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Understanding the optical potential in Hanbury-Brown–Twiss interferometry
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The validity of using a pion optical potential to incorporate the effects of final state interactions on Hanbury-
Brown–Twiss interferometry is investigated. We find that, if the optical potential is real, the standard formalism
is modified as previously described in the literature. However, if the optical potential is complex, a new term
involving pion emission from eliminated states must be included. The size of such effects in previous work by
Cramer and Miller is assessed.
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I. INTRODUCTION

The space-time structure of the “fireball” produced in the
collision between two relativistically moving heavy ions can
be investigated by measuring two-particle momentum correla-
tions between pairs of identical bosons. The Bose-Einstein
enhancement of the coincidence rate at small momentum
differences depends on the space-time extent of the particle
source. This method of investigation, called Hanbury-Brown–
Twiss (HBT) interferometry, has been applied extensively in
recent experiments at the BNL Relativistic Heavy Ion Collider
(RHIC) by the STAR and PHENIX Collaborations (see
Refs. [1–4]).

The invariant ratio of the cross section for the production
of two pions of momenta p1, p2 to the product of single
particle production cross sections is analyzed as the correlation
function C(p1, p2). We define q = p1 − p2 and K = (p1 +
p2)/2, with KT as the component perpendicular to the beam
direction. (We focus on midrapidity data, where K = KT .)
The correlation function can be parameterized for small q
as C(q, K) − 1 ≈ λ exp (−R2

Oq2
O − R2

Sq
2
S − R2

Lq2
L) ≈ λ(1 −

R2
Oq2

O − R2
Sq

2
S − R2

Lq2
L) (qiRi � 1), where O, S,L represent

directions parallel to KT , perpendicular to both KT and
the beam direction, and parallel to the beam direction [5].
Early [6] and recent [3] hydrodynamic calculations predicted
that a fireball evolving through a quark-gluon-hadronic phase
transition would emit pions over a long time period, causing
a large ratio RO/RS . The puzzling experimental result that
RO/RS ≈ 1 [7] is part of what has been called “the RHIC HBT
puzzle” [8]. Another part of the puzzle is that the measured
radii depend strongly on the average momentum K , typically
decreasing in size by about 50% over the measured range,
showing that the radii are not simply a property of a static
source. The medium at RHIC seems to be a very high density,
strongly interacting plasma [9], so that any pions made in its
interior could be expected to interact strongly before emerging.
Thus one expects that the influence of the interactions between
the pion probe and the medium, as well as flow and other
effects, must be taken into account when extracting the radii.
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We studied the effects of including the pionic interactions
in previous work [10,11]. Distorted waves, instead of plane
waves, were used to represent the pion wave functions. The
resulting formalism is called the Distorted Wave Emission
Function (DWEF) formalism because the emission function
used to describe the space-time extent of the emitting system
is dressed by the final state interactions. We found that it
is possible to simultaneously describe the measured HBT
radii and pionic spectra by including the effects of pion-
medium final state interactions obtained by solving the relevant
relativistic wave equation. These interactions are so strongly
attractive that the pions act as essentially massless objects
inside the medium. The medium acts as if it is free of the chiral
condensate that is the source of the pion mass and therefore acts
as a system with a restored chiral symmetry. Other solutions
of the HBT puzzle have been proposed. See the review [4].

Some theorists have questioned whether waves produced
by incoherent sources unaffected by final state interactions
interfere with those that are affected by final state interactions.
That this interference occurs was demonstrated at least as
early as 1979 [12] and again in the nineties [13–16], and
there have been two recent publications confirming that
conclusion [17,18]. The former derive a general formula for
the correlation function of two identical particles including
multiple elastic scatterings in the medium in which the two
particles are produced. Numerical results for the case of soft
final state interactions are presented. Reference [18] includes
the effects occurring when emitted particles undergo multiple
scattering with medium particles. Using the Glauber theory
of multiple scattering at high energies and the optical model
at intermediate energies, it was found that multiple scattering
leads to an absorption.

Despite this progress, several conceptual issues remain.
These include understanding the meaning of the imaginary
part of the optical potential, the role of the energy de-
pendence of the optical potential [19], and the relationship
between the sources producing the pions and the optical
potential. Therefore, we find it worthwhile to reinvestigate
the effects of quantum mechanical treatments of final state
interactions.

We note that HBT interferometry is an example of a
three-body problem: the two pions and the source. This article
deals with interactions between each pion and the source and
neglects the interactions between the pion pair.
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Our procedure is to repeat the derivation of Ref. [5] using
a simple Lagrangian. First, in Sec. II, the original plane wave
treatment is reproduced using our notation. Then the effects of
a real optical potential are incorporated (Sec. III). The result is
a rederivation of of the DWEF formalism. However, a deeper
understanding is needed to correctly account for the effects of a
complex optical potential. This can only be incorporated using
a coupled channels formalism (Sec. IV). We find that including
the complete effects of an imaginary optical potential requires
a modification to the DWEF formalism that is presently
incalculable. However, the optical potential used in Refs. [10]
and [11] was dominated by its real part. In particular, in
Sec. V we find that setting the imaginary part optical potential
to zero does not significantly change our description of the
data. Section VI is reserved for summary and discussion.

II. THE PRATT FORMALISM

The space-time extent of a source of pions can be inferred
by measuring the pionic correlations known as the Hanbury-
Brown–Twiss effect [20,21]. The correlation function function
C(p, q) is defined to be

C(p, q) ≡ P (p, q)

P (p)P (q)
, (1)

where P (p1, . . . , pn) is the probability of observing pions of
momentum pi all in the same event. The identical nature of all
pions of the same charge cause C(p, p) = 2. The width of the
correlation function is related to the space-time extent of the
source.

A state created by a random pion source |η〉 is described
by [12]

|η〉 = exp

[∫
d4xη(x)γ (t)ψ̂†(x)

]
|0〉

= exp

[∫
d3pdtη(p, t)γ (t)c†(p)e−iEpt

]
|0〉, (2)

where ψ̂† is the pion creation operator in the Heisenberg
representation, γ (t) is the random phase factor that takes the
chaotic nature of the source into account, and c†(p) is the
creation operator for a pion of momentum p. In particular, an
average over collision events gives

〈γ ∗(t)γ (t ′)〉 = δ(t − t ′), 〈γ ∗(t1)γ ∗(t2)γ (t3)γ (t4)〉
= δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3). (3)

We note that as written, the state |η〉 is not normalized to
one. However, the normalization constant will divide out of
the numerator and denominator of the correlation function.
Therefore we do not make the normalization factor explicit
here, but note that it enters when we calculate the pion
spectrum.

For ψ̂ and its time derivative to obey the Heisenberg
commutation relation one has√

EpEp′ [c(p), c†(p′)] = δ(3)(p − p′). (4)

Furthermore, we define

η(p, t) ≡
∫

d3xe−ip·xη(x). (5)

The state |η〉 is an eigenstate of the destruction operator in the
Schroedinger representation, c(p):

c(p)|η〉 =
∫

dteiEpt η(p, t)

Ep

γ (t)|η〉. (6)

The correlation function is

C(p, q) = 〈η|c†(p)c†(q)c(q)c(p)|η〉
〈η|c†(p)c(p)|η〉〈η|c†(q)c(q)|η〉 . (7)

The use of Eq. (3) and Eq. (6) in the numerator of Eq. (7)
yields

〈η|c†(p)c†(q)c(q)c(p)|η〉 = 〈η|c†(p)c(p)|η〉〈η|c†(q)c(q)|η〉
+ |〈η|c†(p)c(q)|η〉|2. (8)

Furthermore,

〈η|c†(p)c(q)|η〉 =
∫

dt exp[−i(Ep − Eq)t]
η∗(p, t)η(q, t)

EpEq

.

(9)

The quantity g(x, p) is denoted as the emission function and
is defined as

g(x, p) =
∫

d3x ′η∗
(

x + 1

2
x′, t

)
η

(
x − 1

2
x′, t

)
eip·x′

,

(10)

so that∫
d3p

(2π )3
g(x, p)e−ip·z = η∗

(
x + 1

2
z, t

)
η

(
x − 1

2
z, t

)
(11)∫

d3p

(2π )3
g((y + y′)/2, t, p)e−ip·(y−y′) = η∗(y, t)η(y′, t).

(12)

The second expression appears in the right-hand side of
Eq. (9) [if one uses Eq. (5)] so that we may write

〈η|c†(p)c(q)|η〉 =
∫

d4x
exp[−i(p − q) · x]

EpEq

g

(
x,

(p + q)

2

)
.

(13)

Using Eq. (13) with p = q shows that the function g(x, p)/E2
p

is the probability of emitting a pion of momentum p from a
space-time point x. Using Eq. (8) and Eq. (13) in Eq. (7) gives
the desired expression

C(p, q)

= 1 +
∫

d4x d4x ′g
(
x, 1

2 K
)
g
(
x ′, 1

2 K
)

exp[−ik · (x − x ′)]∫
d4x d4x ′g(x, p)g(x ′, q)

,

(14)

where K ≡ p + q and k ≡ (Ep − Eq, p − q), and the factors
of 1

EpEq
have canceled out.
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From a formal point of view, a key step in the algebra is
the relation between the Heisenberg representation pion cre-
ation operator ψ̂†(x) and its momentum-space Schroedinger
representation counterpart c†(p) that appears in Eq. (2):

ψ̂†(x) =
∫

d3p c†(p)
e−ip·x

(2π )3/2
eiEpt (15)

ψ̂(x) =
∫

d3p c(p)
eip·x

(2π )3/2
e−iEpt . (16)

The operators c†(p)(c(p)) are coefficients of a plane wave
expansion for ψ̂†(x) (ψ̂(x)), with the plane wave functions
eip·x/(2π )3/2 being the complete set of basis functions.
However, one could rewrite ψ̂†(x) (ψ̂(x)) as an expansion
using any set of complete wave functions. We exploit this
feature below.

III. DISTORTED WAVES—REAL POTENTIAL

We represent the random classical source emitting pions
that interact with a real, time-independent external potential U
by the Lagrangian density

−L = ψ̂†(−∂2 + U + m2)ψ̂ + j (x)ψ̂. (17)

The current operator j (x) is closely related to the emission
function g [12]. In this Lagrangian the terms U and j (x) are
independent. Thus the relation between the emission function
and U derived in Ref. [22] need not be satisfied. We also note
that this Lagrangian density ignores the Coulomb interactions
between two pions that occur in the final state. We could have
included these, but such effects are numerically important and
are removed by experimentalists [23] using well-documented
techniques [24]. Therefore we do not address this issue here.

The field operator ψ̂† can be expanded in the mode
functions ψ

(−)
p that satisfy

(−∇2 + U)ψ (−)
p (x) = p2ψ (−)

p (x). (18)

These wave functions obey the usual completeness and
orthogonality relations∫

d3pψ (−)∗
p (x)ψ (−)

p (y) = δ(3)(x − y) (19)∫
d3xψ (−)∗

p (x)ψ (−)
p′ (x) = δ(3)(p − p′), (20)

so that one may use the field expansion

ψ̂(x) =
∫

d3pψ (−)
p (x, t)e−iEptd(p), (21)

with d†(p) being the creation operator for pions of momentum
p in the basis of Eq. (18). The expansion, Eq. (21), assumes
that U produces no bound states. If so, the integral term
would be augmented by a term involving a sum over discrete
states.

The availability of mode expansions when distortion effects
are included means that the simplification of the correlation
function can proceed as in the previous section. We again use
Eq. (2) and Eq. (3). The use of the field expansion, Eq. (21),

enables a generalization of the function η(x):

η(x) =
∫

d3pψ (−)∗
p (x, t)η̃(p, t), (22)

with

η̃(p, t) ≡
∫

d3xψ (−)
p (x, t)η(x), (23)

so that

|η〉 = exp

[∫
d3pdtη̃(p, t)γ (t)d†(p)

]
|0〉. (24)

The ability to obtain a relation between the η̃(p, t) and η(x)
rests on the relations Eq. (19) and Eq. (20).

The state |η〉 is an eigenstate of d(p). Thus the result

C(p, q) = 1 + |〈η|d†(p)d(q)|η〉|2
〈η|d†(p)d(p)|η〉〈η|d†(q)d(q)|η〉 , (25)

very similar to Eq. (7), is obtained. We evaluate the matrix
elements appearing in the numerator and find

〈η|d†(p)d(q)|η〉 =
∫

d4xd3x ′ exp[−it(Ep − Eq)]

EpEq

ψ (−)
p (x)

×ψ (−)∗
q (x′)η(x)η(x′, t). (26)

The use of Eq. (12) allows us to obtain

〈η|d†(p)d(q)|η〉

= 1

EpEq

∫
dtd3xd3x ′ d3p′

(2π )3
eit(Eq−Ep)e−ip′ ·x′

×ψ (−)
p (x + x′/2)ψ (−)∗

q (x − x′/2)g(x, p′). (27)

This result, which can be applied for p 	= q and for p = q,
specifies the evaluation of the correlation function of Eq. (25)
with the result

C(p, q) = 1 + |S(K, k)|2
S(p)S(q)

, (28)

where

S(K, k) ≡
∫

d4xd3x ′ d3p′

(2π )3
eit(Eq−Ep′ )e−ip′ ·x′

×ψ (−)
p (x + x′/2)ψ (−)∗

q (x − x′/2)g(x, p′) (29)

and

S(p) ≡
∫

d4xd3x ′ d3p′

(2π )3
e−ip′ ·x′

×ψ (−)
p (x + x′/2)ψ (−)∗

p (x − x′/2)g(x, p′). (30)

This expression is also the one that appears in the DWEF
formalism [10,11]. One could use either Eq. (14) or Eq. (28)
to analyze data, but the extracted space-time properties of the
source η(x) would be different.

We need to comment on the possible momentum and energy
dependence of the optical potential. The completeness and
orthogonality relations are obtained with any Hermitian U ,
which can therefore be momentum dependent, but not energy
dependent. As explained in Sec. V [Eq. (43)] of Ref. [11],
the real part of the potential can and should be thought of
as a momentum-dependent, but energy-independent potential.
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If there were true energy dependence a factor depending on the
derivative of the potential with respect to energy [19] would
enter into the orthogonality and completeness relations.

IV. COUPLED CHANNELS

The optical potential used in previous work [10,11] is
complex. Using the necessary completeness and orthogonality
relations to relate η(x) to η̃(p, t) requires the use of a
real potential. Therefore one needs to investigate possible
corrections.

The optical potential or pion self-energy is an effective
interaction between the pion and the medium. The medium
is not an eigenstate of the Hamiltonian, but rather of H0,
which is the full Hamiltonian minus the Hermitian operator
representing the pionic final state interactions. Eliminating
the infinite number of possible states of H0 and representing
these by a single state leads to a self-energy that is necessarily
complex. Our procedure here is specifically to consider the
infinite number of states of the medium, obtain a Lagrangian
density that involves Hermitian interactions, and derive the
optical potential formalism and any corrections to it.

Let Pn denote a projection operator for the medium to be
in a given eigenstate of H0, n. These obey∑

n

Pn = 1, PnPm = δn,mPn. (31)

For the case of π -nuclear scattering, n would represent the
nuclear eigenstates. Here n represents states of the medium
in the absence of its interactions with pions. The correlation
function is now given by

C(p, q) =
∑

n Pn(p, q)∑
n Pn(p)

∑
m Pm(q)

, (32)

where Pn(p) is the probability for emission of a pion of
momentum p from the medium in a state n. Similarly Pn(p, q)
is the probability for emission of a pair of pions of momentum
p, q from the medium in a state n. The sums over n account
for the inclusive nature of the process of interest.

It is convenient to define the product of the field operator
with the projection operator Pn:

ψ̂n(x) ≡ ψ̂(x) Pn, (33)

with

ψ̂(x) =
∑

n

ψ̂n(x), (34)

using the complete nature of the set n. The Lagrangian density
is given by

−L =
∑

n

∂ψ̂†
n · ∂ψ̂n +

∑
n,m

ψ†
n

((
m2

π + M2
m

)
δnm + Unm

)
ψ̂m

+
∑

n

jn(x)ψ̂n(x), (35)

where

Unm = U∗
mn ≡ (Û)nm (36)

and Û is the Hermitian interaction operator and M2
m, the m

matrix element of the diagonal operator M2, represents the

effects of the different energies of the states labeled by m. The
field operator ψ̂n can be expanded in the mode functions ψ

(−)
p,n :∑

m	=n

Unm(x)ψ (−)
p,m(x, t)

= (
p2 + ∇2 − M2

n − Unn(x)
)
ψ (−)

p,n (x, t). (37)

Here the potential U is taken as a local operator in the position
space of the outgoing pion.

To see the relationship between the earlier real optical
potential formulation of Eq. (18) and the coupled-channels
formulation of Eq. (37) we try to rewrite the coupled-channels
problem in terms of a single channel with a complex optical
potential. To do this, let ψ̂1 correspond to the field operator
(and state) of the previous section and solve formally for ψ

(−)
p,m

in terms of ψ
(−)
p,1 . It is convenient to define the operator Ũ with

matrix elements given by

Ũn,n′ ≡ (1 − δn,1)(1 − δn′,1)Un,n′ . (38)

Then

ψ
(−)
p,n 	=1 =

∑
m	=1

(
1

∇2 + p2 − M2 − Ũ − iε

)
nm

Um1ψ
(−)
p,1 ,

(39)

where (∇2 + p2 − M2)nm ∝ δn,m and M2 is an operator giving
M2

n when acting on the state n. The quantity in parenthesis
in Eq. (39) is the inverse of a local operator. Then rewrite
Eq. (37) in terms of ψ

(−)
p,1 as

U11ψ
(−)
p,1 +

∑
m,n	=1

U1n

(
1

∇2 + p2 − M2 − U − iε

)
nm

Um1ψ
(−)
p,1

= (
p2 + ∇2 − M2

1

)
ψ

(−)
p,1 . (40)

The complex object appearing in the left-hand side of
Eq. (40) expresses the effects of final state interactions
and (because the equation involves only the wave function
ψ

(−)
p,1 ) can be defined as the complex-energy-dependent optical

potential V (p2) with

V (p2) ≡ U11

+
∑

m,n	=1

U1m

(
1

∇2 + p2 − M2 − Ũ − iε

)
m,n

Un1.

(41)

The key point here is that the imaginary part of the optical
potential arises from the second term of Eq. (41) and is
therefore closely associated with the channel coupling effects.
Moreover, the formally correct complex optical potential
V (p2) is a nonlocal operator. With the definition Eq. (41)
we may rewrite Eq. (40) as

V (p2)ψ (−)
p,1 = (

p2 + ∇2 − M2
1

)
ψ

(−)
p,1 , (42)

which bears a superficial resemblance to the formalism of the
previous section Eq. (18). However, for practical calculations
with a well-defined set of channels it is best to solve Eq. (37)
directly without the explicit use of an optical potential.
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The next step is to compute the correlation function within
the coupled-channels formalism. To do this we use Eq. (34) and
Eq. (35). The solutions of Eq. (37) form a complete orthogonal
set: ∑

n

∫
d3pψ (−)∗

p,n (x)ψ (−)
p,n (y) = δ(3)(x − y) (43)

∑
n

∫
d3xψ (−)∗

p,n (x)ψ (−)
p′,n(x) = δ(3)(p − p′). (44)

The field expansion is now

ψ̂(x) =
∫

d3p
∑

n

a(p)Pnψ
(−)
p,n (x)e−iEpt , (45)

so that

|η〉 = exp

[∑
n

∫
d4xηn(x)γ (t)

∫
d3p a†(p)Pnψ

(−)∗
p,n (x)eiEpt

]
×

∑
m

|0,m〉, (46)

where the state |0,m〉 is the pionic vacuum if the medium is
in the state m, and ηn(x) represents the source for the state n.
These state vectors obey the relations

〈0, n|0,m〉 = δn,m = 〈0, n|Pn|0,m〉. (47)

Define

ηn(p, t) ≡
∫

d3x ηn(x, t)ψ (−)∗
p,n (x), (48)

so that

|η〉 = exp

[∫
d3pdtγ (t)

∑
n

ηn(p, t)a†(p)Pne
iEpt

]
×

∑
m

|0,m〉, (49)

a(p)|η〉 =
∫

dt γ (t)
∑

n

ηn(p, t)

Ep

Pne
iEpt |η〉. (50)

The emission probability is given by

EpEq

∑
n

〈η|a†(p)Pna(q)|η〉

=
∑

n

∫
dtd3xd3yη∗

n(x, t)ηn(y, t)ψ (−)∗
p,n (x)

×ψ (−)
q,n (y) ei(Ep−Eq )t (51)

or, using Eq. (12),

EpEq〈η|a†(p)a(q)|η〉
=

∑
n

∫
dt d3xd3y

∫
d3p′ gn((x + y)/2, t, p′)e−ip′ ·(x−y)

×ψ (−)∗
p,n (x)ψ (−)

q,n (y) ei(Ep−Eq )t , (52)

where

gn(x, p) =
∫

d3x ′η∗
n

(
x + 1

2
x′, t

)
ηn

(
x − 1

2
x′, t

)
eip·x′

.

(53)

If pionic final state interactions are ignored, the term
∑

n gn

enters and this may be identified with the emission function g

of previous sections.
The expression Eq. (52) is the same as Eq. (27) except

that now we sum over the channels n. These sums may be
expressed in terms of the optical model wave functions of
Eq. (39). The term of Eq. (52) with n = 1 corresponds to the
DWEF formalism, and the terms with n > 1 are corrections.
We provide an example of a correction term. Suppose part
of the imaginary part of the optical potential arises from a
pion-nucleon interaction that makes an intermediate 	. Then
a term corresponding to one of n > 1 involves the emission of
a pion from a nucleon that makes an intermediate 	. This is
illustrated in Fig. 1.

It is difficult to assess the importance of the second term
in a general way. The only obvious limit is that if states with
n > 1 are not excited then Im (V ) of Eq. (41) must vanish.
Conversely, if Im (V ) = 0, the states n > 1 must be above
the threshold energy and the propagators that appear in the
correction terms correspond to virtual propagation over a small
distance with limited effect.

NN

N N

(a)

N NN

N N N

(b)

N NN

N N

(c)

N

FIG. 1. Example of a coupled-channels effect. The solid vertical lines represent nucleons, the double line represents 	 particles, and the
dashed lines represent pions. (a) Two-pion emission without final state interactions. (b) Optical potential contribution through an intermediate
	. (c) Coupled-channels effect.
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dN
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dM
T
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π
π

FIG. 2. (Color online) Computed pionic
spectrum. Red upright triangles, π− spectrum
(STAR); green inverted triangles, π+ spectrum
points (STAR) [25]; red solid line, DWEF fit with
vanishing imaginary part of the optical potential
(first line of Table I); green dotted line, DWEF
fit including search on the imaginary part of the
optical potential (second line of Table I); blue
dashed line (almost entirely covered by the red
solid curve), DWEF fit with vanishing imaginary
part of the optical potential, 	τ = 1.5 fm/c (third
line of Table I); violet long dashed line, DWEF
fit including search on µπ , setting the optical
potential to essentially 0 (fourth line of Table I).

V. NUMERICAL ASSESSMENT OF THE EFFECTS OF
Im (V ) IN REFS. [10] AND [11]

The previous section reports that, if one includes the physics
of the complex optical potential, new terms not included
within the DWEF formalism of Refs. [10] and [11] should
be included. However, one uses the optical potential to model
the effects of final state interactions when one does not have
enough detailed knowledge to make an explicit calculation.
Indeed, we do not have enough information to define the
appropriate channels n. The only thing we know is that if
pion emission from the states with n > 1 is not important, the
optical potential must be real. Thus the only way we see to
assess the possible importance of the new terms is to compare
DWEF calculations with and without the imaginary part of the
optical potential.

As a result of the above logic we perform a variety DWEF
fits (see Table I). In Ref. [11] the imaginary part of the optical
potential as represented by the term w2 is about one tenth of
the real potential. It is therefore possible that, in the limit that
Im (w2) = 0, there would be no significant correction term, so
we try to understand if removing the imaginary part of the
optical potential can be done without degrading the quality of
the fit. The results are shown in Figs. 2 and 3. An example of
the previous calculations [10,11] is shown as the green dotted
curve (second line of Table I). The red solid curve (first line of
Table I) shows the result of setting the imaginary potential to
a vanishingly small value. This results in only a slightly worse
description of the data. The changes in the imaginary part of

the optical potential w2 are largely compensated by a reduction
of the temperature from about 160 MeV to about 120 MeV.
We also point out that the length of the flux tube as represented
by 	η is vastly increased, providing greater justification for
our previous procedure of taking the length of the flux tube
to be infinitely long in the longitudinal direction. However,
the emission duration is reduced to 0 fm/c, which is similar
to the results of the blast wave model [26]. This means that
all of the pionic emission occurs at a single proper time. This
value justifies the use of a time-independent optical potential,
but does seem to be difficult to understand because some
spread of emission times is expected for a long-lived plasma.
The results shown by the blue dashed curves (third line of
Table I) are obtained by fixing the emission duration to
1.5 fm/c, which is our previous value [10,11]. The description
of the spectrum is basically unchanged but the radii are less
precisely described. The violet long-dashed curves (fourth line
of Table I) show the DWEF fit using a vanishing optical
potential. This does not give a good description of the
momentum dependence of the radii and is associated with
the largest deviation between our calculations and the data as
represented by the χ2 values of Table I.

It is clear that the precision of our description of the data
is improved by including the imaginary part of the optical
potential. However, this is a quantitatively but not a qualita-
tively important effect. It is also true that including the real
part of the optical potential is a qualitatively important effect.
These results suggest that the correction terms embodied by

TABLE I. Four parameters sets obtained with slightly different procedures. These parameters are defined in Ref. [11]. The values of χ 2

represent the accuracy of the description of the data.

T (MeV) ηf 	τ (fm/c) RWS (fm) aWS (fm) w0 (fm−2) w2 τ0 (fm/c) 	η µπ (MeV) χ 2

121 1.05 0 11.7 1.11 0.495 0.762+0.0001i 9.20 70.7 139.57 300
162 1.22 1.55 11.9 1.13 0.488 1.19+0.13i 9.10 1.68 139.57 117
121 1.04 1.5 11.7 0.905 0.564 0.595+0.0001i 8.85 70.7 139.57 451
144 0.990 2.07 12.57 0.876 0.0001 0.0001+0.0001i 6.85 ∞ 83.5 1068
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FIG. 3. (Color online) HBT radii. Curves are labeled as in Fig. 2. STAR data [23].

the terms with n 	= 1 of Eq. (52) are not very important, but
non-negligible. It is also possible that an optical potential with
a geometry different than that of the volume form that we
have assumed might be able to account for the the neglected
terms. However, an accurate assessment would require the
development of a theory that involves dealing with explicit
models for gn, jn, and U .

VI. SUMMARY AND DISCUSSION

It seems clear from previous work including Refs. [12]–
[15] and the present Sec. III that final state interaction
effects on HBT interferometry are appropriately included by
solving quantum mechanical wave equations. However, if the
optical potential has an imaginary part, there is an additional
effect, embodied in Eq. (52), that needs to be included
when computing the emission probabilities and correlation
function. Thus the effects of strong quantum opacity must

be accompanied by additional pion emission from the states
eliminated in the construction of the complex optical potential.
In the work of Refs. [10] and [11] the real part of the optical
potential is very important and the imaginary part of the optical
potential is a small effect. However, obtaining a similarly
accurate reproduction of the pionic spectra and HBT radii
without this imaginary part causes the emission temperature
to drop from about 160 to 120 MeV and the fitted emission
duration time to drop to 0. This indicates that, in our model,
either the final state interactions occur in the later times of
the collision and the emission occurs at only one proper time
or the inclusion of emission from the states eliminated in the
construction of the complex optical potential is necessary.
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