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New calculation method of neutron kerma coefficients for carbon and oxygen below 30 MeV
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On the basis of the statistical theory of a neutron-induced light nucleus reaction, a new kerma coefficient
calculation formula, expressed as k� = N

∑
ijk Eijk(En)σijk(En), is developed in this paper. In an analysis of

the n + 12C and n + 16O reactions below 30 MeV, the average energies Eijk of emitted particles of all kinds
in the laboratory frame are derived in detail for different channels, allowing an exact energy balance. The
optical model parameters of neutron and charged particles, which had reproduced very well the outgoing neutron
double-differential cross sections in our early works, are used to obtain the cross sections σijk . The calculated
partial, elastic recoil, and total kerma coefficients for carbon and oxygen are consistent with existing experimental
kerma coefficient data. The elastic cross sections and the first Legendre coefficients of elastic angular distribution
derived from EBDF/B-VIIb3 are used in this paper to improve significantly the elastic recoil and total kerma
coefficients.
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I. INTRODUCTION

Some biologically important elements, such as carbon
and oxygen, are the main constituents of tissues and tissue
substitutes. Reactions of fast neutrons with carbon and
oxygen that lead to charged-particle emission have great
importance in neutron dosimetry, biological effectiveness
of neutron irradiations, and neutron heating of carbon- or
oxygen-containing materials in fission and conceptual fusion
reactors. The key response function for heating is the kerma
coefficient. Here, kerma K (an acronym for kinetic energy
released in matter) describes the transfer of energy from
indirectly ionizing radiation into kinetic energy of charged
particles, and the kerma coefficient represents the subsequent
interaction of these charged particles with matter depositing
energy by ionization and excitation, i.e., the energy deposited
per unit mass [1]. The neutron kerma coefficients of carbon and
oxygen are needed in the determination of radiation shielding
requirements for radiation protection purposes, optimization
of dose delivery to a treatment volume, decisions on biological
effectiveness of different therapy beams, etc.

Two independent methods are used to derive experimental
neutron kerma coefficients. The first method is based on
dosimetric methods to determine kerma K , which is closely
related to absorbed dose D, and the measurement of � (the
number of neutrons per unit area). The ratio of the two
quantities gives the total kerma coefficient k� according to
its definition k� = K/� ≈ D/� [1]. This direct measure-
ment of kerma coefficients is difficult, and the measured
values are available only for a few elements and neutron
energies. Moreover, such measurements require total particle
equilibrium in the studied volume and necessitate significant
corrections [2]. The second method uses experimental cross
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sections, which requires information on all significant reaction
channels, including angular and/or energy distribution and
energy-angle distribution of secondary particle. For a given
energy of incident neutron En and target nuclide, the kerma
coefficient is given by [3]

k�(En) = N
∑

i

∫
E

∫
d2σi(En)

d�dE
d�dE. (1)

The coefficient N = 9.64853/MA, where MA is the atomic
mass of the target in units of u, converts the kerma coefficient
from units of MeV b to S.I. units of fGy m2. E is the energy
of ejectile i, and d2σi(En)/d�/dE is the double-differential
cross section of ejectile i at incident neutron energy En.
Unfortunately, below 30 MeV, the double-differential cross
sections of the ejectile, even including the neutron, are
sparse for carbon and oxygen. So the experimental kerma
coefficients for these important nuclides are obtained from
the experimental energy-differential cross sections according
to the formula [4,5]

k� = N
∑

i

(
dσ

dE

)
i

Ei �Ei, (2)

where Ei is the centroid of the energy bins of width �Ei , and
(dσ/dE)i is the energy-differential cross section for ejectile i.

Evaluation kerma coefficients below 20 MeV were derived
from ENDF/B-VI format libraries using such data process-
ing codes as NJOY [6], MAZE [7], and MCNP [8]. These
codes take advantage of the fact that many evaluations give
explicit energy distributions for the emitted neutrons and
photons. The energies needed for the kerma coefficient can
be obtained by subtracting the average emitted energies of
the neutrons and photons from the available energy. The
limitation using data processing codes on the accuracy of the
neutron kerma calculation is determined by the availability and
accuracy of the evaluation libraries. The information on all
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charged-particle emission cross sections in the well-known
libraries, such as ENDF/B-VIIb3, JENDL-3.3, etc., and their
earlier versions, is incomplete. For example, the outgoing neu-
tron double-differential cross sections, which are related to the
charged-particle emission, were not given in ENDF/B-VIIb3
and JENDL-3.3 for carbon below 20 MeV. The energy-angle
spectra of oxygen from ENDF/B-VIIb3 were only determined
by an isotropic method. This problem originates from two
sources. First, the evaluations were generally produced for
applications in neutron transport, and energy deposition was
not a primary concern, leading sometimes to several charged-
particle cross sections being lumped into a single cross section.
This would faintly affect neutron transport but could give
significantly incorrect values of the kerma coefficient. Second,
the emission mechanism for neutron-induced light nuclear
reactions, in which all the emitted particles proceed between
discrete levels, is very complex, and the strong recoil effect
must be strictly taken into account.

For neutron energies above 20 MeV, kerma coefficients
are obtained directly from the cross sections in the laboratory
frame calculated by a theory model code such as GNASH [9].
Partial kerma coefficients for each type of secondary charged
particle are determined using [9]

ki
� = Nεiσ

prod
i , (3)

where ki
� is the partial kerma coefficient of ejectile type i, σ

prod
i

is the inclusive production cross section of ejectile i expressed
in barns, and εi is the average energy of ejectile i expressed in
MeV. The terms in formula (3) have incomplete information
on the parameters below 30 MeV, for example, the different
channel, the levels of the residual nuclide, and so on. In
analyzing the reaction mechanism, one can see that there are
many accessible reaction channels for carbon and oxygen in
this energy region, as listed in Sec. III.

Based on the unified Hauser-Feshbach and exciton model, a
statistical theory of neutron-induced light nucleus reaction was
proposed in 1999 [10]. The key point of this statistical theory is
that it properly takes into account the conservation of energy,
angular momentum, and parity in the emissions from the
discrete levels of the compound nucleus to the discrete levels
of the residual nuclei with the preequilibrium mechanism,
which dominates the reaction processes in neutron-induced
light nucleus reactions. Obviously, if the parity and angular
momentum effects are not considered, the theory would
be reduced to the exciton model [11]; whereas if the pre-
equilibrium effect is omitted, it is reduced to the Hauser-
Feshbach model [12]. With the more accurate detection of the
level schemes of light nuclei [13,14] and the intensive studies
of the various emission mechanisms for neutron-induced
different light nucleus reactions, the theoretical results of
the neutron double-differential cross sections for different
targets were gradually improved over the past decade, for
example, for 6Li [15], 7Li [16], 10B [17], 11B [18], 12C [19],
14N [20], 16O [21], and 19F [22]. The detailed description of this
statistical theory is given in Ref. [23]. For neutron interactions
with tissue, water, and tissue substitutes, carbon and oxygen
are the most important elements besides hydrogen. In this
paper, a new calculation method is developed to obtain the

neutron kerma coefficients of carbon and oxygen on the basis
of this statistical theory. These calculated values, including
all type of charged-particle partial kerma coefficients, elastic
recoil and total kerma coefficients, agree well with the existing
measurements.

This paper proceeds as follows. In Sec. II, the formula
used to determine the total and/or partial kerma coefficients
is described. In Sec. III, we list all accessible channels below
30 MeV and energy expressions carried by emitted particles
for n + 12C and n + 16O reactions. Our calculated results for
carbon and oxygen are given in Sec. IV and further discussions
are presented in the last section. The statistical theory of
neutron-induced light nucleus reactions is also introduced
succinctly in Appendix A, and the relative formulas are derived
in detail for different particle emissions in Appendix B.

II. FORMULA FOR KERMA COEFFICIENTS

The total kerma coefficient for a given neutron incident
energy En is partitioned into the partial contributions from the
light (A � 6) charged particles, the nonelastic recoils (A > 6),
and the elastic recoils. For a given target nuclide, the total
kerma coefficient is given by

k� =
∑

i

ki
� = N

∑
ijk

Eijk(En)σijk(En), (4)

where Eijk and σijk are the average energy (expressed in MeV)
and the production cross section (in barns) in the laboratory
frame, respectively. Here, i denotes the type of charged particle
including light charged particles and recoils, j denotes the type
of reaction channels, and k indicates the excitation energy
level of the residual nucleus which can emit the secondary
and/or third particle, or proceed via two-body separation, or
carry out γ decay. The coefficient N is identical with the
value of formulas (1)–(3). Obviously, the terms in formula (4)
contain more comprehensive parameter information than those
in formula (3).

For nonelastic processes of neutron-induced light nucleus
reaction, the LUNF code [10] was used to calculate the cross
sections of different channels (including elastic and inelastic
channels), angular distributions, and the double-differential
cross sections. This code treats neutron-induced light nucleus
reactions as proceeding through an initial preequilibrium
emission mechanism between discrete levels, followed by
a process of sequential particle emission from decaying
compound nuclei, until the final residual nucleus attains
its ground state via γ -ray emission. The dynamics of this
statistical theory is introduced succinctly in Appendix A.

The phenomenological spherical optical potential is em-
ployed in the model calculation. Two new sets of neutron
optical potential parameters for carbon and oxygen are
adjusted by the APMN code [24], which takes the level schemes
of target and residual nuclei as the input parameters and can
automatically search the optimal optical potential parameters
to fairly fit the variously measured cross sections, such as
the total cross section, elastic and inelastic scattering cross
section, elastic scattering angular distributions, and nonelastic
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scattering cross section. This adjustment procedure is different
from the calculation of cross sections in Ref. [9] for light
elements. The total outgoing neutron double-differential cross
sections calculated by the LUNF code agree fairly well with
the measurements in our earlier works for carbon and oxygen
elements [19,21]. Therefore, the optical potential parameters
of the charged particles (A < 6) for n + 12C and n + 16O in this
paper are obtained by the LUNF code. It should be mentioned
that the optical model calculation cannot reproduce the specific
structures of elastic, inelastic, and total cross sections in the
low incident energy region, but it can show reasonably their
tendencies, especially in higher energy region, as mentioned
in Sec. VIII of Ref. [10].

III. REACTION CHANNEL ANALYSIS AND ENERGY
EXPRESSIONS

A. For the n + 12C reaction

The binding energy B can be expressed as

Bi = �mi + �Mi − �Mi−1, (5)

where �mi and �Mi are the mass excesses of the ith emitted
particle and its residual nucleus (�M0 is the mass excess of
compound nucleus), respectively. The reaction energy is given
as

Q = �mn + �mT −
imax∑
i

�mi − �Mimax, (6)

where �mn and �MT are the mass excesses of the neutron
and target nucleus, respectively, and �Mimax is the mass excess
of the last residual nucleus. In this paper, the mass excesses of
all kinds of particles and nuclides are derived from Ref. [25].
Therefore, the threshold energy of the different channels is
given as

Eth = max

{
0,−MC

MT

Q

}
, (7)

where MC is the mass of the compound nucleus, and MT is the
mass of the target nucleus. Here, function max{x1, x2} = x1 if
x1 > x2; otherwise, max{x1, x2} = x2.

In terms of formulas (5)–(7), the information for the
n + 12C reaction channels is listed in detail in Table I, at
incident neutron energy En up to 30 MeV. After considering
the effect of the Coulomb barrier, the channels at 25 < Eth <

30 MeV are omitted, because their cross sections are too small
to be measured.

Based on the unified Hauser-Feshbach and exciton model,
the statistical theory of the neutron-induced light nucleus
reaction was developed by Zhang JingShang et al. (see
Appendix A). The average energies carried by each type
of outgoing particle from various residual nucleus levels
in different reaction channels can be obtained in analytical
expressions (see Appendix B), and the energy balance is
held exactly. For convenience, we reexpress some formulas
[Eqs. (9)–(18) as follows] derived from Ref. [10].

TABLE I. Accessible reaction channels, binding energy B, Q

value, and threshold energy Eth for the n + 12C reaction at En �
30 MeV. The unit of B, Q, and Eth is MeV. Note: the (n, n′) channel
includes the elastic scattering channel (Eth = 0.0).

No. Channel B Q Eth

1 (n, γ ) 0.000 4.946 0.000
2 (n, n′) 4.946 0.000 4.439
3 (n, p) 17.533 −12.587 13.645
4 (n, α) 10.646 −5.700 6.179
5 (n, d) 18.679 −13.733 14.887
6 (n, t) 23.875 −18.929 20.520
7 (n,3He) 24.413 −19.467 21.103
8 (n,5He) 13.206 −8.260 8.954
9 (n,6Li) 25.867 −20.921 22.680

10 (n, 2n) 18.721 −18.721 20.295
11 (n, np) 15.957 −15.957 17.298
12 (n, nα) 7.365 −7.365 7.984
13 (n, pn) 3.370 −15.957 17.298
14 (n, pα) 10.000 −22.587 24.486
15 (n, αn) 1.665 −7.365 7.984
16 (n, αp) 16.887 −22.587 24.486
17 (n, 2α) 2.467 −8.167 8.854
18 (n, αd) 16.696 −22.396 24.279
19 (n, dα) 8.663 −22.396 24.279

For the (n, γ ) channel, the average recoil kinetic energy
EMC

of the compound nucleus in the laboratory frame released
by γ decay is expressed as

EMC
= En + Bn − Ek, (8)

where MC and mn are the masses of the compound nucleus
and incident neutron, respectively, and Ek is the kth discrete
level energy of compound. In terms of formula (4), the partial
kerma coefficients of the (n, γ ) reaction channel can be easily
calculated. However, the cross section of the (n, γ ) is too small
(<0.3 mb below 30 MeV incident neutron energy) to consider
its contribution.

For (n, n), (n, n′), (n, p), (n, α), (n, d), (n, t), (n,3 He),
and (n,6Li) reaction channels listed in Table I, the average
energies carried by the first emitted particle and its residual
nucleus in the laboratory frame are given by

Em1 = mnm1

M2
C

En + E
m1
c,K1

+ 2

√
mnm1EnE

m1
c,K1

MC

f
m1
1 , (9)

and

EM1 = mnM1

M2
C

En + E
M1
c,K1

+ 2

√
mnM1EnE

M1
c,K1

MC

f
M1
1 . (10)

Where, m1 and M1 are masses of the first emitted particle and
its residual nucleus, respectively. Em1

c,k1
and E

M1
c,k1

, expressed as

E
m1
c,k1

= M1

MC

(
E∗ − B1 − Ek1

)
,

(11)
E

M1
c,k1

= m1

MC

(
E∗ − B1 − Ek1

)
,
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are the energies carried by the first emitted particle m1 and its
residual nucleus M1 in the center-of-mass frame, where E∗
is the excitation energy of compound nucleus, Ek1 is the k1th
level energy of M1, and B1 is the binding energy of the m1

particle in the compound nucleus (see Appendix B1). Here,
the angular distributions of a single outgoing particle and its
residual nucleus are presented as a Legendre polynomial series
in the center-of-mass frame, i.e.,

dσ

d�
m1(M1)
c

=
∑

l

2l + 1

4π
f

m1(M1)
l Pl

(
cos θm1(M1)

c

)
. (12)

This expression is recommended by IAEA Nuclear Data
Services as standard ENDF-6 formats, as shown in Sec. IV
of Ref. [26]. The first-order Legendre expansion coefficients
f

m1
1 and f

M1
1 (= −f

m1
1 ) of the first emitted particle and its

corresponding residual nucleus can be obtained by the linear
momentum dependent exciton state density model for an
outgoing single nucleon [27] and by the pickup method for
composite particle emissions [28].

When the secondary particle m2 is emitted from M1 of
energy level Ek1 , such as the channels from the 10th to the
19th listed in Table I, the average energy carried by the first
emitted particle is obtained by Eq. (9). The average energies
carried by m2 and its residual nucleus M2 are obtained by

Em2 = mnm2

M2
C

En + E
m2
c,k2

− 2m2

M1MC

√
mnm1EnE

m1
c,k1

f
m1
1 , (13)

and

EM2 = mnM2

M2
C

En + E
M2
c,k2

− 2M2

M1MC

√
mnm1EnE

m1
c,k1

f
m1
1 .

(14)

Here, E
m2
c,k2

and E
M2
c,k2

, expressed as

E
m2
c,k2

= M2

M1

(
Ek1 − B2 − Ek2

) + m2

M1
E

M1
c,k1

,

(15)

E
M2
c,k2

= m2

M1

(
Ek1 − B2 − Ek2

) + M2

M1
E

M1
c,k1

,

are the energies carried by the secondary emitted particle m2

and its residual nucleus M2 from energy level Ek1 in the center-
of-mass frame. Ek2 is the k2th energy level of the residual
nucleus M2, and B2 is binding energy of the m2 particle in the
residual nucleus M1 (see Appendix B2).

In the case of the (n, nα) and (n, 2α) channels for the n +
12C reaction, the residual nuclei 8Be and 5He are very unstable
and proceed spontaneously via two-body separation into m3

and M3 from the Ek2 level; for example, 8Be→ α + α and
5He→ n + α. The average energies of m1 and m2 expressed
as Eqs. (9) and (13), and the average energies carried by two
fraction particles (m3 and M3) in the laboratory frame can be
obtained analytically by

Em3 = mnm3

M2
C

En + Em3
c − 2m3

M1MC

√
mnm1EnE

m1
c,k1

f
m1
1 , (16)

and

EM3 = mnM3

M2
C

En + EM3
c − 2M3

M1MC

√
mnm1EnE

m1
c,k1

f
m1
1 . (17)

Where m3 and M3 are masses of two clusters separated
from M2 at the Ek2 level, respectively. Here, Em3

c and EM3
c ,

expressed as

Em3
c = M3

M2
(Ek2 + Q) + m2m3

M1M2

(
Ek1 − B2 − Ek2

)
+ m3m1

M1MC

(
E∗ − B1 − Ek1

)
,

EM3
c = m3

M2

(
Ek2 + Q

) + m2M3

M1M2

(
Ek1 − B2 − Ek2

)
+ M3m1

M1MC

(
E∗ − B1 − Ek1

)
, (18)

are the energies carried by two clusters separated with the Q

value in the center-of-mass frame (see Appendix B3).
For the 12C(n,5He)8Be channel, the 5He nucleus (denoted

by m1) separates spontaneously into ma and mb with Q2 =
0.894 MeV, and 8Be (denoted by M1) also does so into Ma

and Mb with Q3 = 0.092 MeV. The average energies carried
by those four separate particles in the laboratory frame are
expressed as

Ema
= mnma

M2
C

En + Ema

c − 2ma

m1MC

√
mnM1EnE

M1
c,k1

f
M1
1 , (19)

Emb
= mnmb

M2
C

En + Emb

c − 2mb

m1MC

√
mnM1EnE

M1
c,k1

f
M1
1 , (20)

EMa
= mnMa

M2
C

En + EMa

c − 2Ma

M1MC

√
mnm1EnE

m1
c,k1

f
m1
1 , (21)

and

EMb
= mnMb

M2
C

En + EMb

c − 2Mb

M1MC

√
mnm1EnE

m1
c,k1

f
m1
1 , (22)

where

Ema

c = mb

m1

(
Ek1(m1) + Q2

) + ma

m1
E

m1
c,k1

,

Emb

c = ma

m1

(
Ek1(m1) + Q2

) + mb

m1
E

m1
c,k1

,

(23)

EMa

c = Mb

M1

(
Ek1(M1) + Q3

) + Ma

M1
E

M1
c,k1

,

EMb

c = Ma

M1

(
Ek1(M1) + Q3

) + Mb

M1
E

M1
c,k1

,

are the energies carried by ma,mb,Ma, and Mb in the center-
of-mass frame, respectively. Ek1(m1,M1) is the k1th energy level
of m1 or M1 (see Appendix B2).

B. For the n + 16O reaction

The information on the n + 16O reactions is listed in detail
in Table II, at incident neutron energy En up to 30 MeV. For
the reaction channels from the 1st to the 17th (except the 8th
channel), the average energies carried by the emitted particles
and their residual nuclei are in accord with the expressions
given above from Eqs. (8)–(15). For the 18th–21st channels,
the average energies in the laboratory frame carried by the
third emitted particle m3 and their residual nuclei M3 are

054610-4



NEW CALCULATION METHOD OF NEUTRON KERMA . . . PHYSICAL REVIEW C 78, 054610 (2008)

TABLE II. Same as Table I, but for the n + 16O reaction
at En � 30 MeV. Note: the (n, n′) channel includes the elastic
scattering channel (Eth = 0.0).

No. Channel B Q Eth

1 (n, γ ) 0.000 4.143 0.000
2 (n, n′) 4.143 0.000 6.050
3 (n, p) 13.780 −9.637 10.245
4 (n, α) 6.358 −2.215 2.355
5 (n, d) 14.046 −9.903 10.528
6 (n, t) 18.622 −14.479 15.392
7 (n,3He) 18.760 −14.617 15.539
8 (n,5He) 12.199 −8.056 8.564
9 (n,6Li) 23.561 −19.42 20.644

10 (n, 2n) 15.663 −15.663 16.651
11 (n, np) 12.127 −12.127 12.892
12 (n, nα) 7.161 −7.161 7.613
13 (n, nd) 20.736 −20.736 22.044
14 (n, pn) 2.490 −12.127 12.892
15 (n, αn) 4.946 −7.161 7.613
16 (n, 2α) 10.646 −12.861 13.672
17 (n, dn) 10.833 −20.736 22.044
18 (n, 2np) 7.297 −22.960 24.408
19 (n, npn) 10.833 −22.960 24.408
20 (n, p2n) 10.833 −22.960 24.408
21 (n, n2α) 1.665 −14.526 15.442

expressed as

Em3 = mnm3

M2
C

En + M3

M2

(
Ek2 − B3 − Ek3

) + m3

M2
E

M2
c,k2

− 2m3

MCM1

√
mnEnM1E

M1
c,k1

f
m1
1 , (24)

and

EM3 = mnM3

M2
C

En + m3

M2

(
Ek2 − B3 − Ek3

) + M3

M2
E

M2
c,k2

− 2M3

MCM1

√
mnEnM1E

M1
c,k1

f
m1
1 . (25)

The energies of m3 and M3 can be expressed in the center-of-
mass frame as

E
m3
c,k3

= M3

M2

(
Ek2 − B3 − Ek3

) + m3

M2
E

M2
c,k2

,

(26)

E
M3
c,k3

= m3

M2

(
Ek2 − B3 − Ek3

) + M3

M2
E

M2
c,k2

,

where Ek3 is the k3th energy level of the residual nucleus M3,
and B3 is the bounding energy of m3 in residual nucleus M2.
E

M1
c,k1

and E
M2
c,k2

are expressed as Eqs. (11) and (15), respectively
(see Appendix B3).

A special case is the residual nucleus 8Be in the reaction
channel (n, n2α) which decays via two-body separation into
two α particles with Q3 = 0.092 MeV as mentioned above in
the case of the Ek3 energy level. Here, the average energies
carried by two α particles (denoted by m4) can be expressed

as (see Appendix B3)

Em4 = mnm4

M2
C

En + m4

M3

(
Ek3 + Q3

) + m4

M3
E

M3
c,k3

− 2m4

MCM1

√
mnEnM1E

M1
c,k1

f
m1
1 . (27)

For the (n,5He) channel, the first emitted particle is 5He,
which can separate spontaneously into a neutron and an α

particle with Q2 = 0.894 MeV. If the excited energy level of
the residual nucleus 12C is too low to emit any particle, this
decay contributes to the (n, nα) channel. The average energies
in the laboratory frame carried by emitted particles can be
obtained from Eqs. (19) and (20). If the energy level of the
excited residual 12C is high enough to emit an α particle,
this decay belongs with the (n, n2α) channel, and the average
energies in the laboratory frame carried by all emitted particles
can be obtained from Eqs. (24) and (27).

Obviously, the total energy through sequential emission
reads in the laboratory frame as

Etotal =
imax∑
i

Emi
+ EMimax

+ Ekimax
= En + Bn −

imax∑
i

Bi,

(28)

where Emi
is the average energy carried by the ith ejectile, and

EMimax
is the average energy carried by the last residual nucleus.

Therefore, the energy balance holds exactly. For two-body
separation, Q = −B, and the energy balance again holds.

IV. RESULTS

A. Partial kerma coefficients

The partial kerma coefficients of the various secondary
charged particles below 30 MeV according to formula (4)
for carbon and oxygen are given in Figs. 1 and 2, respectively.
The calculations of this paper describe well the experimental
and extrapolated kerma coefficients for α, proton, deuteron,
and tritium. Unfortunately, the experimental partial kerma
coefficients are too sparse below 30 MeV. Experimental data
(open triangles) of Ref. [31] at 27.4 MeV are not corrected
for the contributions from the ejectile energies below the
experimental low-energy cuts in the measured spectra, as
mentioned in Ref. [4]. Therefore, the extrapolated partial
kerma coefficients (full dots) down to the thresholds are
experimental in the sense that no theoretical concept was used
in their determination [4].

Figures 1 and 2 show that the α-particle contribution to the
total kerma coefficients is dominated by the large α-particle
production cross sections for both carbon and oxygen below
30 MeV. The proton contribution to the total kerma coefficients
increases with neutron incident energy. The present calculated
results (continuous line) in the energy range from threshold to
30 MeV are compared with the values (dashed line) evaluated
by Chadwick [9] only from 20 to 30 MeV for α, proton, and
deuteron. The results of tritium, 3He, and 6Li are provided,
too, in Figs. 1 and 2, although their contributions to the total
kerma coefficients are small.
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FIG. 1. Partial kerma coefficients of this work (continuous line)
for carbon vs the neutron energies for α, proton, deuteron, tritium,
3He, and 6Li. Experimental data (see legend) are derived from
Refs. [4,29–31], and the extrapolated data are from Ref. [4].
Theoretical calculations of Ref. [9] are also shown (dashed line).

B. Elastic recoil kerma coefficients

In terms of formulas (4), (10), and (11), where m1 and M1

are the masses of neutron and target nucleus, the elastic recoil
kerma coefficients are expressed easily as

kel
� = N

2m0M1En

M2
0

(
1 − f

m1
1

)
σel, (29)

where σel is the elastic cross section, and f
m1
1 is the first

Legendre coefficient of elastic angular distribution. The optical
model calculation can obtain the cross section of the total and
elastic scattering as a smooth curve only, but the experimental
and evaluated cross sections show a lot of structure. So the

FIG. 2. Same as Fig. 1, but for oxygen.

elastic cross sections σel and their first Legendre coefficient
f

m1
1 in formula (29) were derived from EBDF/B-VII-b3, in

which the elastic cross sections and the elastic angular distri-
butions agree very well with the experimental data. It should
be noted that the elastic angular distribution (MF = 4, MT =
2) for carbon is tabulated in EBDF/B-VIIb3 at high incident
energy range (>20 MeV), so their first Legendre coefficients
in this paper at high neutron energy (20–30 MeV) are obtained
by fitting the elastic angular distribution experimental data.
The elastic recoil kerma coefficients calculated according
to formula (29) (continuous line) are shown in Fig. 3 for
carbon and oxygen. The calculated results of this paper are
in good agreement with the experimental data. The elastic
recoil kerma coefficients at low neutron energies (<20 MeV)
show variations corresponding to resonances in the elastic
cross section. However, the elastic recoil kerma coefficients
decrease slowly with incident neutron energy, because the
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FIG. 3. Elastic recoil kerma coefficients of this work (continuous
line) for carbon and oxygen vs neutron energies. Theoretical
calculations of Ref. [9] are shown (dash line). In the carbon panel,
the experimental data shown as full squares were compiled by Slypen
in Table 3 of Ref. [32], and other experimental data (see legend) are
derived from Refs. [4,32–34], the extrapolated elastic recoil data
are from Ref. [4]. In the oxygen panel, the experimental data are
derived from Refs. [4,33], and the extrapolated elastic recoil data are
again from Ref. [4].

elastic angular distribution becomes more forward peaked and
the elastic scattering cross section decreases at high energies
(>20 MeV). In Fig. 3, the model calculation (dashed line)
of Ref. [9] is shown only for the neutron energy region of
20–30 MeV.

C. Total kerma coefficients

The calculated total kerma coefficients of this work (full
line) and the experimental data for carbon and oxygen are
given in Figs. 4 and 5, respectively, below 30 MeV. The
comparisons between the model calculation of this work and
the result (dashed line) derived from Table II of Ref. [9],
which is obtained by the NJOY data processing code, are also
shown. The results of this work and Ref. [9] are generally
in quite good agreement with the measurements. Though the
spread in the measured values is large, the deviations between
the calculations and measurements are generally within the
uncertainties of the kerma coefficients. As shown in Fig. 4,

FIG. 4. Total kerma coefficients for carbon vs neutron energies.
The experimental data shown as full squares were compiled by
Broerse in Ref. [35], and the other experimental data (open squares,
full dots) are derived from Refs. [2,4], respectively. The evaluated
results of Ref. [9] are shown as the dashed line.

there is some discrepancy between the calculation of this work
and the results of Ref. [9] from 8 to 15 MeV and below 3 MeV.
The results of this work seem more reasonable for carbon. In
the ENDF/B-VIIb3 library, the inelastic scattering channel
corresponding to γ -ray excited levels of 12C are included
MT = 51–57 (real levels), MT = 58–62 (pseudo levels), and
MT = 91 (continuous state level). In this model calculation,
only the first two excited levels of 12C purely belong to the
inelastic scattering channel, and the α emission and γ decay
from the third excited level competes with each other. All the
residual nucleus states are discrete levels with no continuum.

However, as shown in Fig. 5 for oxygen, the present work
underestimates the total kerma coefficients in the 6–20 MeV
region of neutron energy, and overestimates them above
20 MeV. The evaluation of Ref. [9] gets opposite results
compared to this work in the above two regions. We think
that the discrepancies between this work and Ref. [9] are

FIG. 5. Total kerma coefficients for oxygen vs neutron energies.
The compiled experimental data are from Broerse [35]. The three
Schrewe experimental data sets (see legend) are derived from different
oxides in Ref. [2], and the residual data (full dots) are from Ref. [4].
The evaluated results of Ref. [9] are also shown (dashed line).
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attributable to the different way of processing the inelastic
scattering channel. In the ENDF/B-VIIb3 library (this new
version for oxygen has some improvement on inelastic
scattering vs earlier versions, such as ENDF/B-VI and so
on), the inelastic reaction channel corresponding to γ -emitting
excited levels of 16O are included MT = 51–57 (the 1st–5th,
9th, and 10th excited levels) and MT = 91 (continuous state
level). The 6th–8th excited levels are omitted because they
decay primarily by α-particle emission, therefore those data
are included in the (n, α) channel. The result of MT = 91 based
on GNASH calculations from threshold to 30 MeV is adjusted
such that the difference between total and nonelastic cross
sections agrees with elastic cross section measurements. In
this work, the pure inelastic scattering channel corresponding
to γ -emitting excited levels include the 1st–5th, 9th, 10th,
and 12th excited levels. The 6th–8th, 11th, and 13th–17th
excited levels can emit an α, therefore their contributions
are included in the (n, nα) channel. The 18th excited level
can emit a proton and contribute to the (n, np) channel.
The 19th and higher excited levels can emit several light
particles, including neutron, proton, α, deuteron, and tritium,
so their contributions belong in the (n, 2n), (n, np), (n, nd),
and (n, nα) channels, respectively. The discrepancies between
the model calculations and the experimental data indicate that
the way of processing inelastic channels must be improved
further in detail.

V. SUMMARY

A new calculation formula for the kerma coefficient, based
on the statistical theory of neutron-induced light nucleus
reactions, has been developed in this paper. For n + 12C
and n + 16O reactions, the channels are analyzed below 30
MeV and the recoil effects are exactly taken into account in
all reaction processes. The optical model parameters of the
neutron and all emitted particles, which can reproduce very
well the outgoing neutron double-differential cross sections,
are adopted for n + 12C and n + 16O reactions. Two new sets
of partial, elastic recoil, and total kerma coefficients for carbon
and oxygen calculated according to Eq. (4) are consistent with
existing experimental kerma coefficient data. To reproduce
the resonant structure of elastic recoil kerma coefficients, the
elastic cross sections and their first Legendre coefficients are
derived from EBDF/B-VIIb3. The discrepancies of the total
kerma coefficients between the experimental data and the
evaluation results for oxygen have been further discussed, and
we will attempt to improve them in the future. Furthermore,
a more extensive region of incident neutron energy will be
studied in the future, and the kerma coefficients of some
radiobiologically important substances will be deduced.
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APPENDIX A: DYNAMICS OF THE NEUTRON-INDUCED
LIGHT NUCLEUS REACTION

For light target elements that have few nucleons, statis-
tical equilibrium is unlikely to be attained below 30 MeV
through multiple collisions before particle emission. Hence
the preequilibrium reaction mechanism dominates the reaction
processes. Furthermore, the corresponding residual nuclides
always end up in discrete levels after particle emission.
These discrete levels have individual spins and parities which
effect different particle emissions. To deal with the above
problems, an attempt at describing the neutron-induced light
nucleus reaction [10] was carried out with the united Hauser-
Feshbach and exciton model [36]. Fortunately, these efforts
were successful. The statistical theory of neutron-induced light
nucleus reaction has been developed, and the outgoing neutron
double-differential cross section can be reproduced very well
with the experimental data for such different targets as 6Li [15],
7Li [16], 10B [17], 11B [18], 12C [19], 14N [20], 16O [21], and
19F [22].

In terms of this statistical theory, the energy spectrum,
angular distribution, and double-differential cross section can
be analytically expressed after considering the conservation
of energy, angular momentum, and parity in the emission
processes from the discrete levels of the compound nucleus
to the discrete levels of the residual nuclei. For example, the
formula for the energy spectrum reads as follows [36]:

dσ

dε
=

∑
jπ

σ jπ
a

∑
n

P jπ (n)
W

jπ

b (n,E∗, ε)

W
jπ

T (n,E∗)
, (A1)

where j and π represent the angular momentum and the parity,
respectively, and σ

jπ
a is the absorption cross section of the jπ

channel, derived from the phenomenological spherical optical
potential model. Wjπ

b (n,E∗, ε) is the emission rate of particle
b at the n-exciton state in the jπ channel with outgoing energy
ε. W

jπ

T (n,E∗) is the total emission rate of the n-exciton state
in the jπ channel, and E∗ stands for excitation energy. P jπ (n)
is the occupation probability at the n-exciton state in the jπ

channel. If the parity and angular momentum effects are not
considered, the theory is reduced to the exciton model [11].
Whereas if the preequilibrium effect is omitted, it is reduced
to the Hauser-Feshbach model [12].

The calculated results show that only the first few exciton
numbers (n0 = 3 or 5) must be considered in the preequilib-
rium process for a light nucleus reaction. So Eq. (A1) can be
analytically expressed as

dσ

dε
=

∑
jπ

σ jπ
a

{
n0∑

n=3

P jπ (n)
W

jπ

b (n,E∗, ε)

W
jπ

T (n,E∗)

+Qjπ W
jπ

b (E∗, ε)

W
jπ

T (E∗)

}
, (A2)

where Qjπ = 1 − ∑n0
n=3 P jπ (n) is the occupation probability

of the equilibrium state. The first term of Eq. (A2) represents
the preequilibrium emission, and the second is described by
Hauser-Feshbach theory.
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The occupation probability P jπ (n) can be obtained by
solving the jπ -dependent exciton master equation as follows
[27]:

d

dt
P jπ (n, t) = λ

jπ−
n+2 P jπ (n + 2, t) + λ

jπ+
n−2 P jπ (n − 2, t)

− [
λjπ+

n + λjπ−
n + W

jπ

T (n,E∗)
]
P jπ (n, t),

(A3)

where λ
jπ±
n stands for the internal transition rate of the

n-exciton state to the (n + 2)- and (n − 2)-exciton states in
the jπ channel. For the light nucleus reaction, while the
exciton number n is small (for example, n0 = 3), there is an
approximate expression λ

jπ+
n ≈ W

jπ

T (n) � λ
jπ−
n+2 that allows

the occupation probability P jπ (n0) to be analytically obtained,
as expressed in Ref. [27].

On the basis of the united Hauser-Feshbach and exci-
ton model, after considering emission rates of the nucleon
(neutron and proton) [37] and complex particle [28,38–40]
in equilibrium and preequilibrium states, the expressions of
the outgoing particle double-differential cross sections are
obtained formally as

d2σ

dε d�
=

∑
n

dσ (n)

dε
A(n, ε,�), (A4)

where dσ (n)/dε is the energy spectrum obtained by Eq. (A1)
or (A2), and A(n, ε,�) is the angular factor as shown in
Ref. [23] in detail for different particle emissions.

APPENDIX B: KINEMATICS OF THE NEUTRON-INDUCED
LIGHT NUCLEUS REACTION

1. Single-particle emission process

For the (n, n), (n, n′), (n, p), (n, α), (n, d), (n, t), (n,3 He),
and (n,6Li) reaction channels listed in Tables I and II, the
energies carried by the first emitted particle and its residual
nucleus in the center-of-mass frame are given by Eq. (11). So
the average energies in the laboratory frame are obtained by
averaging the angular distribution [Eq. (12)] in the center-of-
mass frame as

Em1 =
∫

1

2
m1

(−→
V

MC

c + −→
v

m1

c

)2 dσ

d�
m1
c

d�m1
c

=
∑

l

∫
1

2
m1

[(
V MC

c

)2 + (
vm1

c

)2 + 2V MC

c vm1
c cos θm1

c

]

× 2l + 1

4π
f

m1
l Pl

(
cos θm1

c

)
d�m1

c

= mnm1

M2
C

En + E
m1
c,K1

+ 2

√
mnm1EnE

m1
c,K1

MC

f
m1
1 , (B1)

where
−→
V

MC

c is the velocity of the compound mass center, and−→
v

m1

c is the velocity of the emitted particle in the center of
mass. The orthogonality of the Legendre polynomials is used
in the above operation. A similar operation is carried out for
the residual nuclide M1, and the same expression of Eq. (10)
is obtained.

2. Secondary-particle emission process

When the secondary particle m2 is emitted by M1 from
energy level Ek1 and the residual nuclide M2 stays in the
Ek2 level, such as channels 10–19 in Table I and 10–17 in
Table II, the energies carried by the secondary emitted particle
m2 and its residual nucleus M2 in the residual nuclear
coordinate system (denoted by the subscript r) are expressed
as

εm2
r = M2

M1

(
Ek1 − B2 − Ek2

)
,

(B2)
EM2

r = m2

M1

(
Ek1 − B2 − Ek2

)
.

Attention is paid to the fact that the first residual nuclide M1

is recoiling in the center-of-mass frame when it emits the
secondary particle m2. But in the residual nuclear coordinate
system, the energies of m2 and M2 are definite, as shown in
Eq. (B2).

From the velocity relation of m2 and M1 between the center-
of-mass frame and the residual nuclear coordinate system,
−→
v

m2

c = −→
V

M1

c + −→
v

m2

r ( as shown in Fig. 6), one can obtain the
angular formula and extreme energy of m2 in the center-of-
mass frame as follows:

cos � = εm2
c

/
εm2
r − 1 − γ 2

2γ
=

√
ε

m2
c

ε
m2
r

cos θ − γ, (B3)

and

εm2,max
c = εm2

r (1 + γ )2, εm2,min
c = εm2

r (1 − γ )2, (B4)

where � is the angle between
−→
v

m2

r and
−→
V

M1

c , θ is the angle be-

tween
−→
v

m2

c and
−→
V

M1

c , and γ = V
M1
c

v
m2
r

=
√

m2E
M1
c

M1ε
m2
r

is an important
quantity that embodies the influence of the recoiling nuclide on
the subsequent emission. A simple approximate method was
assumed whereby the recoiling nuclide stays stationary (i.e.,
γ = 0) in the earlier studies. Obviously, although the energy of
m2 in the residual nuclear coordinate system is single-valued,
the energy in the center-of-mass frame is continuous, i.e.,
εm2,min
c � εm2

c � εm2,max
c . So the multisequential emission must

be described by the double-differential cross section in the
center-of-mass frame.

FIG. 6. Velocity vector relation of m2 and M1 between the center-
of-mass frame and the residual nuclear coordinate system.
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In the residual nuclear coordinate system, the emitted
energy is single-valued according to Eq. (B2), so the double-
differential cross section can be approximately expressed as

d2σ

dε
m2
r d�

m2
r

= 1

4π
δ
[
εm2
c − εm2

r

(
1 + 2γ cos � + γ 2

)]
. (B5)

The double-differential cross section of the secondary emitted
particle m2 in the center-of-mass frame can be obtained by
averaging the angular distribution [Eq. (12)] of the first resid-
ual nuclide M1 through tediously complicated mathematical
calculations [10]:

d2σ

dε
m2
c d�

m2
c

=
∫

d�M1
c

dσ

d�
M1
c

√
ε

m2
c

ε
m2
r

d2σ

dε
m2
r d�

m2
r

=
∑

l

(−1)l

16πγ ε
m2
r

(2l + 1)f m1
l Pl(η)Pl

(
cos θm2

c

)
,

(B6)

where η =
√

ε
m2
r /ε

m2
c

ε
m2
c /ε

m2
r −1+γ 2

2γ
, and

√
ε

m2
c /ε

m2
r is a

Jacobian factor. Adopting the recommended format of
Ref. [26], the double-differential cross section in the center-
of-mass frame can be also expressed as

d2σ

dε
m2
c d�

m2
c

= 1

4π

∑
l

(2l + 1)f m2
l Pl

(
cos θm2

c

)
. (B7)

The Legendre coefficients of m1 and m2 are related such that

f
m2
l = (−1)l

4γ ε
m2
r

f
m1
l Pl(η). (B8)

In the center-of-mass frame, the emitted energy E
m2
c,k2

of
the secondary particle is obtained by averaging the double-
differential cross section:

E
m2
c,k2

=
∫ ε

m2 ,max
c

ε
m2 ,min
c

εm2
c

d2σ

dε
m2
c d�

m2
c

dεm2
c d�m2

c

=
∫ ε

m2 ,max
c

ε
m2 ,min
c

εm2
c f

m2
0 dεm2

c

= M2

M1
(Ek1 − B2 − Ek2 ) + m2

M1
E

M1
c,k1

. (B9)

In the laboratory frame, the secondary-particle energy Em2

can also be obtained by averaging the double-differential cross
section in the center-of-mass frame as

Em2 =
∫

1

2
m2

(−→
V

M1

c + −→
v

m2

c

)2 d2σ

dε
m2
c d�

m2
c

dεm2
c d�m2

c

= mnm2En

MC

+ E
m2
c,k2

+ 2
∫ ε

m2 ,max
c

ε
m2 ,min
c

√
mnm2Enε

m2
c

MC

f
m2
1 dεm2

c

= mnm2En

MC

+ E
m2
c,k2

− 2
m2

MC

√
mnEnE

M1
c,k1

M1
f

m1
1 .

(B10)

Using linear momentum conservation in the center-of-mass
frame, the formula M1E

M1
c,k1

= m1E
m1
c,k1

can be derived, and the
same expression between Eqs. (13) and (B10) is also easily

obtained. As shown in Eq. (B10), a third term accounts for the
recoiling effect of the residual nuclide.

The same operation for the secondary residual nuclide
M2 is carried out merely by exchanging m2 with M2 in the
above listed formulas. So formula (14) can be easily obtained,
although the process is tedious and complex.

The formulas (13) and (14), including the f
m1
1 term, show

a clear recoiling effect. However, in the center-of-mass frame,
the angular distribution of the emitted particle, described
by Hauser-Feshbach equilibrium state theory, is symmetrical
about 90◦ and there is no l = 1 partial wave [12]. The larger
the f

m1
1 , the stronger the recoil effect. This is one of the

most important features of the neutron-induced light nucleus
reaction. Certainly, it requires that enough partial waves be
included to properly describe the double-differential cross
section, but only the l = 1 partial wave can maintain energy
conservation through the statistical averaging method.

Specially, for the 12C(n,5He)8Be channel, the 5He nucleus
(denoted by m1) separates spontaneously into ma and mb with
Q2 = 0.894 MeV; and 8Be (denoted by M1) does the same,
into Ma and Mb with Q3 = 0.092 MeV. The average energy
carried by ma,b and Ma,b can be obtained through an analogous
method to that in Appendix B2.

For ma,b particles, M1 can be regarded as the first emitted
particle, and its residual nuclide is m1, which can sponta-
neously emit ma,b particles. So Eq. (B2) is substituted by the
formulas

εma

r = mb

m1
Q2, εmb

r = ma

m1
Q2. (B11)

The same straightforward operation as in Appendix B2 is
performed, and the same results as formulas (19) and (20)
are obtained.

Similarly, for Ma,b particles, m1 can be regarded as the
first emitted particle, and its residual nuclide is M1, which can
spontaneously emit Ma,b particles. So Eq. (B2) is replaced by
the formulas

εMa

r = Mb

M1
Q3, εMb

r = Ma

M1
Q3. (B12)

The same straightforward operation as in Appendix B2 is
performed, and the same results as in formulas (21) and (22)
are obtained.

3. Multisequential-particle emission process

After secondary-particle emission, the residual nuclide
M2 is unstable and can separate spontaneously [as in the
12C(n, nα)8Be and 12C(n, 2α)5He channels] or emit two
particles (such as in the 18th–21st channels in Table II).
The emitted energies of m3 and M3 in the residual nuclear
coordinate are expressed as

εm3
r = M3

M2

(
Qcluster + Ek2

)
, EM3

r = m3

M2

(
Qcluster + Ek2

)
,

(B13)

or

εm3
r = M3

M2

(
Ek2 − B3 − Ek3

)
, EM3

r = m3

M2

(
Ek2 − B3 − Ek3

)
,

(B14)
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where Qcluster is the reaction Q value of two-body separation,
and Ek3 is the level of the residual nucleus M3.

With definitions similar to those in Appendix B2, i.e.,

γ3 =
√

m3E
M2
c,k2

M2ε
m3
r

, η3 =
√

ε
m3
r

E
m3
c

Em3
c

/
εm3
r − 1 + γ 2

3

2γ3
, (B15)

where the third emitted particle energy in the center-of-mass
frame Em3

c is not a single value, because E
M2
c,k2

is not single-
valued. Thus γ3 has a region expressed as [41]

γ3,min =
√

m3E
M2,min
c,k2

M2ε
m3
r

, γ3,max =
√

m3E
M2,max
c,k2

M2ε
m3
r

. (B16)

In the center-of-mass frame, the maximal energy Em3,max
c of the

third emitted particle m3, whose direction of motion (
−→
v

m3

r ) in
the residual nuclear coordinates is the same as the initial recoil

direction of M2(
−→
V

M2

c ) in the center-of-mass frame is expressed
as

Em3,max
c = εm3

r (1 + γ3,max)2. (B17)

However, when the directions of
−→
v

m3

r and
−→
V

M2

c are opposite,
the minimal energy Em3,min

c of the third emitted particle m3 in
the center-of-mass frame has three states, i.e.,

Em3,min
c =

⎧⎪⎨
⎪⎩

εm3
r (1 − γ3,min)2 1 � γ3,min � γ3,max,

0 γ3,min � 1 � γ3,max,

εm3
r (1 − γ3,max)2 γ3,min � γ3,max � 1.

(B18)

The double-differential cross section of the third emitted
particle m3 in the center-of-mass frame can also be expressed
as

d2σ

dε
m3
c d�

m3
c

= 1

4π

∑
l

(2l + 1)f m3
l Pl

(
cos θm3

c

)
. (B19)

The same method as in Appendix B2 is used to obtain the
relation between Legendre coefficients as

f
m3
l = 1

4γ ε
m3
r

f
M2
l Pl(η3). (B20)

It is worth remembering that the E
M2
c,k2

is not a single value as

mentioned above, so the Legendre coefficient f
M2
l (EM2

c,Ek2
) is

a continuous distribution. In terms of the statistical averaging
law, the coefficient f

m3
l will be obtained by integrating

Eq. (B20)

f
m3
l =

∫ b3

a3

1

4γ ε
m3
r

f
M2
l Pl(η3) dE

M2
c,Ek2

, (B21)

where

a3 = max

{
E

M2,min
c,Ek2

,
M2

m3
εm3
r

(√
ε

m3
c

/
ε

m3
r − 1

)2
}

,

(B22)

b3 = min

{
E

M2,max
c,Ek2

,
M2

m3
εm3
r

(√
ε

m3
c

/
ε

m3
r + 1

)2
}

,

are the maximal and minimal values of E
M2
c,Ek2

, respectively.
In the center-of-mass frame, the third-particle emitted

energy Em3
c is obtained by averaging the double-differential

cross section:

Em3
c =

∫ ε
m3 ,max
c

ε
m3 ,min
c

εm3
c

d2σ

dε
m3
c d�

m3
c

dεm3
c d�m3

c

=
∫ ε

m3 ,max
c

ε
m3 ,min
c

εm3
c f

m3
0 dεm3

c = εm3
r + m3

M2
E

M2
c,k2

. (B23)

The velocity relation
−→
v

m3

c = −→
V

M2

c + −→
v

m3

r and the technique
of changing the variables of integration are adopted to obtain
the result above.

In the laboratory frame, the third-particle energy Em3 can
be also obtained by averaging the double-differential cross
section in the center-of-mass frame as follows:

Em3 =
∫

1

2
m3

(−→
V

M2

c + −→
v

m3

c

)2 d2σ

dε
m3
c d�

m3
c

dεm3
c d�m3

c

= m3mnEn

M2
C

+ Em3
c − 2

m3

MC

√
mnEnE

M1
c,k1

M1
f

m1
1 . (B24)

The same operation for the residual nuclide M3 is carried
out simply by exchanging m3 with M3 in the formulas above.
When the residual nucleus M3 can emit smaller particles or
separate spontaneously into two clusters (denoted by m4 and
M4), such as in the 16O(n, n2α)8Be channel in Table II, the
expressions for the energies of m4 and M4 in the center-of-mass
and laboratory frames can be obtained as Eq. (27) using the
above method.
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