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Coulomb-corrected eikonal description of the breakup of halo nuclei
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The eikonal description of breakup reactions diverges because of the Coulomb interaction between the
projectile and the target. This divergence is due to the adiabatic, or sudden, approximation usually made, which
is incompatible with the infinite range of the Coulomb interaction. A correction for this divergence is analyzed
by comparison with the dynamical eikonal approximation, which is derived without the adiabatic approximation.
The correction consists in replacing the first-order term of the eikonal Coulomb phase by the first-order of the
perturbation theory. This allows taking into account both nuclear and Coulomb interactions on the same footing
within the computationally efficient eikonal model. Excellent results are found for the dissociation of 11Be on lead
at 69 MeV/nucleon. This Coulomb-corrected eikonal approximation provides a competitive alternative to more
elaborate reaction models for investigating breakup of three-body projectiles at intermediate and high energies.
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I. INTRODUCTION

Halo nuclei are among the most peculiar quantum structures
[1–3]. These light neutron-rich nuclei exhibit a very large
matter radius when compared to their isobars. This extended
matter distribution is due to the weak binding of one or two
valence neutrons. Thanks to their low separation energy, these
neutrons tunnel far inside the classically forbidden region and
have a high probability of presence at a large distance from
the other nucleons. In a simple point of view, they can be seen
as very clusterized systems: a core that contains most of the
nucleons, and that resembles a usual nucleus, to which one or
two neutrons are loosely bound and form a sort of halo around
the core [4]. The 11Be, 15C, and 19C isotopes are examples
of one-neutron halo nuclei. Examples of two-neutron halo
nuclei are 6He, 11Li, and 14Be. In addition to their two-neutron
halo, these nuclei also exhibit the Borromean property [5]: the
three-body system is bound although none of the two-body
subsystem is.

Since their discovery in the mid-1980s [6], these nuclei
have thus been the focus of many experimental [1–3] and
theoretical [7–9] studies. Due to their short lifetime, halo nuclei
cannot be studied with usual spectroscopic techniques, and one
must resort to indirect methods to infer information about their
structure. Breakup reactions are among the most used methods
to study halo nuclei [10–12]. In such reactions, the halo
dissociates from the core through interaction with a target. To
extract valuable information from experimental data one needs
an accurate reaction model coupled to a realistic description
of the projectile. Various techniques have been developed
with this aim: perturbation expansion [13,14], adiabatic ap-
proximation [15], eikonal model [16–18], coupled-channels
with a discretized continuum (CDCC) [19–21], numerical
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resolution of a three-dimensional time-dependent Schrödinger
equation (TDSE) [22–27], and, more recently, dynamical
eikonal approximation (DEA) [28–30].

Some of these techniques (perturbation expansion, adia-
batic approximation, and the eikonal model) are based on
approximations that lead to easy-to-handle models. Their main
advantage is their relative simplicity in use and interpretation.
However, the approximations on which they are built usually
restrain their validity domain. For example, perturbative and
adiabatic models are restricted to the sole Coulomb interaction
between the projectile and the target. The eikonal method
on the contrary diverges for that interaction and can be used
only for reactions on light targets. The adiabatic, or sudden,
approximation made in the usual eikonal model is responsible
for that divergence. It indeed assumes a very brief collision
time that is incompatible with the infinite range of the Coulomb
interaction.

The more elaborate models (CDCC, TDSE, and DEA) are
not restricted in the choice of the projectile-target interaction.
However, they lead to complex and time-consuming imple-
mentations. First calculations were therefore limited to simple
descriptions of the projectile (i.e., two-body projectiles with
local core-halo interactions). Recently, several attempts have
been made to improve the description of the projectile. For
example, Summers, Nunes, and Thompson have developed an
extended version of the CDCC technique, baptized XCDCC,
in which the description of the halo nucleus includes excitation
of the core [31]. Other groups are developing four-body CDCC
codes, i.e., a description of the breakup of three-body projec-
tiles, with the aim of modeling the dissociation of Borromean
nuclei [32,33]. These techniques, albeit promising, require
large computational facilities and are very time-consuming.

Alternatively, one could try to extend the range of simpler
descriptions of breakup reactions. Among these descriptions,
the eikonal model is of particular interest. It indeed allows
taking into account, at all orders and on the same footing,
both nuclear and Coulomb interactions between the projec-
tile and the target. Moreover, it gives excellent results for
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nuclear-dominated dissociations [17,29]. Its only flaw is the
erroneous treatment of the Coulomb interaction. A correc-
tion to that treatment has been proposed by Margueron,
Bonaccorso, and Brink [34] and developed by Abu-Ibrahim
and Suzuki [35]. The basic idea of this Coulomb-corrected
eikonal model (CCE) is to replace the diverging Coulomb
eikonal phase at first-order by the corresponding first-order of
the perturbation theory [36]. The latter, being obtained without
adiabatic approximation, does not diverge. The CCE is much
more economical than more elaborate techniques (a gain of a
factor 100 in computational time can be achieved between this
CCE and the DEA). It could therefore constitute a competitive
alternative for simulating the breakup of Borromean nuclei at
intermediate and high energies. However efficient it seems,
this correction has never been compared to any other reaction
model.

In this work, we aim at evaluating the validity and analyzing
the strengths and weaknesses of this correction by comparing
it with the DEA. The chosen test cases are the breakup of 11Be
on Pb and C so as to see the significance of the correction for
both heavy and light targets. The considered energy is around
70 MeV/nucleon. This corresponds to RIKEN experiments
[11,12], with which the DEA is in excellent agreement [28,29].

Our article is organized as follows. In Sec. II, we recall the
basics of the eikonal description of reactions and detail the
Coulomb correction proposed in Refs. [34,35]. The numerical
aspects of our calculations are summarized in Sec. III. The
results for 11Be on Pb are detailed in Sec. IV, whereas those
corresponding to a carbon target are given in Sec. V. The final
section contains our conclusions about this model.

II. THEORETICAL FRAMEWORK

A. Eikonal description of breakup reactions

To describe the breakup of a halo nucleus, we consider the
following three-body model. The projectile P is made up of a
fragment f of mass mf and charge Zf e, initially bound to a
core c of mass mc and charge Zce. This two-body projectile
is impinging on a target T of mass mT and charge ZT e. The
fragment has spin I , whereas both core and target are assumed
to be of spin zero. These three bodies are seen as structureless
particles.

The structure of the projectile is described by the internal
Hamiltonian

H0 = p2

2µcf

+ Vcf (r), (1)

where r is the relative coordinate of the fragment to the
core, p is the corresponding momentum, µcf = mcmf /mP

is the reduced mass of the core-fragment pair (with mP =
mc + mf ), and Vcf is the potential describing the core-
fragment interaction. This potential includes a central part and
a spin-orbit coupling term (see Sec. III).

In partial wave lj , the eigenstates of H0 are defined by

H0φljm(E, r) = Eφljm(E, r), (2)

where E is the energy of the c-f relative motion and j is the
total angular momentum resulting from the coupling of the
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FIG. 1. Jacobi set of coordinates: r is the projectile internal
coordinate, and R = b + Z Ẑ is the target-projectile coordinate.

orbital momentum l with the fragment spin I . The negative-
energy solutions of Eq. (2) correspond to the bound states of
the projectile. They are normed to unity. The positive-energy
states describe the broken-up projectile. Their radial part uklj

are normalized according to

uklj (r) −→
r→∞ cos δljFl(kr) + sin δljGl(kr), (3)

where k =
√

2µcf E/h̄2 is the wave number, δlj is the phase
shift at energy E, and Fl and Gl are, respectively, the regular
and irregular Coulomb functions [37].

The interactions between the projectile constituents and the
target are simulated by optical potentials chosen in the litera-
ture (see Sec. III). Within this framework the description of the
reaction reduces to the resolution of a three-body Schrödinger
equation that reads, in the Jacobi set of coordinates illustrated
in Fig. 1,[

P 2

2µ
+ H0 + VPT (R, r)

]
�(R, r) = ET �(R, r), (4)

where R is the coordinate of the projectile center of mass
relative to the target, P is the corresponding momentum, µ =
mP mT /(mP + mT ) is the projectile-target reduced mass, and
ET is the total energy. The projectile-target interaction

VPT (R, r) = VcT

(
R − mf

mP

r
)

+ Vf T

(
R + mc

mP

r
)

, (5)

is the sum of the optical potentials VcT and Vf T (including
Coulomb) that simulate the core-target and fragment-target
interactions, respectively. The projectile impinging on the
target is initially bound in the state φl0j0m0 of energy E0. We
are therefore interested in solutions of Eq. (4) that behave
asymptotically as

�(R, r) −→
Z→−∞

ei{KZ+η ln[K(R−Z)]}φl0j0m0 (E0, r), (6)

where Z is the component of R in the incident-beam direction
and η = ZT ZP e2/(4πε0h̄v) is the P -T Sommerfeld parameter
(with ZP = Zc + Zf ).

In the eikonal description of reactions, the three-body wave
function � is factorized as the product of a plane wave by a
new function �̂ [16–18],

�(R, r) = eiKZ�̂(R, r), (7)

054602-2



COULOMB CORRECTED EIKONAL DESCRIPTION OF THE . . . PHYSICAL REVIEW C 78, 054602 (2008)

where K is the wave number of the projectile-target relative
motion related to the total energy ET by

ET = h̄2K2

2µ
+ E0. (8)

With factorization (7), the Schrödinger equation (4) reads[
P 2

2µ
+ vPZ + H0 − E0 + VPT (R, r)

]
�̂(R, r) = 0, (9)

where v = h̄K/µ is the initial projectile-target relative veloc-
ity. The first step in the eikonal approximation is to assume the
second-order derivative P 2/2µ negligible with respect to the
first-order derivative vPZ . The function �̂ is indeed expected
to vary weakly in R when the collision occurs at sufficiently
high energy [16–18]. This leads to the DEA Schrödinger
equation [28,29]

ih̄v
∂

∂Z
�̂(b, Z, r) = [(H0 − E0) + VPT (R, r)]�̂(b, Z, r),

(10)

where the dependence of the wave function on the longitudinal
Z and transverse b parts of the projectile-target coordinate
R has been made explicit (see Fig. 1). This equation is
mathematically equivalent to a time-dependent Schrödinger
equation with straight-line trajectories and can be solved
using any algorithm valid for the time-dependent Schrödinger
equation (see, e.g., Refs. [22–27]). However, contrary to
time-dependent models, it is obtained without semiclassical
approximation: the projectile-target coordinate components
b and Z are quantal variables in DEA. This advantage
over time-dependent techniques allows taking into account
interferences between solutions obtained at different bs. The
DEA reproduces various breakup observables quite accurately
for collisions of loosely bound projectiles on both light and
heavy targets [29,30].

The second step in the usual eikonal model is to assume
the collision to occur during a very brief time and to consider
the internal coordinates of the projectile to be frozen while the
reaction takes place [17]. This second assumption, known as
the adiabatic, or sudden, approximation leads to neglecting the
term H0 − E0 in Eq. (10) that then reads

ih̄v
∂

∂Z
�̂(b, Z, r) = VPT (R, r)�̂(b, Z, r). (11)

In these notations, the asymptotic condition (6) becomes

�̂(b, Z, r) −→
Z→−∞

eiη ln[K(R−Z)]φl0j0m0 (E0, r). (12)

The solution of Eq. (11) exhibits the well-known eikonal
expression [16]

�̂(b, Z, r)

= exp

[
− i

h̄v

∫ Z

−∞
VPT (b, Z′, r)dZ′

]
φl0j0m0 (E0, r). (13)

This expression is valid only for short-range potentials. The
Coulomb interaction requires a special treatment that is
detailed in the next section. Let us point out that this treat-
ment allows taking properly account of the projectile-target
Rutherford scattering. The Coulomb distortion in Eq. (12)

is therefore simulated in the phase of Eq. (13). After the
collision, the whole information about the change in the
projectile wave function is thus contained in the phase shift χ

that reads

χ (b, s) = − 1

h̄v

∫ ∞

−∞
VPT (R, r)dZ. (14)

Due to translation invariance, this eikonal phase depends
only on the transverse components b of the projectile-target
coordinate R and s of the core-fragment coordinate r .

B. Coulomb correction to the eikonal model

The eikonal model gives excellent results for nuclear-
dominated reactions [17,29]. However, it suffers from two
divergence problems when the Coulomb interaction becomes
significant. The first is the well-known logarithmic divergence
of the eikonal phase describing the Coulomb elastic scattering
[16–18]. The second is caused by the adiabatic approximation
used in the eikonal treatment of the Coulomb breakup [17].
To explain this, let us divide the eikonal phase (14) into its
nuclear and Coulomb contributions

χ (b, s) = χN (b, s) + χC(b, s) + χC
PT (b). (15)

The Coulomb term χC for a one-neutron halo nucleus reads
(the extension to the case of a charged fragment is immediate)
[29,35]

χC(b, s) = −η

∫ ∞

−∞

(
1∣∣R − mf

mP
r
∣∣ − 1

R

)
dZ (16)

= η ln

(
1 − 2

mf

mP

b̂ · s
b

+ m2
f

m2
P

s2

b2

)
, (17)

b̂ denotes a unit vector along the transverse coordinate b.
In Eq. (16), we subtract the term 1/R corresponding to a
Coulomb interaction between the projectile center-of-mass
and the target. The phase χC therefore corresponds to the
Coulomb tidal force that contributes to the breakup. Moreover,
this subtraction leads to a faster decrease of the potential
at large distances, which enables us to obtain the analytic
expression (17). This is compensated by the addition of the
elastic Coulomb phase χC

PT

χC
PT (b) = −η

∫ Zmax

−Zmax

dZ

R
. (18)

This phase describes the Rutherford scattering between the
projectile and the target. The integral is truncated, for it
otherwise diverges (note that the integral in Eq. (17) does not
diverge and therefore does not require the same treatment).
This truncation basically corresponds to Glauber’s screened
Coulomb potential [16]. Other truncation techniques [16] and
other ways to deal with this divergence [18] exist. All lead
to the same expression of the elastic Coulomb phase but for
an additional constant phase that does not affect the cross
sections [16]. The truncation considered in Eq. (18) leads to

χC
PT (b) ≈ 2η ln

b

2Zmax
. (19)
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This elastic Coulomb phase correctly reproduces Rutherford
scattering, indicating that the first of the two aforementioned
divergences can be easily corrected [16–18]. The nuclear term
χN is then by definition the difference between the eikonal
phase (14) and the Coulomb contributions (17) and (19).

In addition to the divergence in elastic scattering, the
Coulomb interaction is responsible for a divergence in
breakup. The aim of the present article is to analyze a way
to correct this divergence. It is due to the slow decrease of χC

in b. Indeed, when expanded in powers of χC , the exponential
of the Coulomb eikonal phase reads

eiχC = 1 + iχC − 1
2 (χC)2 + · · · , (20)

where the explicit dependence on the coordinates has been
omitted for clarity. When integrated over b in the calculation of
the cross sections (see Sec. II C), the 1/b asymptotic behavior
of the first-order term iχC will lead to divergence.

This divergence problem arises from the incompatibility
between the infinite range of the Coulomb interaction and
the adiabatic, or sudden, approximation: no short collision
time can be assumed if the Coulomb interaction dominates.
Renouncing the use of the adiabatic approximation solves this
divergence: the DEA, which corresponds to the eikonal model
without this approximation {see Eq. (10) and Refs. [28,29]},
does not diverge. The excellent results obtained within the
DEA for collisions of loosely bound projectiles on both light
and heavy targets [29,30] confirm that, when dynamical effects
are considered, both nuclear and Coulomb interactions can be
properly taken into account on the same footing.

To avoid this divergence, a cutoff at large b could be made.
In Ref. [38], Abu-Ibrahim and Suzuki proposed to limit the
values of b to be considered in the cross-section calculations
at

bmax = h̄v

2|E0| . (21)

This cutoff is obtained by requiring the characteristic time
of internal excitation h̄/|E0| to be shorter than the collision
time b/v. The factor of 2 is proposed as a qualitative guide.
However, this treatment is rather artificial and not very
satisfactory [35].

Alternatively, it has been proposed by Margueron,
Bonaccorso, and Brink [34], and developed by Abu-Ibrahim
and Suzuki [35], to replace the first-order term iχC in Eq. (20),
which leads to the divergence, by the first-order term of the
perturbation theory iχFO [36]

χFO(b, r) = −η

∫ ∞

−∞
eiωZ/v

(
1∣∣R − mf

mP
r
∣∣ − 1

R

)
dZ, (22)

where ω = (E − E0)/h̄, with E the c-f relative energy after
dissociation. Because no adiabatic approximation is made in
perturbation theory, this term does not diverge. When the
adiabatic approximation is applied to Eq. (22), i.e., when ω

is set to 0, one recovers exactly the Coulomb eikonal phase
(16). This suggests that without adiabatic approximation the
first-order term in Eq. (20) would be iχFO (22). Furthermore,
a simple analytic expression is available for each of the
Coulomb multipoles in the far-field approximation, i.e., for

mf r/mP < R [39]. The idea of the correction is therefore to
replace the exponential of the eikonal phase according to

eiχ → eiχN (
eiχC − iχC + iχFO

)
eiχC

PT . (23)

With this Coulomb correction, the breakup of halo nuclei can
be described within the eikonal model taking on (nearly) the
same footing both Coulomb and nuclear interactions at all
orders. This correction can also be seen as an inexpensive way
to introduce higher-order effects and nuclear interactions in
the first-order perturbation theory.

In this work, we analyze the validity of this CCE model by
comparing results obtained with the correction (23) to results
of the DEA. The latter is chosen as reference calculation,
because it does not make use of the adiabatic approximation
that leads to the divergence in the eikonal description of
breakup. It is also in good agreement with experiments [29,30].
Calculations performed in the usual eikonal model, and at the
first-order of the perturbation theory will also be presented
to emphasize the effects of the correction. We focus on the
case of 11Be breakup. In that case, only the dipole term
of the Coulomb interaction is significant [40]. We thus restrict
the correction to that multipole. The perturbative correction
then reads [35]

χFO(b, r) = −η
mf

mP

2ω

v

[
K1

(
ωb

v

)
b̂ · s + iK0

(
ωb

v

)
z

]
,

(24)

where Kn are modified Bessel functions [37]. Of course, in
other cases, like in 8B Coulomb breakup, the quadrupole term
may no longer be negligible [14,30], it should then be included
in the correction.

C. Breakup cross sections

To evaluate breakup cross sections within the CCE we
proceed as explained in Ref. [29], replacing the DEA breakup
amplitude by

S
(m0)
kljm(b) = ei(σl+δlj −lπ/2+χC

PT )〈φljm(E)|eiχN

× (
eiχC − iχC + iχFO

)∣∣φl0j0m0 (E0)
〉
, (25)

where σl is the Coulomb phase shift [37]. The breakup
amplitudes for the usual eikonal model are obtained in the
same way but without the correction.

In the following, we consider two breakup observables.
The first is the breakup cross section as a function of the c-f
relative energy E after dissociation {see Eq. (52) of Ref. [29]}

dσbu

dE
= 4µcf

h̄2k

1

2j0 + 1

∑
m0

∑
ljm

∫ ∞

0
bdb

∣∣S(m0)
kljm(b)

∣∣2
. (26)

This energy distribution is the observable usually measured in
breakup experiments [11,12]. It corresponds to an incoherent
sum of breakup probabilities computed at each b

dPbu

dE
(E, b) = 4µcf

h̄2k

1

2j0 + 1

∑
m0

∑
ljm

∣∣S(m0)
kljm(b)

∣∣2
. (27)
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The second breakup observable is the parallel-momentum
distribution {see Eq. (53) of Ref. [29]}
dσbu

dk‖
= 8π

2j0 + 1

∑
m0

∫ ∞

0
bdb

∫ ∞

|k‖|

dk

k

∑
νm

×
∣∣∣∣∣∣
∑
lj

(lIm − νν|jm)Ym−ν
l (θk, 0)S(m0)

kljm(b)

∣∣∣∣∣∣
2

, (28)

where θk = arccos(k/k‖) is the colatitude of the c-f relative
wave vector k after breakup. Contrary to the energy distri-
bution, the parallel-momentum distribution corresponds to
a coherent sum of breakup amplitudes. This observable is
therefore sensitive to interferences between different partial
waves. Consequently, it constitutes a particularly severe test
for reaction models.

III. NUMERICAL ASPECTS

For these calculations, we use the same description of 11Be
as in Ref. [41]. The halo nucleus is seen as a neutron loosely
bound to a 10Be core in its 0+ ground state. The 10Be-n
interaction is simulated by a Woods-Saxon potential plus a
spin-orbit coupling term (see Sec. IVA of Ref. [41]). The
potential is adjusted to reproduce the first three levels of the
11Be spectrum. The 1

2
+

ground state is seen as a 1s1/2 state,

whereas the 1
2

−
excited state is described by a 0p1/2 state.

This well-known shell inversion is obtained by considering a
parity-dependent depth of the central term of the potential. The
5
2

+
resonance at 1.274 MeV above the one-neutron separation

threshold is simulated in the d5/2 partial wave.
The interaction between the projectile components and

the target are simulated by optical potentials chosen in the
literature. In our calculations, we use the same potentials as in
Refs. [27,41]. As suggested in Ref. [42], the 10Be-Pb potential
is scaled from a parametrisation of Bonin et al. [43] that
describes elastic scattering of 699 MeV α particles on lead
{potential (1) in Table III of Ref. [27]}. For the 10Be-C inter-
action, we use the potential developed by Al-Khalili, Tostevin,
and Brooke, which reproduces the elastic scattering of 10Be
on C at 59.4 MeV/nucleon [44] (potential ATB in Table III
of Ref. [41]). In both cases, we neglect the possible energy
dependence of the potential. We model the neutron-target
interaction with the Becchetti and Greenlees parametrization
[45].

To evaluate the breakup amplitude (25) within the CCE
or the usual eikonal model, we need to compute the eikonal
phase (15). The nuclear part is evaluated numerically, whereas
the Coulomb part is obtained from its analytic expression (17).
The numerical integral over Z is performed on a uniform mesh
from Zmin = −20 fm to Zmax = 20 fm with step �Z = 1 fm.
The corrected phase (23) is then numerically expanded into
multipoles of rank λ. We use a Gauss quadrature on the
unit sphere similar to the one considered to solve the time-
dependent Schrödinger equation in Ref. [27]. The number
of points along the colatitude is set to Nθ = 12, and the

number of points along the azimuthal angle is Nϕ = 30. Unless
otherwise stated, we perform all calculations with multipoles
up to λmax = 12.

The eigenfunctions of the projectile Hamiltonian H0 (1) are
computed numerically with the Numerov method using 1000
radial points equally spaced from r = 0 up to r = 100 fm. The
same grid is used to compute the radial integral in Eq. (25).
For Coulomb (nuclear) breakup, the integrals over b appearing
in Eqs. (26) and (28) are performed numerically from b = 0
up to b = 300 (100) fm with a step �b = 0.5 (0.25) fm.

The DEA Schrödinger equation (10) is solved using the
numerical technique detailed in Ref. [27]. In this technique,
the projectile internal wave function is expanded on a three-
dimensional spherical mesh. The size of the mesh required
for the calculation varies with the projectile-target interaction.
For Coulomb- (nuclear) dominated reactions, the angular grid
contains up to Nθ = 8 (12) points along the colatitude θ ,
and Nϕ = 15 (23) points along the azimuthal angle ϕ. This
corresponds to an angular basis that includes all possible
spherical harmonics up to l = 7 (11). The radial variable r

is discretized on a quasiuniform mesh that contains Nr = 800
(600) points and extends up to rNr

= 800 (600) fm. The time
propagation is performed with a second-order approximation
of the evolution operator. It is started at tin = −20 (10) h̄/MeV
with the projectile in its initial bound state and is stopped at
tout = 20 (10) h̄/MeV (t = 0 corresponds to the time of closest
approach). The time step is set to �t = 0.02 h̄/MeV in both
Coulomb and nuclear cases.

The evolution calculations are performed for different
values of b. These values range from 0 up to 300 (100) fm with
a step �b varying from 0.5 (0.25) fm to 5.0 (2.0) fm, depending
on b. The integrals over b are performed numerically.

IV. BREAKUP OF 11Be ON Pb AT 69 MeV/NUCLEON

We first consider the breakup of 11Be on lead at
69 MeV/nucleon, which corresponds to the experiment of
Fukuda et al. at RIKEN [12]. These data are fairly well
reproduced by the DEA [29], that we use as reference
calculation. Because we focus on the comparison of models,
we do not display Fukuda’s measurements. A comparison with
experiment would indeed require a convolution of our results,
which would hinder the comparison between theories.

In Fig. 2, we compare the breakup probability (27)
obtained with the DEA (full lines), the CCE (dotted lines),
the usual eikonal model (Eik., dashed lines), and the first-
order perturbation theory (FO, dash-dotted line). They are
depicted as a function of the transverse coordinate b for
three 10Be-n relative energies: E = 0.5 MeV, 1.274 MeV
(i.e., the 5

2

+
resonance energy), and 3.0 MeV. The upper part

of Fig. 2 displays the values at small b, whereas the lower
part, in a semilogarithmic scale, focuses on the asymptotic
region.

Over the whole range in b, the CCE results are close to
the DEA ones, and this at all energies. This good agreement
suggests the Coulomb correction to be valid for simulating
the breakup of loosely bound nuclei on heavy targets. In
particular, the CCE is superimposed to the DEA results in

054602-5



P. CAPEL, D. BAYE, AND Y. SUZUKI PHYSICAL REVIEW C 78, 054602 (2008)

FO

Eik.

CCE

DEA

b (fm)

d
P

b
u
/d
E

(M
eV

−1
)

0.5 MeV

1.274 MeV3.0 MeV

403530252015105

0.06

0.05

0.04

0.03

0.02

0.01

0

b (fm)

d
P

b
u
/d
E

(M
eV

−1
)

0.5 MeV

1.274 MeV
3.0 MeV

1009080706050403020100

10−1

10−2

10−3

10−4

FIG. 2. Breakup probabilities as a function of transverse coordi-
nate b for 11Be impinging on 208Pb at 69 MeV/nucleon. Three energies
E are shown: 0.5, 1.274, and 3.0 MeV. The results are obtained within
DEA (full lines), CCE (dotted lines), usual eikonal approximation
(dashed lines), and first-order perturbation theory (dash-dotted lines).
The upper part displays the values at small b, whereas the lower part
focuses on the asymptotic region.

the asymptotic region. Obviously, the first-order perturbation
theory efficiently corrects the erroneous 1/b asymptotic
behavior of the usual eikonal model.

At small b, the agreement between the CCE and DEA seems
slightly less good. In particular, at small energy, the corrected
eikonal model overestimates the reference calculation. This is
due to the far-field approximation used in the first-order pertur-
bation correction. This approximation provides a convenient
analytical expression (24) of the phase χFO. However, it is
incorrect at small b: it diverges at b = 0. Nevertheless, in spite
of that divergence, the CCE remains close to the DEA. This
illustrates that the CCE can also be seen as a way to include
nuclear interactions within the first-order perturbation theory
and correct its ill-behavior at small b.

The breakup cross section (26) computed with the four
approximations is displayed in Fig. 3(a) as a function of the
10Be-n relative energy E after dissociation. Contributions of
the s, p, and d partial waves are shown separately in Fig. 3(b).
The small bump at about 1.25 MeV is due to the resonance in
the d5/2 partial wave. The CCE cross section (dotted line) is
nearly superimposed on the DEA one (full line). Only at low
energy is the CCE slightly larger than the reference calculation.
As mentioned earlier this effect is due to the use of the far-field
approximation to derive the perturbative correction χFO.
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FIG. 3. (a) Breakup cross sections for 11Be impinging on 208Pb
at 69 MeV/nucleon as a function of the 10Be-n relative energy E.
The results are obtained within the DEA, the CCE, the usual eikonal
approximation with upper cutoff bmax = 71 fm, and the first-order
perturbation theory with lower cutoff bmin = 15 fm. (b) Contributions
of the s, p, and d partial waves.

Interestingly, the agreement between CCE and DEA is
better for the total cross section than for each partial-wave
contribution: The CCE p contribution is larger than the DEA
one, whereas the CCE s and d contributions are smaller than
the DEA ones. We interpret this as a lack of couplings in the
continuum in the CCE. In the DEA, these couplings depopulate
the p waves toward the s and d ones without modifying the
total cross section [40]. The differences between CCE and
DEA partial-wave contributions suggest that this mechanism
is hindered in the former.

The wrong asymptotic behavior of the Coulomb eikonal
phase (17) leads to a divergence in the calculation of the
breakup cross sections. To evaluate the energy distribution
within the usual eikonal model one needs to resort to a cutoff
at large b. The cutoff proposed in Ref. [38] [see also Eq. (21)]
gives here bmax = 71 fm. The corresponding cross section is
displayed in Fig. 3(a) with a dashed line. Its energy dependence
is strongly different from that of the reference calculation:
it is too small at low energy and too large at high energy.
The p contribution, which includes the diverging term of the
Coulomb eikonal phase (17), is responsible for that ill behavior.
Contrarily, the s and d contributions are superimposed on those
of the CCE. The use of the Coulomb correction therefore
significantly improves the eikonal model when considering
collisions with heavy targets.

The cross section obtained within the first-order per-
turbation theory is shown in dot-dashed line. The nuclear
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FIG. 4. Breakup cross sections for 11Be impinging on 208Pb at
69 MeV/nucleon as a function of the 10Be-n relative parallel momen-
tum k‖. The figure displays the results obtained within the DEA, the
CCE, the usual eikonal approximation with an upper cutoff bmax =
71 fm, and the first-order perturbation theory with a lower cutoff
bmin = 15 fm.

interactions between the projectile and the target are described
by a mere cutoff at bmin = 15 fm. This value has been chosen to
fit the DEA energy distribution in the region of the maximum.
Here again, the shape of the cross section is very different
from that of the reference calculation. However, contrary to the
usual eikonal model, it decreases too quickly with the energy.
Moreover, because only the dipole term of the Coulomb
interaction is considered, only the p wave is reached from the s

ground state, whereas s and d waves are significantly populated
through nuclear interactions and higher-order effects. Note that
a smaller cutoff bmin, in better agreement with the usual choice
that corresponds to the sum of the projectile and target radii,
does not improve the agreement.

We now consider the parallel-momentum distribution [see
Eq. (28)]. This breakup observable is more sensitive to
interferences and therefore constitutes a more severe test than
the energy distribution. The parallel-momentum distribution
computed within the four models is displayed in Fig. 4.

As in the previous cases, the CCE is in excellent agreement
with the DEA in both magnitude and shape. We simply note
that the former is slightly less asymmetric than the latter,
which is probably a signature of the lack of couplings in
the continuum mentioned earlier. On the contrary, both the
usual eikonal model and the first-order perturbation theory
lead to rather poor estimates of the momentum distribution.
First, they lead to an erroneous magnitude of the cross section.
The usual eikonal model gives too large a parallel-momentum
distribution. This is related to the too-slow decrease obtained
for the energy distribution. On the contrary, the first-order
perturbation gives too low a cross section; a defect due to
the quick decrease in the energy distribution. Lowering the
cutoff bmin to cure this problem would then lead to too large an
energy distribution in the peak region. Second, none of these
models exhibits the asymmetry observed in the DEA. This
absence of asymmetry in parallel-momentum distributions of
the breakup of loosely bound projectiles is a well-known
problem of the eikonal model [46]. It is fortunate that
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FIG. 5. Convergence of the multipole expansion in λmax of the
CCE illustrated on the parallel-momentum distribution computed for
11Be impinging on 208Pb at 69 MeV/nucleon.

the Coulomb correction, combining two approximations that
lead to perfectly symmetric momentum distributions, restores
the asymmetry observed experimentally and in dynamical
calculations.

Figure 5 illustrates the convergence of the CCE with regard
to the number of multipoles considered in the breakup com-
putation. The parallel-momentum distributions obtained with
maximum multipolarities λmax = 4, 8, and 12 are displayed.
Although all three calculations are close to one another,
λmax = 4 has not yet converged: there remains some 4%
difference with the other two at the maximum. On the contrary,
the difference between λmax = 8 and 12 is insignificant
(about 0.5%). This shows the necessity to include a large
number of partial waves in dynamical calculations. Note that
other breakup observables converge with a lower number of
multipoles. In particular, the energy distribution requires only
λmax = 4 to reach satisfactory convergence.

These results confirm the ability of the Coulomb correction
to reliably reproduce breakup observables for collisions of
loosely bound projectiles on heavy targets. It reproduces
dynamical calculations with an accuracy that is unreachable
within the usual eikonal model or the first-order perturbation
theory on which it is based.

V. BREAKUP OF 11Be ON C AT 67 MeV/NUCLEON

To complete this analysis of the Coulomb correction,
we investigate its effect in nuclear induced breakup. The
usual eikonal description of such reactions is known to give
excellent results [17,29]. The Coulomb interaction between
the projectile and the target plays then a minor role and we
expect the correction (23) to have much less influence than in
the Coulomb breakup case.

For this analysis, we consider the breakup of 11Be on a
carbon target at 67 MeV/nucleon, which corresponds to the
experiment of Fukuda et al. [12]. The DEA is in excellent
agreement with Fukuda’s data [29], and therefore constitutes
our reference calculation. For the same reasons as in the
previous section, we do not compare directly our calculations
with experiment.
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FIG. 6. Breakup probabilities as a function of transverse coordi-
nate b for 11Be impinging on 12C at 67 MeV/nucleon. Three energies
E are shown: 0.5, 1.274, and 3.0 MeV. The results are obtained within
the DEA (full lines), CCE (dotted lines), and usual eikonal (dashed
lines) models. The upper part displays the values at small b, whereas
the lower part emphasizes the behavior in the asymptotic region.

Figure 6 displays the breakup probability (27) obtained
at three energies E = 0.5, 1.274, and 3.0 MeV within the
DEA (full lines), the CCE (dotted lines), and the usual
eikonal model (dashed lines). Because this reaction is nu-
clear dominated, we no longer display the result of the
first-order perturbation theory. The upper part of Fig. 6
displays the breakup probability at small b, whereas the
lower part emphasizes the asymptotic behavior of Pbu in a
semilogarithmic plot.

In this case, all three reaction models lead to similar results.
This confirms the validity of the adiabatic approximation in
the eikonal description of nuclear-dominated reactions. The
difference between the DEA and the other two models is indeed
rather small. Only at E = 1.274 MeV, the energy of the 5

2

+

resonance, does it become significant (up to 10% difference
in the vicinity of the peak at b ∼ 6 fm). This larger difference
suggests stronger dynamical effects at the resonance. This is
not very surprising because the presence of that resonance
strongly increases the breakup process [41].

Up to b = 20 fm, the usual eikonal model and the CCE
remain very close to one another, confirming the small role
played by the Coulomb interaction in the dissociation. At
larger b, where only Coulomb is significant, we observe the
1/b behavior of the usual eikonal model. This ill behavior
is corrected using the CCE, whose breakup probabilities are
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FIG. 7. Breakup cross sections for 11Be impinging on 12C at
67 MeV/nucleon as a function of the 10Be-n relative energy E. Results
are obtained within the DEA, the CCE, and the usual eikonal model
with an upper cutoff bmax = 70 fm. Contributions of the s, p, and d

partial waves are shown as well.

nearly superimposed on the DEA ones in the asymptotic
region. However, because this correction affects breakup
probabilities at two or three orders of magnitude below the
maximum, we do not expect it to significantly influence
breakup observables.

The breakup cross sections computed within the three
models are plotted as functions of the energy E in Fig. 7. The
contributions to the total cross section of the partial waves s, p,
and d are shown as well. The large peak at about 1.25 MeV
is the signature of the significant enhancement of the breakup
process by the d5/2 resonance. As suggested by the previous
result, all three models lead to very similar cross sections. This
similarity is also observed in the partial-wave contributions.
The couplings in the continuum that depopulate one partial
wave toward others, as observed in Coulomb breakup (see
Fig. 3 and Ref. [40]), are thus much smaller in nuclear-induced
breakup.

As in Fig. 6, the difference between the DEA and the other
two models is rather small. The DEA is about 6% in average
larger than the eikonal model. Note that this difference reaches
8% at the resonance energy, which is consistent with the
difference observed in Fig. 6(a). The usual eikonal and the
CCE lie even closer to one another. The relative difference
between them in the total cross section does not exceed 3%.
Even in the p partial wave, where the Coulomb correction is
performed, no significant difference is observed. This confirms
that the correction of the eikonal model is not necessary for
nuclear-dominated reactions due to the small role played by
the Coulomb interaction. The cutoff in b proposed in Ref. [38]
is therefore sufficient.

The parallel-momentum distributions obtained with the
three models are displayed in Fig. 8. As already mentioned,
this observable is a more severe test for reaction models than
the energy distribution. We observe significant differences
between the DEA and the other two models. As in the
case of Coulomb breakup, the DEA leads to an asymmetric
parallel-momentum distribution: The DEA distribution is
shifted toward negative k‖ and presents a more developed tail
on the negative k‖ side, as observed in Ref. [46].
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FIG. 8. Breakup cross sections for 11Be impinging on 12C at
67 MeV/nucleon as a function of the 10Be-n relative parallel
momentum k‖. Results are obtained within the DEA, the CCE, and
the usual eikonal approximation with an upper cutoff bmax = 70 fm.

As for the previous observable, the CCE and usual eikonal
models lead to very similar parallel-momentum distributions.
These distributions are symmetric. As mentioned earlier, this
symmetry is due to the lack of dynamical effects in the eikonal
description of reactions. Contrary to the Coulomb case, the
correction (23) is not able to restore this asymmetry. It indicates
that these dynamical effects result from the nuclear interactions
between the projectile and the target.

The convergence of the CCE model with the number of
multipoles is illustrated in Fig. 9 for the parallel-momentum
distribution. The CCE distributions computed with λmax =
4–12 are displayed. The convergence is much slower than
for Coulomb-dominated breakup (see Fig. 5). The relative
difference between λmax = 10 and λmax = 12 is indeed about
3% at the maximum. This is due to the rapid variation of
the nuclear potential with the projectile-target coordinates.
It confirms the need of a larger number of partial waves in
the dynamical calculation of nuclear-dominated dissociation.
Note that the convergence is faster for the energy distribution.
For that observable, an acceptable convergence is reached at
λmax = 6.
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FIG. 9. Convergence in λmax of the CCE illustrated on the
parallel-momentum distribution for the breakup of 11Be on 12C at
67 MeV/nucleon.

VI. CONCLUSION

The eikonal description of reactions is a useful tool to
simulate breakup and stripping reactions on light targets at
intermediate and high energies [16,17,29]. This model is
interesting because of its relative simplicity in implementation
and interpretation with respect to other elaborate models, like
CDCC or DEA. Unfortunately, it suffers from a divergence
problem associated with the treatment of the Coulomb inter-
action between the projectile and the target. This divergence
is due to the incompatibility of the adiabatic, or sudden,
approximation that is made in the usual eikonal model and the
infinite range of the Coulomb interaction. One way to cure this
problem is not to make this adiabatic approximation. This leads
to the DEA [28,29]. However, like other elaborate models, the
DEA is computationally expensive. Another way to solve this
problem is to substitute the diverging Coulomb phase at the
first order of the eikonal model by the corresponding first order
of the perturbation theory [34,35].

In this work, we study the validity of this Coulomb
correction by comparing it to the DEA, which does not present
the divergence problem of the usual eikonal model. The chosen
test cases are the dissociation of 11Be on Pb and C at about
70 MeV/nucleon. These correspond to RIKEN experiments
[11,12] that are well reproduced by the DEA [29].

In the case of the Coulomb breakup, the CCE gives results
in excellent agreement with the DEA. The combination of the
eikonal model with the first-order perturbation theory indeed
solves the divergence problem due to the Coulomb interaction.
Moreover, it correctly takes into account the nuclear interaction
between the projectile and target. The breakup observables
(energy and parallel-momentum distributions) obtained within
the DEA are accurately reproduced using the CCE. This
agreement is obtained while both CCE ingredients—usual
eikonal and first-order perturbation—fail to describe the
reaction. First, they both require a rather arbitrary upper or
lower cutoff in b so as not to diverge. Second, they do not
reproduce the shape of the breakup cross sections. In particular
the CCE gives an asymmetric parallel-momentum distribution,
in agreement with the dynamical calculation. Contrarily, both
the usual eikonal and the perturbative models lead to perfectly
symmetric distributions. This suggests that CCE restores
dynamical effects that are missing in its ingredients.

The Coulomb correction has much less effect on the
nuclear-dominated breakup. This was expected because of the
much smaller influence of the Coulomb interaction in reactions
involving light targets. This result indicates that in this case the
correction is not essential. It also implies that the CCE suffers
the same lack of dynamical effects as the usual eikonal model
in nuclear dominated reactions.

The CCE successfully combines the positive aspects of
both the eikonal model and the first-order perturbation theory.
It allows describing accurately the nuclear interaction while
correctly reproducing Coulomb-induced effects. Moreover,
the CCE restores some of the dynamical effects, which are
totally absent in other simple models. It therefore provides a
reliable description of the breakup of loosely bound projectiles
at intermediate and high energies. Its simplicity in use and
interpretation suggests it as a competitive alternative to more
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elaborate models to describe the breakup of Borromean
nuclei.
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