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Landau hydrodynamics reexamined
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We review the formulation of Landau hydrodynamics and find that the rapidity distribution of produced
particles in the center-of-mass system should be more appropriately modified as dN/dy ∝ exp{

√
y2

b − y2}, where
yb = ln{√sNN/mp} is the beam nucleon rapidity, instead of Landau’s original distribution, dN/dy(Landau) ∝
exp{√L2 − y2}, where L = ln{√sNN/2mp}. The modified distribution agrees better with experimental dN/dy

data than the original Landau distribution and can be represented well by the Gaussian distribution,
dN/dy(Gaussian) ∝ exp{−y2/2L}. Past successes of the Gaussian distribution in explaining experimental
rapidity data can be understood, not because it is an approximation of the original Landau distribution, but
because it is in fact a close representation of the modified distribution. Predictions for pp and AA collisions at
LHC energies in Landau hydrodynamics are presented.

DOI: 10.1103/PhysRevC.78.054902 PACS number(s): 25.75.Ag

I. INTRODUCTION

Recent experimental data in high-energy heavy-ion col-
lisions [1–3] reveal that the rapidity distributions of pro-
duced particles do not exhibit the plateau structure of Hwa-
Bjorken hydrodynamics [4,5]. On the contrary, the Landau
hydrodynamical model [6,7] yields results that agree with
experiment [1–3]. Landau hydrodynamics provides a plausible
description for the evolution of the dense hot matter produced
in high-energy heavy-ion collisions. Its dynamics during the
first stage of the one-dimensional longitudinal expansion can
be solved exactly and the one-dimensional longitudinal ex-
pansion problem admits simple approximate solutions [6–21].
The subsequent three-dimensional motion can be solved
approximately to give rise to predictions that come close
to experimental data [1–3,6,7]. A critical re-examination of
Landau hydrodynamics will make it a useful tool for the
description of the evolution of the produced dense matter.

Quantitative analyses of Landau hydrodynamics in Refs.
[1–3,11] use a Gaussian form of the Landau rapidity distribu-
tion [6,7]

dN/dy(Gaussian) ∝ exp{−y2/2L}, (1.1)

where L is the logarithm of the Lorentz contraction factor
γ = √

sNN/2mp,

L = ln γ = ln(
√

sNN/2mp), (1.2)
√

sNN/2 is the center-of-mass energy per nucleon, and mp

is the proton mass. This Gaussian rapidity distribution gives
theoretical rapidity widths that agree with experimental widths
for many different particles in central AuAu collisions, to
within 5 to 10%, from BNL Alternating Gradient Synchrotron
(AGS) energies to BNL Relativistic Heavy-Ion Collider
(RHIC) energies [1–3]. The Landau hydrodynamical model
also gives the correct energy dependence of the observed total
charged multiplicity and the limiting fragmentation property
at forward rapidities [2,3]. A similar analysis in terms of the
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pseudorapidity variable η at zero pseudorapidity has been
carried out in Ref. [22].

The successes of these analyses indicate that Landau
hydrodynamics can be a reasonable description. However,
they also raise many unanswered questions. First, the original
Landau result stipulates the rapidity distribution to be [6,7]

dN/dλ(Landau) ∝ exp{
√

L2 − λ2}, (1.3)

where the symbol λ is often taken to be the rapidity variable
y in Refs. [1–3,11]. In the original work of Landau and his
collaborator in Refs. [6,7], the variable λ is used to represent
the polar angle θ as e−λ = θ ; there is the question whether the
variable λ in the Landau rapidity distribution (1.3) should be
taken as the rapidity variable y [1–3,11] or the pseudorapdity
variable η [22] appropriate to describe the polar angle. Such a
distinction between the rapidity and pseudorapidity variables is
quantitatively important because the shape of the distributions
in these two variables are different near the region of small
rapidities [23]. Second, the Gaussian rapidity distribution (1.1)
used in the analyses of Refs. [1–3] is only an approximate
representation of the original Landau distribution (1.3) in
the region of |λ| � L, but differs from the original Landau
distribution (1.3) in other rapidity regions. They are in fact
different distributions. While the original Landau distribution
can be considered to receive theoretical support in Landau
hydrodynamics as justified in Refs. [6,7], a firm theoretical
foundation for the Gaussian distribution (1.1) in Landau
hydrodynamics is still lacking. Finally, if one does not use the
approximate representation of the Gaussian distribution (1.1)
but keeps the original Landau distribution (1.3), then there
is the quantitative question [14] whether this original Landau
distribution will give results that agree with experimental data.

In view of the above unanswered questions, our task in
reviewing the Landau hydrodynamical model will need to
ensure that we are dealing with the rapidity variable y and
not the pseudorapidity variable η. We need to be careful
about various numerical factors so as to obtain a quantitative
determination of the parameters in the final theoretical results.
Finally, we need to ascertain whether the theoretical results
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agree with experimental data. If we succeed in resolving the
unanswered questions, we will pave the way for the application
of Landau hydrodynamics to other problems in high-energy
heavy-ion collisions.

II. TOTAL NUMBER OF PRODUCED CHARGED
PARTICLES

Landau hydrodynamics involves two different aspects:
the global particle multiplicity and the differential rapidity
distribution. Landau assumed that the hydrodynamical motion
of the fluid after the initial collision process is adiabatic.
He argued that the only thing that can destroy adiabaticity
would be the shock waves that, however, occur at the initial
compressional stage of the collision process [24]. Landau
therefore assumed that during the longitudinal and transverse
expansion phase under consideration, the entropy content of
the individual region remains unchanged. The total entropy of
the system is therefore unchanged and can be evaluated at the
initial stage of the overlapped and compressed system.

From the consideration of the thermodynamical properties
of many elementary systems, Landau found that the ratio of
the entropy density to the number density for a thermally
equilibrated system is nearly a constant within the temperature
regions of interest. Landau therefore postulated that the
number density is proportional to the entropy density. Thus,
by collecting all fluid elements, the total number of particles
is proportional to the total entropy. As the total entropy of
the system is unchanged during the hydrodynamical evolution,
the total number of observed particles can be determined
from the initial entropy of the system.

We work in the center-of-mass system and consider the
central collision of two equal nuclei, each of mass number A,
at a nucleon-nucleon center-of-mass energy

√
sNN . Consider

first the case of central AA collisions with A � 1 such that
nucleons of one nucleus collide with a large numbers of
nucleons of the other nucleus and the whole energy content
is used in particle production. The total energy content of the
system is

E = √
sNNA. (2.1)

The initial compressed system is contained in a volume that is
Lorentz contracted to become

V = 4π

3
(r0A

1/3)3/γ, (2.2)

where r0 = 1.2 fm. The energy density of the system is
therefore

ε = E/V = γ
√

sNN/(4πr3
0 /3). (2.3)

For a system in local thermal equilibrium, the entropy density
σ is related to the energy density by

σ = constant ε3/4. (2.4)

The total entropy content of the system is therefore

S = σV = constant s1/4
NNA. (2.5)

With Landau’s assumption relating entropy and particle
number, N ∝ S, the total number of particles produced is

N ∝ s
1/4
NNA, (2.6)

and the total number of produced charged particles per
participant pair is

Nch/A = Nch/(Npart/2) = K(
√

sNN/GeV)1/2, (2.7)

where K can be determined phenomenologically by compari-
son with experimental data.

In Fig. 1(a), we show the PHOBOS data of Nch/(Npart/2)
as a function of (

√
sNN/GeV)1/2 for central AuAu collisions

in RHIC [2,3]. The RHIC AuAu data can be parametrized as

Nch/(Npart/2) = 1.135 + 2.019(
√

sNN/GeV)1/2, (2.8)

where the constant 1.135 arises from the leading baryons. The
constant K as determined from the data is K = 2.019, which
agrees with the earlier estimate of K = 2 [6,7].

Consider next pp and pp̄ collisions in which not all the
energy of

√
sNN is used in particle production, as the leading

particles carry a substantial fraction of the initial energy. If we
denote the particle production energy fraction in pp and pp̄
collisions by ξ , then Eq. (2.7) is modified to be

Nch = K(ξ
√

sNN/GeV)1/2. (2.9)
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FIG. 1. (Color online) Total number of produced charged par-
ticles per pair of participants, Nch/(Npart/2), as a function of
(
√

sNN/GeV)1/2. (a) PHOBOS Nch/(Npart/2) data for central AuAu
collisions at different (

√
sNN/GeV)1/2 and the Landau hydrodynam-

ical model fit, and (b) the extrapolation of the charged multiplicity
in Landau hydrodynamical model to pp and PbPb collisions at LHC
energies.
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Comparison of the charged particle multiplicity in pp and pp̄
collisions indicates that the particle production energy fraction
ξ for pp and pp̄ collisions is approximately 0.5 [2,3,23,25]. In
contrast, the case of RHIC AA data in high-energy heavy-
ion collisions corresponds to full nuclear stopping with ξ = 1
[2,3].

In Fig. 1(b), we show the predictions for the charge particle
multiplicity per pair of participants for collisions at CERN
Large Hadron Collider (LHC) energies. For pp collisions at
14 TeV with a particle production energy fraction ξ = 0.5, Nch

is predicted to be 170. For central PbPb collisions at
√

sNN =
5.5 TeV with full nuclear stopping (ξ = 1), Nch/(Npart/2) is
predicted to be 151.

III. LONGITUDINAL HYDRODYNAMICAL EXPANSION

We proceed to examine the dynamics of the longitudinal
and transverse expansions in the collision of two equal nuclei
of diameter a. The disk of initial configuration in the center-
of-mass system has a longitudinal thickness 	 given by

	 = a/γ, (3.1)

as depicted in Fig. 2 with major diameters ax and ay and the
reaction plane lying on the x-z plane. Depending on the impact
parameter, the dimensions of the disk obey ax � ay � a. For a
central collision, ax = ay = a.

Among the coordinates (t, z, x, y) ≡ (x0, x1, x2, x3) used
to describe the fluid, Landau suggested a method to split the
problem into two stages. The first stage consists of indepen-
dent expansions along the longitudinal and the transverse
directions. For the longitudinal expansion, the equation of
hydrodynamics is

∂T 00

∂t
+ ∂T 01

∂z
= 0, (3.2)

∂T 01

∂t
+ ∂T 11

∂z
= 0, (3.3)

FIG. 2. (Color online) Initial configuration in the collision of two
heavy equal nuclei in the center-of-mass system. The region of nuclear
overlap consists of a thin disk of thickness 	 along the longitudinal
z axis. The reaction plane is designated to lie on the x-z plane, and
the transverse radii are ax/2 and ay/2.

where

T µν = (ε + p)uµuν − pgµν. (3.4)

We shall assume for simplicity the relativistic equation of state

p = ε/3. (3.5)

To ensure that we deal with rapidities, we represent the velocity
fields (u0, u1) by the flow rapidity y,

u0 = cosh y, (3.6a)

u1 = sinh y. (3.6b)

We introduce the light-cone coordinates t+ and t−,

t+ = t + z, (3.7a)

t− = t − z, (3.7b)

with their logarithmic representations (y+, y−) defined by

y± = ln{t±/	} = ln{(t±z)/	}. (3.8)

The hydrodynamical Eqs. (3.2) and (3.3) become

∂ε

∂t+
+ 2

∂(εe−2y)

∂t−
= 0, (3.9a)

2
∂(εe2y)

∂t+
+ ∂ε

∂t−
= 0. (3.9b)

For the first stage of one-dimensional hydrodynamics, the
exact solution for an initially uniform slab has been obtained
and discussed in Refs. [7–21]. There are, in addition, simple
approximate solutions [6,7]. In view of the matching of the
solution to an approximate three-dimensional motion in the
second stage, it suffices to consider the approximate solutions
given by [7]

ε(y+, y−) = ε0 exp

{
−4

3
(y+ + y− − √

y+y−)

}
, (3.10a)

y(y+, y−) = (y+ − y−)/2. (3.10b)

The flow rapidity equation of Eq. (3.10b) can also be written
alternatively as

e2y(y+,y−) = t+
t−

= t + z

t − z
. (3.11)

The constant ε0 in Eq. (3.10a) is related to the initial energy
density at (y+0, y−0) by

ε0 = ε(y+0, y−0)eφ0 , (3.12)

where φ0 is

φ0 = 4

3
(y+0 + y−0 − √

y+0y−0). (3.13)

We can easily prove by direct substitution that Eqs. (3.10a)
and (3.10b) [or Eq. (3.11)] are approximate solutions of the
hydrodynamical Eqs. (3.9a) and (3.9b). First, substituting
Eq. (3.11) into the hydrodynamical equations, we obtain

∂ε

∂t+
+ 2

[
∂ε

∂t−
+ ε

t−

]
t−
t+

= 0, (3.14a)

2

[
∂ε

∂t+
+ ε

t+

]
t+
t−

+ ∂ε

∂t−
= 0. (3.14b)
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We write out t−/t+ in the second equation and substitute it
into the first equation, and we get

∂ε

∂t+

∂ε

∂t−
− 4

[
∂ε

∂t−
+ ε

t−

] [
∂ε

∂t+
+ ε

t+

]
= 0. (3.15)

We multiply this expression by t+t− and change into the
logarithm variables y+ and y−, then the above equation
becomes

∂ε

∂y+

∂ε

∂y−
− 4

[
∂ε

∂y−
+ ε

] [
∂ε

∂y+
+ ε

]
= 0. (3.16)

If we now substitute Eq. (3.10a) for ε into the left-hand side of
the above equation, we find that the left-hand side gives zero,
indicating that Eqs. (3.10a) and (3.10b) are indeed approximate
solutions of the hydrodynamical equation.

The simple approximate solutions of Eqs. (3.10a) and
(3.10b) have limitations. They cannot describe the boundary
layers for which |t ± z| < 	 and y± becomes negative.
In highly relativistic collisions, the tail regions excluded
from the approximate solution are not significant in a gen-
eral description of the fluid. The solutions in Eqs. (3.10a)
and (3.10b) provide only limited choice on the initial condi-
tions, within the form as specified by the simple functions in
these equations. However, a thin slab of matter with the right
dimensions within the Landau model will likely capture the
dominant features of the evolution dynamics.

It is useful to compare Landau hydrodynamics with Hwa-
Bjorken hydrodynamics. We make the transformation t =
τ cosh y, and z = τ sinh y. The energy density is then

ε(τ, y) = ε0 exp
{
− 4

3

[
2 ln(τ/	) −

√
[ln(τ/	)]2 − y2

]}
.

(3.17)

In the region y � ln(τ/	), we have

ε(τ, y) ∼ ε0 exp
{− 4

3 ln(τ/	)
} ∝ 1

τ 4/3
, (3.18)

which is the Hwa-Bjorken hydrodynamics results. Therefore,
in the region of small rapidities with |y| � ln(τ/	), Landau
hydrodynamics and Hwa-Bjorken hydrodynamics coincide.
In general, because Landau hydrodynamics covers a wider
range of rapidities that may not be small, it is a more realistic
description for the evolution of the hydrodynamical system.

IV. TRANSVERSE EXPANSION

The initial configuration is much thinner in the longitudinal
direction than in the transverse directions. Therefore, in the
first stage of the evolution during the fast one-dimensional
longitudinal expansion, there is a simultaneous but slower
transverse expansion. The difference in the expansion speeds
allows Landau to treat the longitudinal and transverse dy-
namics as independent expansions. The rate of transverse
expansion can then be obtained to provide an approximate
description of the dynamics of the system.

We consider first the case of a central collision, for which
ay = ax = a. The case of noncentral collisions is discussed in
Sec. IX. The transverse expansion is governed by the Euler

equation along one of the transverse directions, which can be
taken to be along the x direction,

∂T 02

∂t
+ ∂T 22

∂x
= 0, (4.1)

where

T 02 = (ε + p)u0u2 = 4
3εu0u0vx, (4.2)

and we have used the relation u2 = u0vx . The energy-
momentum tensor T 22 is

T 22 = (ε + p)u2u2 − pg22 = 4
3εu0u0vxvx + p. (4.3)

As the transverse expansion is relatively slow, we can neglect
the first term on the right-hand side of the above expression
and keep only the pressure term p.

In Landau’s method of splitting the equations, one makes
the approximation that during the first stage the quantities ε and
y as a function of t and z have been independently determined
in the one-dimensional longitudinal motion. Equation (4.1)
can therefore be approximated as

4

3
εu0u0 ∂vx

∂t
= −∂p

∂x
. (4.4)

The transverse displacement x(t) (relative to zero displace-
ment) as a function of time t is related to the acceleration
∂vz/∂t by

x(t) = 1

2

(
∂vx

∂t

)
t2. (4.5)

The pressure is p = ε/3 at the center of the transverse region
and is zero at the radial surface a/2. Therefore the equation
for the displacement is given from Eq. (4.4) by

4

3
εu0u0 2x(t)

t2
= ε

3a/2
. (4.6)

We note that there is a factor of 4 arising from the ratio
of 4ε/3 from (ε + p) on the left-hand side relative to ε/3
from the pressure p on the right-hand side. However, in
the original formulation of Landau [6,7], this factor of 4
is taken to be unity for an order of magnitude estimate
of the transverse displacement. For our purpose of making
quantitative comparison with experimental data, this factor of
4 cannot be neglected.

From Eq. (4.6), the transverse displacement x(t) during the
longitudinal expansion increases as

x(t) = t2

4au0u0
= t2

4a cosh2 y
. (4.7)

V. SECOND STAGE OF CONIC FLIGHT

Landau suggested that when the transverse displacement
x(t) is equal to a at t = tFO, we need to switch to a new
type of solution in the second stage of fluid dynamics. With
the fluid element beyond the initial transverse dimension,
hydrodynamical forces become so small that they can be
neglected in the hydrodynamical equations at these locations
and the flow rapidity y can be assumed to be frozen for
t � tFO. This is equivalent to freezing the opening polar angle θ
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between the fluid trajectory and the collision axis. The motion
of the fluid element with a fixed polar angle can be described
as a “three-dimensional” conic flight. In mathematical terms,
Landau’s condition for rapidity freeze-out occurs at tFO(y),
which satisfies [6,7]

x(tFO) = a. (5.1)

As determined from Eqs. (4.7) and (5.1), rapidity freeze-out
takes place at

tFO(y) = 2au0 = 2a cosh y. (5.2)

The set of the (tFO(y), y) points lie on the curve of the proper
time, τFO = 2a. Thus, Landau’s physical freeze-out condition,
Eq. (5.1), corresponds to particle rapidities freezing-out at a
fixed proper time,

τFO = 2a. (5.3)

In a conic flight with an opening polar angle θ within an angle
element dθ , the energy-momentum tensor and the entropy
flux within the cone element must be conserved as a function
of time. The cross sectional area of such a cone element is
2πxdx. So the conservation of energy and entropy conic flow
correspond to

dE = εu0u02πxdx = constant, (5.4)

and

dS = σu02πxdx = ε3/4u02πxdx = constant. (5.5)

Dividing the first equation by the second equation, we get

ε1/4u0 = constant, (5.6)

which gives

ε ∝ 1

(u0)4
. (5.7)

On the other hand, in the conic flight, x and dx are proportional
to t . Hence, Eq. (5.4) gives

εu0u0t2 = constant. (5.8)

Eqs. (5.7) and (5.8) yield the dependence of various quantities
as a function of t ,

ε ∝ 1

t4
, σ ∝ 1

t3
, and u0 ∝ t. (5.9)

These equations give the solution of the evolution of the fluid
elements as a function of time in the second stage. By matching
the solutions at t = tFO(y), the energy density and velocity
fields at the second stage for t � tFO(y) are

ε(t, y) = ε(tFO, y)t4
FO

/
t4 (5.10a)

u0(t, y) = u0(tFO, y)t/tFO. (5.10b)

VI. RAPIDITY DISTRIBUTIONS IN HIGH-ENERGY
HEAVY-ION COLLISIONS

The picture that emerges from Landau hydrodynamics can
be summarized as follows. For an initial configuration of a thin
disk of dense matter at a high temperature and pressure, the
first stage of the motion is a one-dimensional longitudinal

expansion with a simultaneous transverse expansion. The
transverse expansion leads to a transverse displacement. When
the magnitude of the transverse displacement exceeds the
initial transverse dimension, forces acting on the fluid element
become small and the fluid elements proceed to the second
stage of conic flight with a frozen rapidity. As the trans-
verse displacement depends on rapidity, and the transverse
displacement magnitude decreases with increasing rapidity
magnitude, the moment when the fluid element switches from
the first stage to the second stage depends on the rapidity.
The final rapidity distribution of particles is therefore given by
the rapidity distribution of the particles at the matching time
tFO(y).

We first evaluate the entropy distribution as a function of
rapidity y and time t in the first stage of hydrodynamics.
Consider a slab element dz at z at a fixed time t . The entropy
within the slab element is

dS = σu0dz. (6.1)

Using Eq. (3.11), we can express z as a function of t and
rapidity y during the one-dimensional longitudinal expansion,

z = tsinh y/cosh y. (6.2)

For a fixed value of t , we therefore obtain

dS = σ t dy/cosh y. (6.3)

The entropy density σ is related to ε by σ = cε3/4 and ε is
given by Eq. (3.10a). We obtain the rapidity distribution at the
time t ,

dS = cε
3/4
0 exp{−(y+ + y− − √

y+y−)} t dy/cosh y. (6.4)

In the second stage, different fluid elements with different
rapidities switch to conic flight at different time tFO(y).
The rapidity is frozen after t > tFO(y). The final rapidity
distribution after freeze-out needs to be evaluated at the
switching time t = tFO(y)

dS = cε
3/4
0

[
exp{−(y+ + y− − √

y+y−)} t

cosh y

]
t=tFO(y)

dy.

(6.5)

To evaluate the square-bracketed quantity at t = tFO(y), we
obtain from Eqs. (3.8) and (6.2) that

ey± = t

	

e±y

cosh y
. (6.6)

Therefore, we have

ey± |t=tFO(y) = tFO(y)

	

e±y

cosh y
= 2a

	
e±y, (6.7)

which gives

y±|t=tFO(y) = ln(2a/	) ± y. (6.8)

We note that

ln(2a/	) = yb = L + ln 2, (6.9)

where yb is the beam rapidity in the center-of-mass system,

yb = cosh−1(
√

sNN/2mp)
.= ln(

√
sNN/mp). (6.10)
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The rapidity distribution of Eq. (6.5) is therefore

dS = cε
3/4
0 2a exp

{
−2yb +

√
y2

b − y2

}
dy. (6.11)

As the entropy is proportional to the number of particles, we
obtain the rapidity distribution

dN/dy ∝ exp

{√
y2

b − y2

}
, (6.12)

which differs from Landau’s rapidity distribution of Eq. (1.3).
While many steps of the formulation are the same, the main

difference between our formulation and Landau’s appears to
be the additional factor of 2 in Eqs. (6.7) and (5.2) in the new
formulation. This factor can be traced back to the factor of
4 in the ratio of 4ε/3 from (ε + p) on the left-hand side of
Eq. (4.6) and ε/3 from the pressure p on the right-hand side.
In Landau’s formulation, this factor of 4 is taken to be unity for
an order-of-magnitude estimate of the transverse expansion.

VII. COMPARISON OF LANDAU HYDRODYNAMICS
WITH EXPERIMENTAL RAPIDITY DISTRIBUTIONS

Figure 3 gives the theoretical and experimental rapidity
distributions for π+, π−,K+,K−, p, and p̄ at

√
sNN =

200 GeV [1]. The beam rapidity is yb = 5.36, and the
logarithm of the Lorentz contraction factor is L = 4.67. The
solid curves give the modified distribution of Eq. (6.12),
whereas the dashed curves are the Landau distribution of
Eq. (1.3). The theoretical distributions for different types of
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FIG. 3. (Color online) Comparison of experimental rapid-
ity distribution with theoretical distribution in the form of
dN/dy ∝ exp{

√
y2

b − y2} (solid curves), Landau’s distribution
dN/dy(Landau) ∝ exp{√L2 − y2} (dashed-dot curves), and the
Gaussian dN/dy(Gaussian) ∝ exp{−y2/2L} (dashed curves) for
produced particles with different masses. Data are from Ref. [1] for
AuAu collisions at

√
sNN = 200 GeV.

particles have been obtained by keeping the functional forms
of the distribution and fitting an overall normalization constant
to the experimental data. We observe that Landau rapidity
distributions are significantly narrower than the experimental
rapidity distributions, whereas the modified distribution of
Eq. (6.12) gives theoretical results that agree better with
experimental data.

As a further comparison, we show theoretical distributions
calculated with the Gaussian distribution of Eq. (1.1) as
the dashed curves in Fig. 3. We find that except for the
region of large rapidities, the Gaussian distribution is a good
representation of the modified Landau distribution. The close
similarity between the modified distribution (6.12) and the
Gaussian distribution (1.1) explains the puzzle mentioned in
the Introduction. The Gaussian distribution and the original
Landau distribution are different distributions. Past successes
of the Gaussian distribution in explaining experimental ra-
pidity data [1–3] arise, not because it is an approximation
of the original Landau distribution (1.3), but because it is
in fact close to the modified Landau distribution (6.12) that
derives its support from a careful reexamination of Landau
hydrodynamics.

We compare theoretical distributions with the π− rapidity
distribution for collisions at various energies. The solid curves
in Fig. 4 are the results from the modified distribution of
Eq. (6.12) with the yb parameter, whereas the dashed curves are
the Landau distribution of Eq. (1.3) with the L parameter. The
experimental data are from the compilation of Ref. [1]. The
modified distributions of Eq. (6.12) give a better agreement
with experimental data than the original Landau distributions.
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FIG. 4. (Color online) Comparison of experimental rapid-
ity distribution with theoretical distribution in the form of
dN/dy ∝ exp{

√
y2

b − y2} (solid curves) and Landau’s distribution
dN/dy(Landau) ∝ exp{√L2 − y2} (dashed curves) for produced
particles at different energies. Experimental dNπ−/dy data are from
the compilations in Ref. [1].
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VIII. PREDICTIONS OF RAPIDITY DISTRIBUTIONS FOR
LHC ENERGIES

We can rewrite the rapidity distribution of charged particles
in terms of the normalized distribution dF/dy,

(dNch/dy)/(Npart/2) = [Nch/(Npart/2)]dF/dy. (8.1)

The normalized distribution dF/dy is

dF

dy
=




Anorm exp
{√

y2
b − y2

}
for modified distribution,

Anorm exp{
√

L2 − y2} for Landau distribution,
1√

2πL
exp{−y2/2L} for Gaussian distribution,

(8.2)

where Anorm is a normalization constant such that∫
dF/dy = 1. (8.3)

With the knowledge of the total charged multiplicity from
Fig. 1, and the shape of the rapidity distribution from Eq. (8.2),
we can calculate dNch/dy/(Npart/2) as a function of rapidity.
Figure 5 gives the predicted rapidity distributions at LHC
energies. For heavy-ion collisions at

√
sNN = 5.5 TeV with full

stopping, the maximum value of dN/dy per participant pair is
about 22 at midrapidity. For pp collisions at

√
sNN = 14 TeV

with ξ = 0.5, the maximum dN/dy is approximately 24 at
y = 0. The widths of the rapidity distributions are σy ∼ 3. The
solid curves are for the modified distribution, the dashed-dot

0 2 4 6 8
y

0

10

20

30

(d
N

ch
/d

y)
/〈

N
pa

rt
 / 

2〉

exp{ √ y
b
2 - y2 } 

exp{ √ L2 - y2 } 

exp{ -y
2
/2L} 
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FIG. 5. (Color online) The predicted rapidity distributions
dNch/dy/(Npart/2) of charged particles produced in pp collisions
at

√
sNN = 14 TeV with ξ = 0.5, and AA collisions at

√
sNN =

5.5 TeV with full stopping in Landau hydrodynamics. The solid
curves are obtained with the modified distribution, the dashed-dot
curves are obtained with the original Landau distribution, and the
dashed curves with the Gaussian distribution.

curves are for the original Landau distribution, and the dashed
curves are for the Gaussian distribution.

IX. GENERALIZATION TO NONCENTRAL COLLISIONS

In noncentral collisions, the transverse radius aφ/2 will
depend on the azimuthal angle φ measured relative to the x axis
as depicted in Fig. 2. Following the same Landau arguments
as in the central collision case, Eq. (4.6) for the transverse
displacement can be generalized to be

4

3
εu0u0 2ρ(φ, t)

t2
= ε

3aφ/2
, (9.1)

where ρ(φ, t) is the transverse displacement at azimuthal angle
φ. The transverse displacement depends on φ and t as

ρ(φ, t) = t2

4aφu0u0
= t2

4aφ cosh2 y
. (9.2)

The Landau condition for the onset of the second stage is the
condition that the transverse displacement ρ(φ, t) is equal to
the transverse dimension aφ ,

ρ(φ, tFO) = aφ. (9.3)

Thus, in the case of noncentral collision, the Landau condition
of Eq. (5.1) is changed to

tFO(y, φ) = (aφ/a) × 2a cosh y. (9.4)

Following the same argument as before, Eq. (6.8) for the
noncentral collision case becomes

y±|t=tFO(y,φ) = ln(aφ/a) + ln(2a/	b) ± y, (9.5)

where the longitudinal thickness of the initial slab 	b depends
on the impact parameter b. As a consequence, the rapidity
distribution for this noncentral collision is

dN

dy
∝ exp

{√
ln(2a/	b) + ln(aφ/a)]2 − y2

}
. (9.6)

X. CORRECTIONS TO THE LANDAU MODEL

Results in the last few sections deal with the Landau model
in its traditional form. It is gratifying that gross features of
many measured quantities are reproduced well. The Landau
model with the modified distribution (6.12) can be considered
a good first approximation. Corrections and refinements are
expected to be small and need to be included as physical
considerations and experimental data demand. In this respect,
it is useful to examine two important corrections arising from
uncertainties in the initial configuration and the final freeze-out
condition.

The Landau model assumes that the initial con-
figuration corresponds to a disk of thickness 	 =
(nuclear diameter a)/γ as given by Eq. (3.1). Landau’s hy-
drodynamical expansion commences at the end of the initial
compression, with the formation of shock waves already at
hand. However, the thickness of the initial compressed shock
waves arises from balancing energy and momentum following
the Rankine-Hugoniot boundary conditions across the shock
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front [24,26]. The longitudinal thickness of the compressed
region (shock region) depends not only on the diameter
a of the nuclei but also on the equation of state and the
collision energies. Thus, although the initial nuclear diameter
a is an important scaling parameter as used by Landau, the
longitudinal thickness of the compressed region may deviate
from the Landau’s estimate of a/γ because of the equation
of state and collision energy considerations. The equation of
state at AGS energies is more dominated by baryons while the
equation of state from RHIC collisions will be dominated by
gluons and quarks. How the effects of the speed of sound can
affect the rapidity distribution in the Landau model have been
examined recently by Bialas and his collaborators [19] and by
Mohanty and Alam [16]. There is furthermore the possibility
of a much more extended longitudinal configuration in the
initial stages of highly relativistic collisions in the string rope
description of the initial longitudinal compression [27]. In that
description, the extension will depend on the string tension
of the rope between the separating partons, as investigated
by Magas and his collaborators [27]. The observed strong
azimuthal anisotropy as represented by the azimuthal Fourier
bn coefficients of Ref. [28] (or the vn coefficients in the later
notation of Ref. [29] for elliptic flow [30,31]) may indicate this
extended initial state of Ref. [27] and an initial longitudinal
dimension greater than Landau’s estimate.

There is another important correction to Landau’s initial
longitudinal thickness because of the spherical geometry of
the nuclei. The Landau model assumes a initial longitudinal
thickness of a/γ with a nearly uniform longitudinal distribu-
tion for a nucleus with a diameter of a in its own rest frame.
However, the longitudinal distribution of a spherical nucleus is
far from being uniform. A longitudinally uniform cylinder of
the same volume in a transverse disk of diameter a will have
a longitudinal thickness equal to 2a/3, which is substantially
smaller than the value of a assumed by Landau. The density
distribution of a spherical nucleus is also not uniform in the
transverse direction, when it is projected transversely.

All these corrections due to shock wave compression and
spherical geometry are expected to scale with the nuclear
diameter a. We can introduce phenomenologically a correction
factor Cinit to represent the effects of these scaled corrections
so that the longitudinal thickness changes from 	 = a/γ to
	′,

	 → 	′ = Cinit × a/γ. (10.1)

Upon replacing 	 by 	′, we get from Eqs. (6.9) and (6.12)
that dN/dy is modified to become

dN

dy
∝ exp{

√
(yb − ln Cinit)2 − y2}. (10.2)

Thus the thickness correction factor Cinit leads to a logarith-
mic correction to the parameter yb in Landau’s distribution
of Eq. (6.12). For example, the geometrical correction of
Cinit(geometrical) ∼ 2/3 contribute to a positive value of
(− ln Cinit) ∼ 0.405, and a more extended initial shock wave
region as in Ref. [27] will lead to a negative contribution to
(− ln Cinit) and a narrower rapidity width. There is thus an
interplay between the static geometrical effects and the dy-
namical effects due to compression and string rope extension.

There is an additional complication arising to the approxi-
mate freeze-out condition. Landau’s freeze-out condition of
τFO = 2a comes from his argument on the magnitude of
the transverse displacement. Landau’s freeze-out surface is
a space-like surface with a normal pointing in the time-like
direction. Important contributions on the freeze-out condition
come from Cooper and Frye [12] who used a fixed temperature
freeze-out condition. They found that the freeze-out surface in
this case contains both the space-like portion and the time-like
portion [12]. Another important contribution comes from
Csernai [26] who used the Rankine-Hugoniot conditions to
describe the freeze-out boundary. In this case the balance of the
transport across the freeze-out surface leads to a modification
of the transport equation for freeze-out [32]. In the unified
description of Hwa-Bjorken and Landau hydrodynamics,
Bialas and his collaborators [19] examined various freeze-out
conditions for fixed t, τ , and temperature T and compared
them with the original Hwa-Bjorken and Landau results. Using
a new family of simple analytical hydrodynamical solutions,
Csörgö and his collaborators [20] used the fixed temperature
condition for the freeze-out. The effects of the speeds of sound
and the freeze-out temperature on the rapidity distribution in
the Landau model have been investigated recently by Beuf and
his collaborators [21].

While there are many possible freeze-out conditions, the
successes of Landau hydrodynamics suggest that Landau’s
freeze-out condition can be a crude first approximation and
the correction is likely to be small and scale with the Landau
freeze-out proper time τFO ∼ 2a. Phenomenologically it is
therefore useful to introduce a corrective freeze-out factor CFO

to replacing τFO by τ ′
FO,

τFO → τ ′
FO = CFO × 2a. (10.3)

From Eq. (6.9), this modification of the freeze-out proper time
leads to a modification of the rapidity distribution from dN/dy

of Eq. (6.12) that becomes

dN

dy
∝ exp{

√
(yb + ln CFO)2 − y2}. (10.4)

Again, the correction factor CFO leads to a logarithmic
correction to yb.

The measured rapidity distribution depends on the combi-
nation of both effects. Upon combining the initial condition
and the freeze-out condition corrections from Eqs. (10.2)
and (10.4), we obtain

dN

dy
∝ exp{

√
(yb + ζ )2 − y2}, (10.5)

where the correction parameter ζ is

ζ = − ln Cinit + ln CFO. (10.6)

Our theoretical knowledge has not advanced to such an extent
that we can separate out the different effects due to the initial
conditions and the effects due to the freeze-out conditions as
they closely interplay to give rise to the observed rapidity
distribution. What is possible is to extract the deviations
of the experimental data from the Landau model so that
the small deviations may reveal useful information in future
investigations. The agreement with experimental dN/dy data
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FIG. 6. (Color online) Comparison of experimental rapidity
distributions with theoretical rapidity distributions dNπ−/dy (solid
curves), calculated with Eq. (10.5) at various energies. Experimental
data points are from Ref. [1].

with theoretical predictions will be slightly improved when
we include this correction parameter ζ . In Fig. 6, we use the
experimental dNπ−/dy data [1] and the distribution of Eq.
(10.5) to extract the quantity ζ as a function of

√
s shown

in Table I. As a comparison, the corresponding values of yb

are also listed. One finds that for AGS and SPS energies, the
combined effects of initial and freeze-out corrections lead to
a small correction parameter ζ ranging from −0.07 to −0.26.
The correction ζ is larger for RHIC energies and assumes the
value of 0.76. In all cases, the magnitude of the correction
parameter, |ζ |, is much smaller than yb, indicating the validity
of the Landau model as a good first approximation. How the
small correction ζ varies with collision energy is an interesting
topic worthy of future investigations.

The particle multiplicity in the Landau model is also
affected by the initial compressed volume and the bag constant
as the observed particles are hadrons subject to the bag pressure
of confined quarks and gluons [13]. The effect of the bag
constant is, however, small for high-energy collisions [13].

TABLE I. The correction parameter ζ as
a function of collision energy

√
sNN .

√
sNN (GeV) ζ yb

200 0.76 5.362
17.3 −0.26 2.917
12.4 −0.07 2.575
8.8 −0.13 2.226

XI. CONCLUSIONS AND DISCUSSIONS

In many problems in high-energy collisions, such as in the
description of the interaction of the jet or quarkonium with the
produced dense matter, it is desirable to have a realistic but
simple description of the evolution of the produced medium.
Landau hydrodynamics furnishes such a tool for this purpose.

Recent successes of Landau hydrodynamics in explaining
the rapidity distribution, total charged multiplicities, and lim-
iting fragmentation [1–3] indicate that it contains promising
degrees of freedom. Questions are, however, raised concerning
the use of pseudorapidity or rapidity variables, the Gaussian
form or the square-root exponential form of the rapidity
distribution, and the values of the parameters in the rapidity
distribution.

We start with the rapidity variable from the outset so that
we do not need to worry about the question of the rapidity
or the pseudorapidity variable. We follow the formulation of
the Landau hydrodynamics by keeping careful track of the
numerical constants that enter into the derivation. We confirm
Landau’s central results except that the approximate rapidity
distribution obtained by Landau needs to be modified, when
all numerical factors are carefully tracked. In particular, the
rapidity distribution in the center-of-mass system should be
more appropriately given as dN/dy ∝ exp{

√
y2

b − y2}, where
yb is the beam nucleon rapidity, instead of the Landau original
result of dN/dy(Landau) ∝ exp{

√
L2 − y2}. The modified

distribution leads to a better description of the experimental
data and thereby supports the approximate validity of Landau
hydrodynamics as a description of the evolution of the
produced bulk matter.

The modified distribution differs only slightly from
the Gaussian distribution dN/dy(Gaussian) ∝ exp{−y2/2L},
which has been used successfully and extensively in the
literature [1–3,11]. This explains the puzzle we mention in the
Introduction. Even though the Gaussian Landau distribution
(1.1) is conceived as an approximate representation of the
original Landau distribution (1.3) for the region of small
rapidity with |y| � L, it differs from the original Landau
distribution in other rapidity regions. The Gaussian distribution
has been successfully used to explain experimental rapidity
distribution data [1–3], not because it is an approximation of
the original Landau distribution (1.3), but because it is in fact a
good representation of the modified Landau distribution (6.12)
that derives its support from a careful reexamination of Landau
hydrodynamics. Thus, there is now a firmer theoretical support
for the Gaussian distribution (1.1) owing to its similarity to the
modified distribution of Eq. (6.12).

The need to modify Landau’s original distribution should
not come as a surprise, as the original Landau distribution was
intended to be qualitative. Our desire to apply it quantitatively
therefore led to a more stringent reexamination, with the result
of the modification as we suggest. The quantitative successes
of the modified distribution in Landau hydrodynamics make
it a useful tool for many problems in high-energy heavy-ion
collisions.

Despite these successes, many problems will need to be
examined to make the Landau model an even better tool. We
have discussed the important effects of the initial configuration
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and the final freeze-out condition in Sec. X. They lead
to uncertainties that give rise to a logarithmic correction
parameter ζ with a magnitude much smaller than yb. How
the small correction ζ varies with the collision energy is a
subject worthy of further investigations. We can also outline a
few others that will need our attention. The distribution so far
deals with flow rapidity of the fluid elements, and the thermal
distribution of the particles inside the fluid element has not
been included. The folding of the thermal distribution of the
particles will broaden the rapidity distribution and should be
the subject of future investigations. Another improvement is
to work with a curvilinear coordinate system in the transverse
direction to obtain the transverse displacement. This will
improve the description of the matching time in the transverse
direction. One may wish to explore other forms of the freeze-
out condition instead of Landau’s transverse displacement
condition to see how sensitively the results can depend on the

freeze-out condition. Finally, as the approximate solution for
the one-dimensional longitudinal expansion is also available,
it may also be of interest to see how much improvement there
can be in obtaining the matching time estimates that enter into
the rapidity freeze-out condition.
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