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This paper examines a prevalent departure from the standard transition-state treatment of �n/�f , the relative
rate of disintegration of an excited nucleus by neutron emission or fission. This departure is caused by what
we believe is an erroneous treatment of shell structure corrections. According to the transition-state theory the
shell correction in the excited compound nucleus cancels out identically in the ratio �n/�f , whereas in the
deviant treatment it leads to an energy-dependent fission barrier that modifies the expression for the partial
width �f . Moreover, according to the transition-state theory, the partial width �n depends on the shell effect
in the residual nucleus that emitted the neutron, whereas in the deviant treatment this dependence is ignored.
We illustrate explicitly the magnitude of the errors that the deviant treatment of �n/�f generates in typical
nuclear reactions, errors that can reach orders of magnitude at low excitation energies. We take the opportunity
to describe an accurate algebraic method of evaluating integrals over shell-affected level densities that appear in
the transition-state theory. We also present a new derivation of Weisskopf’s nucleon evaporation formula, based
on the transition-state method rather than on the statistical principle of detailed balance used by Weisskopf. This
unifies the theoretical treatments of fission and nucleon evaporation.

DOI: 10.1103/PhysRevC.78.054604 PACS number(s): 24.10.Pa, 24.60.Dr, 24.75.+i, 25.70.Gh

I. INTRODUCTION

An important branch of nuclear physics is concerned with
estimating the disintegration rates of an excited nucleus by
one or more distinct decay modes. A typical example with
wide-ranging applications deals with estimating the ratio of the
decay rates by neutron (or other particle) emission and fission.
A statistical estimate of such ratios, based on the “transition-
state” theory of chemical reaction rates was introduced in 1939
by Bohr and Wheeler [1]. This theory has served as a starting
point for a number of refinements, but the underlying physical
framework has not changed. For some time, however, a number
of publications have appeared [2–22] in which the transition-
state formalism is applied in what seems to be a modified,
not to say erroneous, way. These are publications concerned
with shell structure corrections to integrals over nuclear level
densities that enter in the transition-state theory. A conceptual
error appears to be involved, which leads to formulas for the
ratio of neutron to fission decay rates that no longer agree with
those of the transition-state theory.

The purpose of the present paper is to rederive in a few
lines the relevant transition-state decay rate formulas, thus
identifying the aforementioned error, and to describe how
to introduce shell structure corrections in a way consistent
with that theory. We will illustrate typical deviations from
transition-state predictions that are present in a number of
recent publications. We will also describe a novel accurate
algebraic method of evaluating certain complicated integrals
over nuclear level densities, in particular those introduced by
Ignatyuk et al. to accommodate shell structure corrections [23].

In an appendix we will provide a new derivation of Weisskopf’s
nucleon evaporation formula [24] by using the transition-state
theory rather than the statistical principle of detailed balance,
thus unifying the theoretical treatments of fission and particle
emission.

We hope that our paper will help to eliminate from future
publications unjustified departures from the transition-state
theory’s description of the competition between particle
emission and fission.

II. TRANSITION-STATE THEORY

We are concerned with a physical system (be it an excited
chemical compound or an atomic nucleus) whose potential
energy considered as a function of the system’s degrees of
freedom can be approximated as a multidimensional potential
energy hollow surrounded by a mountain range that ensures
the system’s (meta)stability against disintegration. There may
be one or more saddle point passes in the mountain range,
corresponding to different modes of disintegration of the
system. The transition-state theory of disintegration rates is
based on introducing a microcanonical ensemble of ρ(E −
Vg)�E systems, where ρ(E − Vg), to be abbreviated simply
as ρ in what follows, is the level density of the system at
the excitation energy E − Vg above the system’s ground state
Vg . [We shall denote by the symbol V the potential energy of
a system’s configutation, with Vg for ground state and Vs for
saddle. The symbol V may be thought of as the configuration’s
mass (or mass excess) in energy units.] A calculation is then
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performed of the number of systems that disintegrate per unit
time. The ratio

1

t
= number of disintegrations per unit time

total number of systems [=ρ�E]
(1)

is equal to the reciprocal of the average disintegration lifetime
t , and h̄/t , where h̄ is Planck’s constant divided by 2π , is the
partial disintegration width �.

The number of disintegrations per unit time is calculated
by focusing attention on the microcanonical ensemble near
the saddle-point configuration. The total number of degrees
of freedom of the system (say n) is imagined to be split into
two sets: a single degree of freedom q in the disintegration
direction and the remaining n − 1 degrees of freedom, which,
in the terminology of chemical reaction rates, constitute the
“activated complex.” If p is the momentum conjugate to q then
the density of states in the two-dimensional phase space (p, q)
is g/h, where g is the degeneracy of the state in question (two
in the case of neutrons with spin 1/2). The number of states of
the total system with q in the interval dq, p in the interval dp,

and energy in the interval �E is then

gh−1ρs(x)�E dp dq, (2)

where ρs(x) is the level density of the activated complex at
excitation x. This excitation is given by

x = E − Vs − K, (3)

where Vs is the potential energy of the relevant saddle point
and K is the kinetic energy of the system in the disintegration
degree of freedom q. We note the relations

K = p2/2m, (4)

dK = (p dp)/m = v dp = −dx, (5)

where v is the velocity and m is the effective mass associated
with q. (The effective mass will not appear in the final rate
formula.)

The subspace (p, q) is displayed in Fig. 1. The line q = 0
corresponds to the location of the saddle point. (In the case
of neutron emission, when a well-defined saddle point does
not exist for finite q, q = 0 locates the neutron’s “point of
no return” where its interaction with the emitting nucleus has
become ineffective.) The possible values of p range from −P

p

q

P-P

q = - ∆∆∆∆ t

O

B

A p

q

P-P

q = - ∆∆∆∆ t

O
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FIG. 1. Phase space of the disintegration degree of freedom q and
its conjugate momentum p.

to +P , where

P 2/2m = E − Vs. (6)

Consider now a time interval �t . The number of represen-
tative points in the full phase space that cross the saddle point
or point of no return at q = 0 in the positive direction (and, in
the simplest version of the transition-state theory, are assumed
to lead to disintegration in the time �t) is given by ρs(x)�E

multiplied by the number of systems inside the triangle OAB
in Fig. 1, defined by 0 < p < P and 0 < q < −v�t ; thus,∫ P

0
dp

∫ 0

−v�t

dq gh−1ρs(x) �E

= gh−1�t �E

∫ P

0
dp v ρs(x)

= gh−1�t �E

∫ E−Vs

0
dx ρs(x), (7)

where we have made use of Eqs. (4)–(6).
The number of disintegrations per unit time follows by

dividing by �t , and the reciprocal of the lifetime by further
division by ρ�E. Hence the final canonical transition-state
lifetime and decay width formulas are

1/t = N/hρ, (8)

� = N/2πρ, (9)

where

N = g

∫ X

0
dx ρs(x) (10)

is the number of levels (“decay channels”) of the saddle-point
configuration in the slot of excitation energies E − Vs , which
we denote by X.

III. RATIO OF TWO DECAY WIDTHS

Consider in particular the ratio of the neutron decay width
�n to the fission decay width �f . Writing �n = Nn/2πρ and
�f = Nf /2πρ we obtain the central transition-state formula
for the ratio of two partial decay widths,

�n/�f = Nn/Nf , (11)

where Nn and Nf are the numbers of levels (decay channels) of
the two saddle configurations in the excitation energy slots E −
Vn and E − Vf , where Vn and Vf are the potential energies
of the two saddle points (or points of no return) in question.
Note that although the individual partial decay widths depend
on the compound nucleus level density ρ, in their ratio this
factor cancels out identically. Note also that if, in evaluating
Nn in Eq. (11), one were to use Eq. (10) as it stands, this
would correspond to adopting the “symmetrical” expression
for �n/�f , discussed in Ref. [25]. For the sake of clarity
we shall denote by Nn this symmetrical version and by Nn

the commonly used formula for the number of neutron decay
channels, namely,

Nn = 2gmσ

πh̄2

∫ Xn

0
dx (Xn − x) ρn(x). (12)
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FIG. 2. The decay of a nucleus by two distinct disintegration
modes. The compound nucleus, with ground-state potential energy
(or ground-state mass in energy units) Vg , can decay by way of a
fission saddle point (with potential energy Vf ) on the right and, on
the left, by a neutron point of no return with potential energy Vn. The
total energy of the excited compound nucleus will be denoted by E.
(In a nuclear reaction it is equal to the sum of the potential energies or
masses in energy units of the target and projectile, augmented by the
center-of-mass collision energy.) The ratio �n/�f of the two decay
widths is equal to the ratio of the number of levels (decay channels)
Nn and Nf in the two energy slots E − Vn and E − Vf , respectively.
The barrier for fission, Bf , is equal to Vf − Vg and the barrier for
neutron emission, Bn (the neutron separation energy), is equal to
Vn − Vg . The excitation energy of the compound nucleus is E − Vg ,
often denoted by E∗

CN.

Here m is the neutron mass and σ stands for the cross section
for neutron capture, the inverse of neutron evaporation. This
form of the equation for Nn follows from Weisskopf’s nucleon
evaporation theory. As shown in Appendix B the appearance of
the extra factor (2 gm σ/πh̄2) (Xn − x) in Eq. (12) results from
singling out the neutron’s two transverse degrees of freedom
(those orthogonal to the disintegration direction) for special
treatment, rather than combining them with the degrees of
freedom of the remainder of the activated complex, treated in
terms of a statistical level density.

Figure 2 illustrates the quantities that enter in the ratio of
the partial decay widths for neutron emission and fission. For
a given total energy E of the compound nucleus this ratio
requires knowledge of the potential energies of the fission
saddle point and of the neutron’s point of no return, as well as
of the level densities of these configurations in the slots E − Vf

and E − Vn. Note in particular that, as already mentioned, this
ratio does not involve the compound nucleus level density ρ.
More generally, the ratio �n/�f knows nothing about any
property of the compound nucleus, such as the height of its
fission barrier Vf − Vg or the value of its neutron separation
energy Vn − Vg . The middle portion of Fig. 2 could, in fact,
be erased without loss of any information relevant for the
calculation of �n/�f . We stress this elementary feature of
the transition-state theory because, as we shall see in the
following, the error in the aforementioned publications [2–22]

is immediately revealed by the dependence of the erroneous
formulas on the fission barrier height. The next section will
trace the origin of this error, which is related to the incorrect
introduction of shell structure corrections to the relevant
nuclear level densities.

We note in passing that since the ratio of two decay widths
does not depend on the ground-state energy Vg , nor on the
compound nucleus level density ρ or the fission barrier Bf ,
it is often a practical advantage to estimate the saddle-point
energy Vf without reference to the irrelevant quantities Vg

and Bf . For heavy and superheavy nuclei, measured values
or good estimates of Vg, Bf , and the ground-state shell
correction may not be available, whereas a fair estimate of
Vf may nevertheless be made. This is due to the “topographic
theorem” [26], confirmed by extensive data, which shows that
saddle-point masses are much less sensitive to shell effects
than ground-state masses and fission barriers. As a result, a
relatively simple macroscopic calculation of Vf without shell
corrections can give a fair first estimate of this quantity.

IV. THE ERROR

The number Nf of fission decay channels, which deter-
mines the fission decay width �f , will be taken as

Nf =
∫ Xf

0
dx ρf (x), (13)

where Xf = E − Vf . We note again that this expression
makes no reference to the height of the fission barrier
Bf . However, the energy E is often assumed, implicitly or
explicitly, to be specified with respect to the ground state of the
compound nucleus, in which case the upper limit of integration
can be rewritten in terms of Bf as (E − Vg) − (Vf − Vg) =
E∗ − Bf , where E∗ stands for E − Vg (also denoted by E∗

CN in
the literature), the excitation energy of the compound nucleus.
Thus

Nf =
∫ E∗−Bf

0
dx ρf (x). (14)

Now when a ground-state shell correction D is present, Vg can
be written as

Vg = VLD + D, (15)

where VLD stands for the macroscopic (liquid-drop-like) part
of the ground-state energy. This does not affect the validity
of Eq. (14), but a subtle error may creep in when the shell
correction is considered to “depend on the excitation energy,”
and such a dependence (a damping out of the correction with
increasing excitation) is inserted in Eq. (15):

Vg(E∗) = VLD + D(E∗). (16)

The barrier Bf now seems to acquire an energy dependence
according to

Bf (E∗) = Vf − Vg = BLD − D(E∗), (17)

where BLD = Vf − VLD is the macroscopic fission barrier.
When Eq. (17) is inserted in Eq. (14) the erroneous conclusion
might be drawn that the number of fission decay channels and
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the partial fission decay width �f increase as the negative shell
correction D(E∗) becomes less negative with excitation, the
barrier Bf decreases, and the range of integration in Eq. (14)
increases. This would become especially noticeable in the case
of heavy nuclei, where BLD is close to zero and the vanishing
of D(E∗) would imply the vanishing of the fission barrier.
Such a conclusion is wrong. The origin of the error is Eq. (16),
which implies that the ground-state potential energy (or mass)
of the compound nucleus is affected by excitation. One needs
to remember that the expression “excitation-dependent shell
correction” is shorthand for describing the circumstance that,
with increasing excitation, the effect of a shell correction on the
density of levels becomes less and less important relative to the
main macroscopic contribution to the level density. To describe
this phenomenon as a modification of the ground-state mass
of a nucleus has no basis whatever. A ground state is a ground
state and it knows nothing about the decreasing effect of shell
structure on the level density with increasing excitation. Thus
Eq. (16) should be restored to its original form Vg = VLD + D

and Eq. (17) should read Bf = BLD − D, where D is the
energy-independent ground-state shell correction.

The simplest way to avoid this kind of error is to use
Eq. (13), which does not mention Vg or Bf in the first place.

V. CORRECT AND INCORRECT FORMULAS FOR �n/� f

By using Eq. (12) for Nn and Eq. (13) for Nf the ratio
�n/�f becomes

�n

�f

= 2gmσ

πh̄2

∫ Xn

0 dx (Xn − x) ρn(x)∫ Xf

0 dx ρf (x)

= 2gmσ

πh̄2

∫ Xn

0 dx (Xn − x) exp[sn(x)]∫ Xf

0 dx exp[sf (x)]
, (18)

where we have written the level densities ρ(x) in terms of the
corresponding entropies s(x).

To make contact with the frequently quoted equation
(VII-7) in Ref. [27] for �n/�f appropriate for a Fermi
gas without shell corrections we evaluate the integrals in
Eq. (18) to leading order in the entropies, using sn(x) = 2

√
anx

and sf (x) = 2
√

af x. The level density parameters an,f are
macroscopic coefficients independent of excitation. We find

�n

�f

= 2gmr2
0 A2/3

h̄2

Xn

an

√
af

Xf

exp [2(
√

anXn − √
af Xf )],

(19)

where we have written σ as πr2
0 A2/3 in terms of a radius

constant r0 and the nuclear mass number A. This equation,
which is the starting point of many current discussions
of the ratio �n/�f , agrees with Eq. (VII-7) in Ref. [27]
taken consistently to leading order in the entropies (i.e., by
disregarding the −1 in the denominator in Eq. (VII-7) in
Ref. [27]). It also agrees with Eq. (6) in Ref. [2], to which
reference we shall return presently. For what is to follow note
that the fission barrier appears in Eq. (19) in the excitation
energy Xf given by E − Vg − Bf , or E∗

CN − Bf in the notation

of Ref. [2], but this dependence of �n/�f on Bf is spurious,
since E∗

CN − Bf = E − Vf , as noted in Sec. IV.
Shell corrections to the level densities may be taken into

account approximately by using Fermi gas entropies modified
by the formula due to Ignatyuk et al. [23]:

sn,f (x) = 2
√

an,f

√
x + Dn,f [1 − exp (−x/d)], (20)

where Dn,f are the shell corrections to the saddle energies
Vn,f , and d is a shell damping parameter. The integrals in
Eq. (18) can no longer be evaluated in closed form and either
numerical integrations or the accurate approximations outlined
in Sec. VI have to be used to calculate the relevant values of
Nn,Nf , and their ratio.

This would be the standard transition-state procedure. What
is done instead in Ref. [2] and in a number of subsequent
references is to argue as follows: “Since the fission barrier Bf

in the heaviest nuclei is defined by the shell correction, its
value depends on the excitation energy E∗

CN of the compound
nucleus as

Bf = Bf (E∗
CN =0) · exp (−E∗

CN/Ed ), (21)

where Ed” . . . “is the shell-damping energy.” The resulting
energy-dependent fission barrier is then inserted in the excita-
tion energy in Eq. (19) according to Xf = E∗

CN − Bf .
It is to be expected that the values of �n/�f deduced in this

way will disagree with the predictions of the transition-state
theory. The disagreement actually concerns two features. First,
as explained in Sec. IV, an energy-dependent fission barrier
arises from an unjustified assumption of an energy dependence
of the ground-state energy of the compound nucleus, the
bottom of the barrier. (And certainly the top of the barrier—the
energy of the fission saddle—cannot depend on a shell effect
in the level density of the compound nucleus.) Second, the
existence of a shell correction in the neutron emission rate,
an integral part of the transition-state formula for �n/�f , is
ignored altogether. We are thus presented with a very different
scenario from that of the transition-state theory: The fission
decay rate is made to depend on the shell effect in the ground
state rather than in the saddle configuration, and the shell effect
on the level density at the neutron saddle (point of no return)
is disregarded. It is true that these two errors act in opposite
directions, and the authors of Ref. [4] actually attempt on p. 4
to justify the use of Eq. (19) with an energy-dependent fission
barrier as a rough estimate of �n/�f . To us it seems a pity
to encourage in this way the use of an intrinsically flawed
treatment of shell effects, rather than to recall the standard
unambiguous transition-state Eq. (18) to be used, when shell
effects are present, with the entropies given by Eq. (20).

In the following we give results of numerical calculations
that demonstrate the serious deviations from the transition-
state values of �n/�f that result from using a combination
of Eq. (19) with an energy-dependent fission barrier. First
we focus on Ref. [7], representative of the series of papers
[2–11]. In Fig. 3 we show a comparison of the �n/�f ratios
for the decay of a typical heavy nucleus 266Hs produced in the
reaction 58Fe + 208Pb, calculated according to the prescription
of Ref. [7] with results of the correct (numerical) integration
of Eq. (18) [with the Ignatyuk entropies of Eq. (20) included].
For the latter calculation we used the fission saddle energy
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FIG. 3. The ratio �n/�f for the 266Hs nucleus obtained by using
the scheme and parameters of Refs. [2–11] with an excitation-energy-
dependent fission barrier (solid curve) compared with the ratio �n/�f

calculated with the transition state method [Eqs. (18) and (20)] with
precise numerical integrations over level densities, for parameters as
in Ref. [7], but for a standard value of the shell damping parameter
d = 18.5 MeV (dashed curve).

corresponding to the value Bf (E∗
CN =0) = −D assumed in

Ref. [7], and we took the other parameters an, af , and pairing
corrections exactly as given in Ref. [7]. For compound nucleus
excitations E∗ from 21 to 50 MeV the authors of Ref. [7]
overestimate �n/�f by an amount that levels out at about 50%.
For energies below 21 MeV this turns into an underestimate,
which reaches an order of magnitude at E∗ = 10 MeV. This
low-energy underestimate is especially serious because it
affects not only low-energy “cold fusion” reactions but also
reactions that start at high excitations, since a de-excitation
cascade must eventually pass through the low-energy region.
The reason why both curves in Fig. 3 precipitously tend to
zero for low energies is that �n tends to zero at the thresh-
old for neutron emission given by E∗ = Vn − Vg = Bn =
8.22 MeV. (The nuclear masses underlying this and the
following estimates are taken from Ref. [28].)

In Fig. 4 we show a similar comparison for the reaction
48Ca + 249Cf leading to the compound nucleus 297118. In this
case the estimated fission saddle energy Vf is higher than
Vn and the excitation energy threshold for the reaction is
determined by E∗ = Vf − Vg = Bf = 8.27 MeV. But now
the approach of �n/�f (calculated correctly) to the threshold
is dramatically different: The curve explodes toward infinity
as the probability for fission tends to zero whereas that
for neutron emission remains finite. And here emerges a
disaster for the scenario in which the fission barrier is made
erroneously energy dependent. With the fission barrier reduced
by excitation, the incorrectly calculated curve for �n/�f is
allowed to continue to energies below the threshold set by
the fission saddle energy Vf (i.e., to excitation energies below
Vf − Vg!). According to this scenario the threshold for the
reaction is determined by the point where the excitation-
dependent barrier Bf (E∗) has become equal to the excitation,
namely at E∗ = 6.40 MeV according to Eq. (21). This is well

FIG. 4. Same as Fig. 3 but for a compound nucleus 297118 formed
in the 48Ca + 249Cf reaction. The excitation energy threshold E∗ =
Vf − Vg = 8.27 MeV is indicated by the vertical dashed line.

below the true threshold at 8.27 MeV. This fact shows at
once, even without reference to the transition-state method,
that the assumption of an excitation-dependent fission barrier
is not acceptable. As seen from Fig. 4, this assumption leads to
predictions that at low excitation energies may deviate from the
correct �n/�f values by a factor of 1000 or more. As already
mentioned, these low-energy errors affect all de-excitation
cascades, including those starting at higher excitation
energies.

In three recent publications [20–22] the scheme with an
energy-dependent fission barrier was used with parameters
somewhat different from those of Ref. [7]. Results of a
comparison of the recipe used in Refs. [20–22] with correctly
calculated �n/�f ratios are shown in Figs. 5 and 6. The
calculations are presented for the same pair of compound
nuclei as in the comparisons with Ref. [7], namely for 266Hs
and 297118. The correct curves are calculated with Eqs. (18)
and (20) in two versions: assuming a standard value of
Ignatyuk’s shell damping parameter d = 18.5 MeV and
also assuming d = 5.48A1/3/(1 + 1.3A−1/3) MeV, as used in
Refs. [20–22].

These examples illustrate the range of errors resulting from
the method of calculating the �n/�f ratios used in Refs. [2–11,
20–22]. Similar errors may also be present in works of other
groups, for example those of Refs. [12–19], because in all
these papers an expression for an excitation-energy-dependent
fission barrier, similar to Eq. (21), was used. Unfortunately,
quantitative illustrations of the errors in Refs. [12–19] are not
possible owing to insufficient information on details of the
calculations.

VI. EVALUATION OF INTEGRALS OVER
LEVEL DENSITIES

In the previous section we arrived at the final integral
expression for the �n/�f ratio, Eq. (18), which includes
Ignatyuk’s energy-dependent shell corrections to the level
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FIG. 5. The ratio �n/�f for the 266Hs nucleus obtained by using
the scheme and parameters of Refs. [20–22] with an excitation-
energy-dependent fission barrier (solid curve) compared with the
ratio �n/�f calculated with the transition-state method [Eqs. (18)
and (20)] with precise numerical integrations over level densities, for
parameters as in Refs. [20–22], but for a standard value of the shell
damping parameter d = 18.5 MeV (dashed line), and also for a value
d = 29.32 MeV (dotted-dashed curve) assumed in Refs. [20–22].

densities given by Eq. (20). This expression cannot be evalu-
ated in closed form. In the following we give simple and very
accurate approximations to integrals for the relevant numbers
of channels Nf ,Nn, and Nn. These approximations may be
of considerable importance for speeding up the very time
consuming Monte Carlo statistical calculations, especially in
simulations of extremely low probability decay cascades that
lead to the formation of superheavy elements.

As previously outlined we shall be concerned with two
types of integrals: For fission, we have

Nf = C

∫ X

0
dxes(x) (22)

FIG. 6. Same as Fig. 5 but for a compound nucleus 297118 formed
in the 48Ca + 249Cf reaction. The excitation energy threshold E∗ =
Vf − Vg = 8.27 MeV is indicated by the vertical dashed line.

and for neutrons either

Nn = C

∫ X

0
dxes(x) (23)

or

Nn = C

∫ X

0
dx(X − x)es(x). (24)

Here C is an appropriate constant, s(x) is the entropy (related
to the logarithm of the level density), and X is the maximum
excitation energy, equal to E − Vs . (All these quantities
may be different in the three cases considered.) As already
mentioned, the appearance of the factor (X − x) in Eq. (24)
results from singling out for special treatment the neutron’s
two transverse degrees of freedom (those orthogonal to the
disintegration direction) rather than combining them with
the degrees of freedom of the remainder of the activated
complex, treated in terms of a statistical entropy expression
(see Appendix B). If this is not done and Eq. (23) is used, there
results a “symmetrical” expression for �n/�f , discussed in
Ref. [25]. Reference [29] provides experimental evidence for
the superiority of the formula with the factor X − x included.

In the simplest approximation to the level density of a
degenerate Fermi gas we have

ρ(x) = C e2
√

ax, (25)

where a is a level density parameter independent of excitation.
In this case the integrals in Eqs. (22)–(24) can be evaluated in
closed form. This integrability is usually spoiled by an energy-
dependent “pre-exponential” factor in the level density as well
as by shell effect corrections that modify the function

√
x into a

more complicated expression. Fortunately, both modifications,
even though not necessarily small, do not change significantly
the qualitative appearance of the dependence of s on x (or
of x on s). The result is that even in the general case the
dependence of x on s, which for a Fermi gas is a parabola
centered on the origin, can be accurately approximated by a
quadratic polynomial in s passing through the origin (this
time with a finite slope) and adjusted to have value and
derivative equal to the value and derivative of the postulated
entropy s(x) at the upper limit of integration (from where an
exponentially dominant contribution to the integral comes).
In this approximation these integrals are readily evaluated
by a change of variable from x to s, with the result (see
Appendix A)

Nf (orNn) = CX{eS[(2 + ε)/S − 2/S2]

− ε/S + 2/S2}/(1 + ε)

= CXeS[(2 + ε)/S − 2/S2]/(1 + ε) (26)

if the exponentially smaller terms are neglected. Here, S ≡
s(X) and ε is a measure of the shell correction D in Eq. (20).
(Except for very light nuclei, S is typically in the range 7 to
20, with eS of order 103 to 109.)

Similarly, when exponentially small terms are neglected,
we find

Nn = CeSX2[(2 + ε)2/S2 − 6(2 + ε)/S3 + 12/S4]/(1 + ε)2.

(27)
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In these equations the parameter ε is shown in Appendix A to
be given by

ε = (2 − �)/(� − 1), (28)

where � = S/XS ′ and S ′ ≡ s ′(X) is the derivative of s(x)
evaluated at the upper limit of integration.

What we have achieved is that, for a class of level density
functions of interest, we have derived algebraic approxima-
tions (accurate to a couple of percent—see Appendix A)
for the number of levels (decay channels) in a slot of
excitation energies between zero and X. These approximations
require only knowledge of the postulated level density and its
derivative at X.

When the entropy s(x) is that of a degenerate Fermi gas
modified by a shell correction in the form suggested by
Ignatyuk et al. [23] [see Eq. (20)], the quantities S, S ′ are
given by

S = 2
√

a
√

X + D(1 − e−χ ), (29)

S ′ =
√

a (1 + δe−χ )√
X + D(1 − e−χ )

, (30)

and Eq. (28) leads to

ε = 2(−δ)[1 − (1 + χ )e−χ ]

χ + δ[2 − (2 + χ )e−χ ]
, (31)

where χ = X/d and δ = D/d are the values of X and D in
units of d.

The parameter ε, approximately proportional to −δ, is seen
to be a measure of minus the shell effect. For vanishing ε

Eqs. (26) and (27) give the values of Nf and Nn for a simple
degenerate Fermi gas.

VII. SUMMARY AND CONCLUSIONS

We have shown that a commonly used scheme of calculating
the ratio of neutron emission to fission, one that introduces
an excitation-energy-dependent fission barrier, is inconsistent
with the transition-state theory of nuclear disintegration rates.
In some cases it even leads to unphysical predictions for the
existence of fission at energetically forbidden subthreshold
excitation energies. When shell effects are present the ratio of
the erroneous predictions to those obtained by the transition-
state method can reach orders of magnitude at low excitation
energies.

We have included an account of an accurate algebraic
treatment of shell effects, as well as a new derivation of
Weisskopf’s nucleon evaporation formula in which we use
the transition-state method rather than the statistical principle
of detailed balance.
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APPENDIX A

To approximate an integral of the type

N = C

∫ X

0
dxes(x), (A1)

where the entropy s(x) is in the form of a modified Fermi gas
expression that makes Eq. (A1) no longer integrable, write the
dependence of x(s) on s as a quadratic polynomial in s that
passes though the origin and is adjusted so that it agrees in
value and slope at x = X with the postulated s(x). Write the
approximating polynomial in the form

x

X
= ε(s/S) + (s/S)2

1 + ε
, (A2)

where S ≡ s(X) and ε is a parameter. It is clear by inspection
that s = S when x = X. To make the derivatives also equal at
x = X equate dx/ds at x = X to 1/S ′, where S ′ ≡ s ′(X):(

dx

ds

)
x=X

= X

S

(ε + 2)

(1 + ε)
= 1

S ′ , (A3)

which gives

ε = (2XS ′ − S)/(S − XS ′), (A4)

equivalent to Eq. (28). Changing the variable of integration in
Eq. (A1) from x to s according to Eq. (A2) one arrives after
some algebra at Eqs. (26) and (27).

Solving Eq. (A2) for the approximating function s(x) we
find

s(x) = S

2

(−ε +
√

ε2 + 4(1 + ε)(x/X)
)
. (A5)

This may be compared with the postulated Ignatyuk entropy
given by Eq. (20) in the text, to which Eq. (A5) is supposed
to be an approximation. Figure 7 displays the difference
between the corresponding level densities ρ(x) ∼ exp [s(x)]
for a nucleus with mass number A = 250 in the range of
excitation energies between 0 and X = 10 MeV, and with four
assumed shell corrections D = 0,−3,−6, and −9 MeV. It
will be seen that, even for the largest shell correction, the
inaccuracy of the polynomial approximation for Nf or Nn

would be only of the order of 1%. Similarly, Fig. 8 displays
the difference between the postulated and approximating
integrands in Eq. (24). In this case the inaccuracy in Nn would
be no more than about 2.5%. Figure 9 shows, as a function
of the excitation energy X, the ratio of Nn calculated with
the polynomial approximation, to Nn calculated by numerical
integration. Figure 10 shows a similar comparison of �n/�f

calculated in two ways for parameters appropriate to the
reaction 58Fe + 208Pb. As expected, the discrepancy tends to
zero for large excitation energies, where the shell effect is
attenuated. A more extensive study showed that, in a large
range of nuclear masses, excitations, and shell effects of
practical interest, the use of our approximation in calculating
�n/�f would only rarely exceed a couple of percent.

APPENDIX B

Using the transition-state theory we shall derive the formula
for the neutron decay width �n in the case when all the
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FIG. 7. The normalized level density ρ(x)/ρ(X) = es(x)/es(X),
where s(x) is the Ignatyuk entropy, Eq. (20), plotted against the
relative excitation energy x/X for a nucleus with A = 250, an
excitation energy X = 10 MeV, and shell corrections D = 0,−3, −6,
and −9 MeV. This quantity is proportional to the integrand in the
expression for the number of fission decay channels, Eq. (22), or to
the number of neutron decay channels in the “symmetrical” treatment,
Eq. (23). Also shown are the differences, multiplied by 100, between
the postulated Ignatyuk relative level densities and the polynomial
approximations. For the largest shell correction, −9 MeV, the error
in the number of decay channels would be about 1%.

0

0.01

0.02

0.03

0.5 0.6 0.7 0.8 0.9 1

Relative excitation x/X

 (1
−

x/
X

)
ρ(

x
) /ρ

(X
)

          10 (Ignatyuk - Approximation)
            D= -3,     -6,      -9 MeV

D = -9 MeV

D = -6 MeV

D = -3 MeV

D =  0 MeV

FIG. 8. Plot for the same hypothetical nucleus as in Fig. 7, but
the quantity plotted is (1 − x/X)ρ(x)/ρ(X), which is proportional
to the integrand in the conventional expression for the number of
neutron decay channels, Eq. (24). Also shown are the differences,
multiplied by 10, between the Ignatyuk integrands and the polynomial
approximations. For the largest shell correction the error in the
number of decay channels calculated using that approximation would
be about 2.5%.

FIG. 9. Plot of the ratio of Nn calculated using the polynomial
approximation to Nn calculated by numerical integration, as a
function of excitation energy X, for a nucleus with A = 250 and
Ignatyuk level densities with shell effects D = −3, −6, and −9 MeV.

three neutron degrees of freedom are singled out for special
treatment. The result turns out to be identical with the formula
due to Weisskopf [24] based on the principle of detailed
balance between neutrons evaporated from and captured by
a nucleus in equilibrium with its vapor.

Consider as in Sec. II a microcanonical ensemble of ρ�E

systems at the neutron’s “point of no return.” Again consider
the total number of degrees of freedom split into the neutron’s
disintegration degree of freedom q1 normal to the surface of
the emitting nucleus and the remainder, the activated complex.
But now subdivide the activated complex into the neutron’s
remaining transverse degrees of freedom q2 and q3 orthogonal
to q1, to be accorded special treatment, and the rest, to be
treated by a statistical formula. Let p1, p2, p3 be the momenta

FIG. 10. The ratio of �n/�f calculated using the polynomial
approximation to �n/�f calculated by numerical integration for the
266Hs and 297118 compound nuclei, as a function of excitation energy.
The parameters used for this comparison are the same as for Figs. 3
and 4.
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conjugate to q1, q2, q3, so that

K = p2/2m = (
p2

1 + p2
2 + p2

3

)/
2m (B1)

is the neutron’s kinetic energy, where m is the neutron’s mass.
We shall denote by x the left-over energy that serves as the
excitation energy of the “statistical” subsystem with n − 3
degrees of freedom:

x = E − Vn − p2/2m = E − Vn − K. (B2)

We shall write the level density of the statistical system at
excitation x as ρn(x).

Consider now an infinitesimal element of the total phase
space, defined by the product of a configuration space volume
4πR2dq1 in the form of a thin spherical shell surrounding the
emitting nucleus (assumed for simplicity to be spherical) at
the “no return distance” R times a momentum space volume
specified by the intersection of a thin spherical shell between
p and p + dp and a thin slab between p1 and p1 + dp1 in the
momentum space p1, p2, p3. Since the choice of p specifies x

by Eq. (B2) the level density ρn(x) is also fixed by this choice.
The number of representative points in element of phase space
thus specified and in the energy slot �E is then

�E (4πR2 dq1)(2πp dp dp1)(2/h3)ρn(x). (B3)

Here 2πp dp dp1 is readily verified to be the volume of the
intersection of the thin spherical shell and the thin slab in
momentum space, and 2/h3 is the density of doubly degenerate
states in the neutron’s phase space. As in Sec. II focus attention
on the two-dimensional phase space depicted in Fig. 1 (but with
p, q replaced by p1, q1 and P replaced by p), and obtain the
number of disintegrations in time �t by an integration of
Eq. (B3) first over q1 from −v�t to 0, followed by an
integration over p1 from 0 to p, followed by an integration over

p from 0 to its maximum value P given by P 2/2m = E − Vn:∫ P

0
dp

∫ p

0
dp1

∫ 0

−v�t

dq1 �E(4πR2)(2πp)(2/h3)ρn(x)

=
∫ P

0
dp

∫ p

0
dp1 v1�t�E(4πR2)(2πp)(2/h3)ρn(x)

= �E�t(4πR2)(2π )(2/h3)m−1
∫ P

0
dp p

∫ p

0
dp1 p1ρn(x)

= �E�t(4πR2)π (2/h3)m−1
∫ P

0
dp p · p2ρn(x). (B4)

Now change variable from p to x using p2 = 2m(E − Vn −
x) and dpp = −mdx. Changing the limits of integration
appropriately we obtain

�E�t(4πR2)2π (2/h3)m
∫ Xn

0
dx(Xn − x)ρn(x), (B5)

where the maximum excitation energy is denoted by Xn =
E − Vn.

The neutron disintegration width is obtained by division by
ρ�t�E and multiplication by h̄, with the final result

�n = 2mσ

π2h̄2ρ

∫ Xn

0
dx(Xn − x) ρn(x), (B6)

where σ stands for πR2, the cross sectional area of the
“sphere of no return.” Equation (B6) becomes identical with
Weisskopf’s neutron evaporation formula if this cross section
is identified with the cross section for neutron capture, the
reaction inverse to neutron evaporation. Multiplication of
Eq. (B6) by 2πρ gives the corresponding expression for the
number of neutron decay channels:

Nn = 4mσ

πh̄2

∫ Xn

0
dx(Xn − x) ρn(x). (B7)
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