
to particles being propagated in such a way that violates the
ordering by radius. This calculation is performed millions of
times within a single event, and the violations tend to occur
approximately once per every 10 events. In such an instance,

the event is abandoned. This does not seriously detract
from the numerical efficiency, but such failures significantly
complicated the construction of the code, as frequent error
checking is required.

C. Generating and fitting correlation functions

Correlations can be generated via the Koonin equation,

C(P, q) =
∫

d3r S(P/2, r) |φ(q, r)|2 ,

(17)

S(P, r) =
∫

d4xad
4xb s(P/2, xa)s(P/2, xb)δ[r − (x′

a − x′
b)]∫

d4xad4xb s(P/2, xa)s(P/2, xb)
,

where P is the pair’s momentum, r is the spatial separation
of the particles in the frame of the pair, and φ is the outgoing
relative wave function. The probability of emitting a pion of
momentum p from space-time point x is s(p, x), with x ′ being
the coordinate in the pair frame. The source function S(P, r)
is simply the normalized probability that two particles of the
same momentum, P/2, are separated by r in the pair’s center
of mass. The relative wave function incorporates quantum
symmetrization and both the Coulomb and strong interaction
between the two pions. For the calculations shown here q
refers to one half the relative momentum as measured in the
pair frame.

In practice, the Koonin equation is straightforward to
implement. To calculate C(P, q), one first extracts the subset
of phase-space points from the output of the Boltzmann codes
whose transverse momenta are within 5 MeV/c of P/2. For
every pair in the subset, one calculates |φ(q, r)|2 for an array
of q values. The same set of pairs is used for every value
of q. The correlation function is then the average of |φ|2 for
the pairs. Statistics for such calculations are greatly enhanced
by the rotational and boost invariances, as every particle’s
phase-space points can be rotated and boosted so that it has
zero longitudinal momentum and travels in a given azimuthal
direction.

If one neglects the interpair Coulomb and strong interac-
tions, the calculations can be greatly accelerated by calculating

ρ(q) =
∑

i

e2iq·ri , (18)

where the sum covers the N particles in the subset used
above and ri is the position of the ith particle. For large N ,
correlations can be generated by simply squaring the sum,

C(q) = 1 + 1

N2
|ρ(q)|2. (19)

Since one never has to evaluate a double sum, this method
is quicker than the alternate method. Although it can only
be applied if one neglects strong and Coulomb forces, this
method should be sufficient if one is generating correlations
for the purpose of finding effective Gaussian source sizes.
Both methods were tried for the calculation with the default
parameters, with the comparison being illustrated in Fig. 4.
Since the differences in the extracted Gaussian source sizes
were small and the trends of interest are unlikely to be affected,
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FIG. 4. (Color online) Gaussian source sizes found by fitting
generated correlation functions to those from Gaussian sources. For
the default parameter set, correlations were calculated from Eq. (17)
with (triangles) and without (circles) the effects of Coulomb and
strong interaction in the relative wave function. Since calculations are
much quicker without the interactions, and since differences are small,
interactions are neglected for the calculations in the next section. The
differences between the default calculation differs from experimental
values (stars) [29] and are significantly lessened as compared to
calculations based on ideal hydrodynamics [31,32].

the latter method was chosen. Although the calculations
using the full wave functions are more realistic, it should be
pointed out that experimental analyses have generated source
radii by dividing the experimental correlation function by a
q-dependent factor with the purpose of dividing away the
effect of the Coulomb force in affecting correlation functions
[29,30]. Since the Coulomb correction factors are based on
isotropic Gaussian sources, the procedure is not exact. Now
that the discrepancies between models and experiments are
less than 10%, the errors introduced in this procedure should
be reexamined. In particular, errors should be checked for
radii at higher kt . For kt ∼ 500 MeV/c, source functions are
highly anisotropic in the frame of the pair owing to Lorentz
contraction, with Rout approaching five times Rside, whereas
the correction factors are built by assuming that the source
shape is isotropic in that frame.

To generate Gaussian radii, correlations were calculated on
a three-dimensional mesh in q. These were then compared
to predictions for C(q) for Gaussian sources. The radii were
chosen to minimize the sum of the squared radii. Even
though the correlations were remarkably non-Gaussian for
q < 10 MeV/c, the radii were remarkably robust and did not
change appreciably if one neglected the low-q points in the fit.
Since the mesh and q values were generated in the pair frame,
the outward source size was then Lorentz contracted so that it
represented the shape of the outgoing phase-space density in
the laboratory frame.

III. FEMTOSCOPIC RAMIFICATIONS OF ADJUSTING
THE EQUATION OF STATE, VISCOSITY,

AND INITIAL CONDITIONS

One of the prime motivations for interferometric measure-
ments was the possibility of observing a long-lived mixed
phase, which could only happen if the equation of state
was first order with a large latent heat. Some bag model
parametrizations employed in the early days of the field
had latent heats of several GeV/fm3. If that were the case,
extracted lifetimes at the AGS and SPS might have been several
tens of fm/c depending on the amount of initial stopping
[33,34]. The longest lifetimes would occur for conditions
where the interior energy density was initially at the peak
value for the mixed phase. Since a mixed phase has zero
sound velocity, there would no impetus for explosion, and
instead the outside would emit hadrons like a burning log.
Lattice calculations now preclude such equations of state,
and indeed, no such long-lived phases have been observed.
Instead, in lattice calculations the speed of sound appears
to dip downward to about c2

s ∼ 0.1, before restiffening to
∼0.3 at high temperatures [23]. By including resonances in
a hadron gas, the speed of sound is expected to be ∼0.15
below Tc. Given that initial energy densities at RHIC are
well above those of the soft region, one should expect RHIC
collisions to be more explosive and shorter lived that those at
the AGS and SPS. Qualitatively, these expectations have been
met. However, quantitatively describing the source sizes with
full hydrodynamic models has proved elusive. Femtoscopy
provides a six-dimensional test of any dynamical model, so it
should not be surprising that reproducing experimental source
sizes requires using a realistic equation of state, accurately
modeling viscous effects, and using correct initial conditions.
We will explore the impact of each of these three aspects of the
modeling. Results from the default parameter set are compared
to results where an isolated parameter set has been adjusted.
For each calculation, the initial energy density is adjusted so
that the final dNch/dη ∼ 690 [35].

Radial flow, and in turn spectra, are also affected by all
the variations studied here. Table I presents the mean pt for
pions, kaons, and protons. Again, it should be emphasized that
these calculations include all weak decays of hyperons and of
the Ks . To some extent, these decay products are subtracted
from experimental analyses, which might lead to the model
predictions underpredicting the mean pt for pions. However,
the calculations also neglect symmetrization effects on the pion
spectra, which should lower the pions’ mean pt . Unfortunately,
the uncertainties in the experimental values in Table I are rather
large, mainly because experiments measure in a finite pt range.
The experimental values for mean pt do agree with the default
calculation, within the large experimental uncertainties. A
more meaningful comparison, which would involve comparing
actual spectra in the measured regions, is outside the scope of
this study, but Table I is certainly sufficient for evaluating
the sensitivity of the spectra to the various model parameters
studied here. It should be emphasized that the sensitivity
of spectra to the equation of state has been considered by
numerous authors and that, in Ref. [36], sensitivity of the
elliptic flow is also considered.
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TABLE I. The mean 〈pt 〉 in MeV/c for central collisions for
pions, kaons, and protons. Only charged species were used in the
PHENIX analysis, and only negative hadrons were used for STAR.
Increasing the stiffness of the equation of state or the shear viscosity
raises 〈pt 〉 for heavier particles owing to the corresponding increase
in radial flow. The increase of radial flow with shear viscosity derives
from the increase in Txx and Tyy relative to Tzz at early times. By
beginning the calculation with an isotropic stress-energy tensor,
radial flow is modestly reduced. Increasing the bulk viscosity lowers
the effective pressure and thus modestly reduces radial flow. Using
collisional scaling to set the initial energy density profile results in a
more compact initial source, which then generates more radial flow.

π (+,0,−) K (+,−) p, n, p̄, n̄

STAR [37] 422 ± 22 719 ± 74 1100 ± 110
PHENIX [38] 453 ± 33 674 ± 78 954 ± 85
L = 0 528 897 1310
L = 800 MeV/fm3 433 714 1027
L = 1.6 GeV/fm3 403 652 931
c2
s = 0 406 659 945

c2
s = 0.1 433 714 1027

c2
s = 0.2 463 772 1116

4πη/s = 0 408 664 957
4πη/s = 2 433 714 1027
4πη/s = 4 449 743 1081
Initially isotropic 408 664 957
4π (ζ/s)max = 0 462 763 1107
4π (ζ/s)max = 2 433 714 1027
4π (ζ/s)max = 4 418 679 983
CGC IC 447 741 1062
Wounded nucleon 433 714 1027
Collision scaling 482 806 1173

A. Adjusting the equation of state

To study the sensitivity to the equation of state, we vary
both the speed of sound and the width of the intermediate
region, with the five equations of state being displayed in
Fig. 5. For temperatures below 170 MeV, or equivalently for
energy densities below εh ∼ 400 MeV/fm3, the equation of
state is that of a resonance gas. For the intermediate region,
εh < ε < εh + L, the equation of state has a constant speed of
sound, P − Ph = c2

s (ε − εh). Above the intermediate region,
the speed of sound is set to c2

s = 0.3, to be consistent with
lattice calculations at high temperature.

The equation of state can be softened by either increasing
L or decreasing the mixed-phase value of c2

s . Figure 6 displays
source sizes for the three values of L: the default value of
800 MeV/fm3, a soft value of 1.6 GeV/fm3, and a hard
value of zero. The default value was chosen to be crudely
consistent with the behavior of lattice calculations, which show
a strong stiffening of the matter for energy densities rising from
1 to 1.5 GeV/fm3. The equation of state was also altered by
adjusting the mixed-phase value of c2

s from the default value
of 0.1 to either a stiffer value of 0.2 or a softer value of zero,
which would correspond to a first-order phase transition. The
femtoscopic effect of varying the speed of sound is shown in
Fig. 7.

FIG. 5. (Color online) Pressure vs energy density for five equa-
tions of state: For the default equation of state (solid line) a constant
speed of sound, c2

s = 0.1, is assumed for an intermediate range of
energy densities, εh < ε < εh + L, where L = 800 MeV/fm3. The
speed of sound in the intermediate region was varied (dotted lines)
to either 0.2 or zero. The latter choice corresponds to a first-order
phase transition. Keeping the default speed of sound, the width of the
intermediate region was also varied (dashed lines) to either zero or
1.6 GeV/fm3.

As expected, softer equations of state lead to longer
relative values of Rlong and Rout relative to Rside. Whereas the
increase in Rlong signals an increase in the mean emission
time, the increase in Rout is indicative of a longer duration
of the emission, or a more outside-in nature to the emission.
The product of the three radii increases for softer equations of
state. This is due to the increase in entropy associated with a

FIG. 6. (Color online) Gaussian source dimensions for different
equations of state. The equation of state incorporated a soft region
where the speed of sound was set to c2

s = 0.1. The width of that
region was L = 800 Mev/fm3 in the default calculation (circles) and
is compared to L = 0 (squares) and L = 1.6 GeV/fm3 (triangles).
The softer equations of state yield larger values of Rout/Rlong.
Experimental values are also depicted (stars).
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FIG. 7. (Color online) Gaussian source dimensions for different
equations of state. Rather than varying the width of the soft region
as was shown in Fig. 6, the speed of sound in the soft region was
varied from the default value c2

s = 0.1 (circles) to c2
s = 0 (triangles)

and c2
s = 0.2 (squares). Experimental values are also depicted (stars).

softer equation of state (when compared at the same energy
density). Although these variations in the equation of state are
rather strong, doubling L or c2

s , femtoscopic radii were affected
on the level of 10%. Spectra are also affected by changes to
the equation of state at the level of 10% as seen in Table I.
In particular, softer equations of state lower collective radial
flow, which leads to lower values of the mean pt , especially
for heavier particles.

B. Adjusting viscosities

Even modest viscosities significantly modify the stress-
energy tensor. It has been proposed that shear viscosity cannot
fall below the KSS limit, η � s/4π [24]. According to the
Navier-Stokes equation, at early times where the velocity
gradient is 1/τ , the KSS limit yields

Tzz = P − s

3πτ
, ∼ P

(
1 − 4

3πT τ

)
,

(20)

Txx = P + s

6πτ
, ∼ P

(
1 + 2

3πT τ

)
,

where in the expressions involving P a free gas equation of
state, P = ε/3, is assumed. One expects for thermalization
times near 1/2 fm/c, where T τ ∼ 1, that the correction to the
longitudinal pressure is ∼40%. If the viscosity is more than
twice the KSS bound the value of Tzz can become negative.
One expects a higher shear to accelerate the radial flow and
result in lower values of Rlong and Rout/Rside [25], as well as
increased 〈pt 〉 for heavier particles. These expectations have
already been demonstrated by Romatschke [7].

In the default calculation presented here it is assumed that
the shear viscosity is twice the KSS bound. This would yield
negative Tzz at early times, if not for the mapping described
in Eq. (6), which restricts the modification from shear to be
less than the absolute value of the pressure. In the default
calculation the initial condition for the stress-energy tensor
was set to this maximum value, with Tzz = 0 and Txx = Tyy =
ε/2, consistent with color-glass calculations [39]. For pure
noninteracting classical fields, the anisotropy would be even
larger as Tzz is negative, Tzz = −ε, and Txx = Tyy = ε.

In addition to the default calculation, three modifications to
the shear viscosity are illustrated here. First, the viscosity in the
high-density phase is set to zero. For the first modification the
initial anisotropy to the stress-energy tensor is also set to zero.
For the second modification, the viscosity in the high-density
phase is doubled relative to the default calculation to four
times the KSS bound. Because of the ceiling imposed on the
viscous modifications, the higher viscosity only matters for
times greater than 1 fm/c. For the final modification, the default
calculation is modified by setting the initial anisotropy of the
stress-energy tensor to zero. This mainly affects the expansion
during the first one fm/c. Since the Israel-Stewart relaxation
times tend to be ∼1/2 fm/c, memory of the initial condition is
lost after that point.

The expectation for the femtoscopic radii are borne out by
the results illustrated in Fig. 8. The default calculation differs

FIG. 8. (Color online) Gaussian source dimensions for three
different shear viscosities in the high-energy phase: Results from
the default calculation with 4πη/s = 2 (circles) are compared
to results using 4πη/s = 0 (squares) and 4πη/s = 4 (triangles).
Higher shear viscosities result in more rapid initial accelerations and
smaller Rout/Rside ratios. Also shown is a modification of the default
calculation where the stress-energy tensor was initialized as isotropic,
rather than at the saturated values. Even though non-negligible
variances resulted for the source radii, differences were found for
the mean pt seen in Table I. Experimental values are also depicted
(stars).
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from the zero-viscosity calculation by ∼10%. In particular,
the Rout/Rside ratio comes significantly closer to unity. It
should be pointed out that the zero-viscosity calculation differs
from many previous ideal hydrodynamic calculations in that
the initial time was set to 0.1 fm/c, whereas several other
calculations used either 0.6 or 1.0 fm/c, which would further
increase the Rout/Rside ratio. However, there is no physical
justification for setting Txx = Tyy = 0 at early times; thus such
an initial state seems unwarranted. This is discussed in more
detail in Ref. [40]. Modifying the initial anisotropy is similar
in principal to altering the viscosity for early times.

Bulk viscosity is only expected to be significant near
the critical region. In particular, the condensed fields may
not be able to keep pace with rapidly changing equilibrium
values. This can lead to a peak in the bulk viscosity in the
intermediate-energy region [25], which has been verified with
analysis of lattice results [26]. The divergence of the velocity,
∇ · v, incorporates velocity gradients in all three directions
and is approximately one third (fm/c)−1 for τ = 5 fm/c. For
the default calculation, the peak value the ζ in the intermediate
region is 2s/4π . The magnitude of the effect is similar to what
was derived in Ref. [25]. For such a velocity gradient the trace
of the stress-energy tensor is modified by a substantial fraction.
Doubling the bulk viscosity can make the Navier-Stokes value
of 〈Tii〉 less than zero. For the calculations performed here, the
mapping procedure of Eq. (6) saturates the size of the change
in 〈Tii〉 to be less than P . However, when combined with shear
effects individual components can fall below zero. It should be
emphasized that the nonequilibrium effects that generate bulk
viscosity, mainly nonequilibrium fields, may be very poorly
represented by viscous formalisms. First, in the transition
region, responses may be highly nonlinear, and second, the
field might not relax exponentially toward equilibrium as is
assumed in Israel-Stewart treatments. Thus, the study here can
really only point at the qualitative impact of bulk viscosity on
the dynamics, and ultimately on the femtoscopy.

The default calculation was modified twice, once by
doubling the bulk viscosity and once be eliminating it. The
difference of the three calculations, illustrated in Fig. 9, was
modest. The effect on the stress-energy tensor is similar to
what one would get by softening the equation of state in the
transition region. But unlike the changes to the equation of
state investigated in the previous section, these changes do
not affect the pressure at either high or low density. Hence,
the impact on observables tended to be modest. Increasing the
bulk viscosity only affected the femtoscopy at the level of a
few percent. The bulk viscosity helped amplify the magnitude
of the pulse in the energy density created near the soft region.
However, the pulse largely dissipated later in the collision.
The bulk viscosity had a slightly more significant impact on
the mean pt , as seen in Table I, and in the initial energy density,
which was adjusted to match dN/dη, as seen in Table II.

Bulk viscosity had a visible impact on the smoothness of
the energy-density profiles. Larger bulk viscosities appeared
to lead to jagged and unstable profiles in the intermediate
region. We speculate that this is driven by the fact that bulk
viscosity effectively pushes the pressure versus energy density
to behave nonmonotonically, which could give regions where
d〈Tii〉/dε, which is the effective speed of sound squared, is

FIG. 9. (Color online) Gaussian source dimensions for three
different bulk viscosities. Bulk viscosities were set to zero outside
the intermediate-energy density region near Tc and varied linearly
from zero to a maximum value in the center of the region. The
three values, 4πζmax/s = 0 (squares), the default value 2 (circles),
and 4 (triangles), resulted in nearly identical radii. Somewhat larger
differences were observed in the mean pt values from Table I and
in the initial energy densities from Table II. Experimental values are
also depicted (stars).

zero or negative. It would be interesting to know whether
such instabilities would appear in a more physically grounded
treatment of nonequilibrium effects, such as one where the
dynamics of nonequilibrium fields were treated in parallel
to the hydrodynamic treatment by solving a coupled Klein-
Gordon equation.

The significant sensitivity of the final femtoscopic source
sizes to acceleration during the first one or two fm/c might
seem surprising. The importance of early acceleration can be
likened to an Olympic sprint, where a head start of a few tenths
of a second results in a difference of several meters at the end
of the race. For this reason, it is imperative to understand the
bulk properties (e.g., the stress-energy tensor) of matter even
before thermalization.

C. Adjusting initial conditions

For a rotationally and boost-invariant calculation the choice
of initial conditions involves choosing the initial transverse
density, the initial stress-energy tensor, and the initial time.
For all calculations presented here, the initial time was chosen
to be 0.1 fm/c. Since the development of collective flow at
such early times is driven by the initial stress energy, there
is no reason to pick a later time, unless there were reason to
expect Txx and Tyy to be zero at early times. Since a little more
than 0.1 fm/c is required for the nuclei to pass one another,
and given that this is already an extremely short time relative
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TABLE II. Initial central energy density at τ0 = 0.1 fm/c.
Values, which were adjusted to match experimental values of
dNch/dη, vary by more than a factor of 2, largely because of
differences in longitudinal work. The default calculation (noted
by ∗) is varied in five ways.

Width of soft region in EoS ε0 (GeV/fm3)

L = 0 150
L = 800 MeV∗ 114.5
L = 1.6 GeV 104.5

Stiffness of soft region in EoS
c2
s = 0 107

c2
s = 0.1∗ 114.5

c2
s = 0.2 124.5

Shear viscosity in parton phase
4πη/s = 0 289
4πη/s = 2∗ 114.5
4πη/s = 4 106.5

Initially isotropic initial conditions 148
Maximum bulk viscosity in soft region
4πζmax/s = 0 124
4πζmax/s = 2∗ 114.5
4πζmax/s = 4 109

Initial density profile
CGC IC 136
Wounded nucleon∗ 114.5
Collision scaling 180

to the overall expansion time, there is no motivation to pick an
earlier time. Variations of the initial stress-energy tensor, and
in particular variations to the initial anisotropy of Tij , were
considered in the previous section along with variations in the
viscosity.

Three variations of the initial energy-density profile were
explored. The default calculation was that of the wounded
nucleon model [41]. In this calculation the probability of a
nucleon interacting is calculated as unity minus the probability
it survives without interaction. The survival probability is
calculated by assuming the particle travels through the Woods-
Saxon nuclear profile with a 40-mb cross section. For the thick
part of the nucleus, this approaches participant number scaling.
An alternative is collision scaling, where the energy density at
a transverse coordinate (x, y) is proportional to TaTb, where
the thickness function T is calculated by integrating the density
of a nucleus over the z coordinate. The third profile explored
here is for the color-glass profile used in Ref. [42]. In that case
the energy density is chosen proportional to the minimum of
Ta and Tb. For all three profiles, the thickness functions were
found by convoluting two Woods-Saxon profile whose centers
differed by an impact parameter of 2.21 fm, corresponding to
the 5% most central collisions of Au + Au. The density profile
was then averaged over the azimuthal angle to generate an
approximate radial profile. For every calculation, the profiles
were renormalized so that the resulting dNch/dη was 691 ± 5,
consistent with Ref. [35].

FIG. 10. (Color online) Gaussian source dimensions for three
different initial energy density profiles: The wounded nucleon model
(circles) is used for the default calculation and results in a less
compact source than either the color-glass inspired model of Ref. [42]
or collision scaling. More compact sources are more explosive and
lead to lower Rout/Rside ratios. Experimental values are also depicted
(stars).

The collision-scaling profile was the most compact of the
three attempted here and resulted in the largest radial flow. This
profile resulted in higher 〈pt 〉 for protons and lower values of
Rout/Rside, as seen in Fig. 10. The least compact profile was the
default calculation, which was based on the wounded nucleon
model.

The initial energy density at the extreme periphery of the
collision should be driven by collisional scaling since one can
ignore the possibility of multiple collisions in that limit. None
of the three profiles employed here obey this constraint, as the
overall normalization is scaled to match the experimental value
dNch/dη. If this constraint were replaced by the constraint
that the density profile behaved correctly for small Ta and Tb,
the experimental dNch/dη could instead additionally constrain
the remaining parameters. The experimental dNch/dη has been
used to argue that the profile appears more driven by participant
scaling than collision scaling [35]. However, these analyses are
exceedingly simple and neglect many aspects of the expansion
such as viscosity or longitudinal work. Since the temperature
is not constant across the profile, the relation between entropy
and energy densities is not linear; thus different profiles are
reached if one believes the energy density should follow
a given scaling versus the entropy density, which is more
related to the multiplicity. This underscores the importance
of performing a global analysis of all observables, including
elliptic flow, which is also affected by the choice of profile
shape [42].

It is unfortunate that the initial energy density is not
itself an observable. After the initial energy density for each
parameter set is adjusted to match the experimental dNch/dη,
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the final-state observables tend to change at the 10% level
or less for all variations studied here. However, the initial
energy densities vary by more than a factor of 2 for these
calculations, as seen in Table II. This variation has little to
do with the variation of the asymptotic transverse energy for
fixed multiplicity, which is also a ∼10% effect. The variation
largely derives from differences in the longitudinal work in the
expansion. The work is proportional to both Tzz and the time
over which the system expands. For large viscosities, softer
equations of state, or for initial conditions where Tzz is small,
the longitudinal work is reduced, thus requiring smaller initial
energy densities to attain a given final condition. For shear
anisotropies Txx and Tyy are also enhanced, which accelerates
the expansion. This results in a reduced time for the reaction,
which also reduces the longitudinal work. Changing the shape
of the initial profile also changes the energy density, mainly for
the trivial reason that a more compact initial profile requires a
higher energy density to produce the same dNch/dη.

IV. SUMMARY AND OUTLOOK

The principal conclusion from these investigations is that
femtoscopic data from RHIC can be reproduced to within
10% with models combining viscous hydrodynamics and
hadronic cascades. In particular, the Rout/Rside ratio can be
brought close to unity. The failure of previous models appears
to derive mainly from three shortcomings, all of which are
related to underpredicting the explosivity of the collision.
First, the equations of state were often too soft, using a
first-order phase transition. A stiffer equation of state is more
explosive and can lower the Rout/Rside ratio. Second, previous
treatments ignored acceleration before the thermalization time.
From general arguments involving conservation of energy and
momentum in the equations of motion of the stress-energy
tensor, it should be clear that thermalization is not required for
acceleration. In fact, longitudinal classical fields, which are
far from equilibrium by definition, result in strong transverse
acceleration. Finally, the previous treatments were based
on ideal hydrodynamics. The effects of shear, as already
demonstrated in Ref. [7], increase the transverse pressure
relative to the longitudinal pressure at early times, which of
all the variations considered here, appears to be the most
important. Bulk effects were manifest in the final mean pt ,
but they made remarkably little difference in femtoscopic
radii. Previous treatments overpredicted the Rout/Rside ratio
by 40% or more [31], a result confirmed if we run this model
with a softer equation of state, without viscosity and delaying
transverse acceleration for the first fm/c.

It would appear that improving models in all three areas
is required for rectifying these shortcomings. The default
calculation, which includes all three such effects, provides
a reasonable description to the data. Without including
longitudinal acceleration, which requires a three-dimensional
model, it is unreasonable to expect better agreement and it is
probably not meaningful to try to better fit the data by adjusting
parameters. An additional area of uncertainty documented here
comes from the choice of the initial profile, as a more compact
source results in a more explosive source. One could reduce

any of the three effects mentioned in the previous paragraph,
then compensate for them by adjusting the initial density
profile.

A second impression generated by this investigation is that
it appears impossible to disentangle these various uncertainties
by focusing only on two-pion interferometry. Spectra are
sensitive to the same model features studied here, as evidenced
by the mean pt values listed in Table I. Elliptic flow
observables, which require a higher dimensionality model than
used here, can also be used to assist in understanding the col-
lision. Hopefully, different observables will be relatively more
sensitive to different facets of the model. Then by performing a
coordinated analysis of numerous classes of observables, one
should be better able to answer specific question and determine
specific parameters. These analyses should also incorporate
a greater set of femtoscopic measurements, which we list
here:

(i) Femtoscopy using particles other than pions: Heavier
particles are more sensitive to collective flow owing
to their lower thermal velocity. Correlations between
a heavy particle and a light particle (e.g. p-π ) are
especially sensitive to the patterns of collective flow.

(ii) Noncentral collisions and collisions at different energies:
Measurements have already been made as a function
of the direction of the pair’s momentum relative to the
reaction plane [29]. This information is rich in detail, but
the meaning of the information is not yet understood.
Additionally, there exist data at different beam energies.
By studying the response to changes in the initial energy
density, without changing the size, one should gain some
leverage for disentangling some of the issues mentioned
here.

Finally, it should be emphasized that, although the large
discrepancy with the Rout/Rside ratio has been eliminated,
none of the variations studied here provided a completely
satisfactory reproduction of the pt dependence of source
dimensions. The data showed a modest fall of the ratio for
higher pt , which combined with the constraint that the ratio
must be unity for pt = 0, gives a nonmonotonic behavior.
Although the rise and fall are only of the order of 10%,
the model calculations all showed monotonic behavior with
pt . Furthermore, the model calculations tend to overpredict
Rlong at low pt . This might be due to the assumption of boost
invariance, which, if relaxed, should provide corrections in
the direction of the data. Finally, conspicuous by its absence
has been a comparison of the λ factors, which represent the
fraction of pairs that are correlated. The model calculations
overpredicted these factors, but without a better understanding
of experimental details about acceptance of weak decay
products and particle misidentification fractions, one cannot
as yet draw any conclusions.

ACKNOWLEDGMENTS

Support was provided by the US Department of Energy,
Grant no. DE-FG02-03ER41259.

054906-12



FEMTOSCOPY IN RELATIVISTIC HEAVY ION . . . PHYSICAL REVIEW C 78, 054906 (2008)

[1] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu. Rev.
Nucl. Part. Sci. 55, 357 (2005).

[2] A. Kisiel, W. Broniowski, M. Chojnacki, and W. Florkowski,
arXiv:0808.3363 [nucl-th].

[3] A. Kisiel, W. Florkowski, W. Broniowski, and J. Pluta, Phys.
Rev. C 73, 064902 (2006).

[4] F. Retiere and M. A. Lisa, Phys. Rev. C 70, 044907 (2004).
[5] J. Helgesson, T. Csorgo, M. Asakawa, and B. Lorstad, Phys.

Rev. C 56, 2626 (1997).
[6] S. Pal and S. Pratt, Phys. Lett. B578, 310 (2004).
[7] P. Romatschke and U. Romatschke, arXiv:0706.1522 [nucl-th];

P. Romatschke, Eur. Phys. J. C 52, 203 (2007).
[8] S. Pratt and K. Paech, in Proceedings of the 22nd Winter

Workshop on Nuclear Dynamics, La Jolla, CA, 2006, edited by
W. Bauer, R. Bellwied, and S. Panitkin (EP Systema, Budapest,
2006).

[9] M. Gyulassy, Yu. M. Sinyukov, I. Karpenko, and A. V.
Nazarenko, Braz. J. Phys. 37, 1031 (2007).

[10] Q. Li, M. Bleicher, and H. Stocker, Phys. Lett. B659, 525 (2008).
[11] U. W. Heinz and S. M. H. Wong, Phys. Rev. C 66, 014907

(2002).
[12] W. Broniowski, M. Chojnacki, W. Florkowski, and A. Kisiel,

Phys. Rev. Lett. 101, 022301 (2008).
[13] S. Pratt, Phys. Rev. C 77, 024910 (2008).
[14] S. Weinberg, Gravitation and Cosmology (Wiley, New York,

1972).
[15] W. Israel, Ann. Phys. (NY) 100, 310 (1976); W. Israel and J. M.

Sewart, ibid. 118, 341 (1979).
[16] A. Muronga, presented at Zimanyi 75 Memorial Workshop

on Hadronic and Quark Matter, Budapest, Hungary, 2007,
arXiv:0710.3280 [nucl-th]; J. Phys. G 31, S1035 (2005).

[17] T. Koide, Phys. Rev. E 75, 060103(R) (2007); 72, 026135 (2005).
[18] R. Baier, P. Romatschke, and U. A. Wiedemann, Phys. Rev. C

73, 064903 (2006).

[19] U. W. Heinz, H. Song, and A. K. Chaudhuri, Phys. Rev. C 73,
034904 (2006).

[20] H. Song and U. W. Heinz, Phys. Lett. B658, 279 (2008).
[21] D. Jou, J. Casas-Vázquez, and G. Lebon, Rep. Prog. Phys. 51,

1105 (1988).
[22] S. Pratt, Phys. Rev. C 75, 024907 (2007).
[23] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).
[24] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[25] K. Paech and S. Pratt, Phys. Rev. C 74, 014901 (2006).
[26] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B663, 217

(2008).
[27] S. Cheng et al., Phys. Rev. C 65, 024901 (2002).
[28] Z.-W. Lin, C.-M. Ko, and S. Pal, Phys. Rev. Lett. 89, 152301

(2002).
[29] J. Adams et al., Phys. Rev. C 71, 044906 (2005).
[30] K. Adcox et al., Phys. Rev. Lett. 88, 192302 (2002).
[31] S. Soff, S. A. Bass, and A. Dumitru, Phys. Rev. Lett. 86, 3981

(2001).
[32] U. W. Heinz and P. F. Kolb, J. Phys. G 30, S1229 (2004).
[33] D. H. Rischke and M. Gyulassy, Nucl. Phys. A608, 479

(1996).
[34] S. Pratt, Phys. Rev. D 33, 1314 (1986).
[35] B. B. Back et al., Phys. Rev. C 65, 061901(R) (2002).
[36] P. Huovinen, Nucl. Phys. A761, 296 (2005).
[37] J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004).
[38] S. S. Adler et al., Phys. Rev. C 69, 034909 (2004).
[39] A. Krasnitz, Y. Nara, and R. Venugopalan, Nucl. Phys. A717,

268 (2003).
[40] J. Vredevoogd and S. Pratt, arXiv:0810.4325 [nucl-th].
[41] P. F. Kolb, J. Sollfrank, and U. Heinz, Phys. Lett. B459, 667

(1999); Phys. Rev. C 62, 054909 (2000).
[42] H. J. Drescher, A. Dumitru, C. Gombeaud, and J. Y. Ollitrault,

Phys. Rev. C 76, 024905 (2007).

054906-13


