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Deformation of � hypernuclei
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We study the deformation property of � hypernuclei using the relativistic mean-field (RMF) method. We find
that 29

�Si and 13
�C hypernuclei have a spherical shape as a consequence of the additional � particle, whereas the

corresponding core nuclei, 28Si and 12C, are oblately deformed. Most other hypernuclei have a similar deformation
parameter to the core nucleus, in accordance with the previous study with the nonrelativistic Skyrme-Hartree-Fock
method. We discuss the sensitivity of our results to the choice of pairing interaction and to the parameter set of
the RMF Lagrangian.
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I. INTRODUCTION

It has been well known that many open-shell nuclei are de-
formed in the ground state. The nuclear deformation generates
the collective rotational motion, which is characterized by a
pronounced rotational spectrum as well as strongly enhanced
quadrupole transition probabilities. Theoretically, a standard
way to discuss nuclear deformation is a self-consistent mean-
field theory [1]. By allowing the rotational symmetry to be bro-
ken in the mean-field potential, the mean-field theory provides
an intuitive and transparent view of the nuclear deformation.
See, e.g., Ref. [2] for a recent systematic study of nuclear
deformation based on the Skyrme-Hartree-Fock-Bogoliubov
method. The state-of-the-art mean-field approach also takes
into account effects beyond the mean-field approximation,
such as angular momentum projection and configuration
mixing [3].

The self-consistent mean-field method has been extensively
applied also to hypernuclei [4–19] (see Ref. [20] for a recent
experimental review on � hypernuclei). These calculations
have successfully reproduced the mass number dependence of
� binding energy, from a light nucleus 12

�C to a heavy nucleus
208

�Pb. We notice that most of these calculations have assumed
spherical symmetry. Recently, deformed calculations have
been carried out in a broad mass region using the nonrelativistic
Skyrme Hartree-Fock method [11]. The authors of Ref. [11]
have reported that the hypernuclei they studied have a
deformation parameter similar to that of the corresponding
core nuclei with the same sign.

The aim of this article is to study the deformation property
of � hypernuclei using the relativistic mean-field (RMF)
method, as an alternative choice of effective NN and N�

interactions. The RMF method has been as successful as the
Skyrme-Hartree-Fock method in describing stable nuclei as
well as nuclei far from the stability line [21,22]. Vretenar
et al. have argued [17] that the change in the nucleon
spin-orbit potential due to the presence of � particle is much
more emphasized in the RMF approach as compared to the
nonrelativistic approach, because the spin-orbit potential in
the former approach is actually given as a sum of scalar
and vector potentials. That is, even if the change in the
mean-field potential (given as a difference of scalar and vector
potentials) is small, the change in the spin-orbit potential

may not necessarily be small. Therefore, a slightly different
conclusion from that with the nonrelativistic approach may
result concerning the structure of hypernuclei. In fact, we
demonstrate below that the shape of 12C and 28Si nuclei are
drastically changed when a � particle is added to them.

The article is organized as follows. In Sec. II, we briefly
summarize the RMF approach for � hypernuclei. In Sec. III,
we apply the RMF method to Ne and Si isotopes and discuss the
influence of � particles on the deformation of the hypernuclei.
We also discuss the deformation of 12C and 13

�C nuclei. We
summarize the article in Sec. IV.

II. RMF FOR � HYPERNUCLEI

In the RMF approach, nucleons and a � particle are
treated as structureless Dirac particles, interacting through
the exchange of virtual mesons, that is, the isoscalar scalar
σ meson, the isoscalar vector ω meson, and the isovector
vector ρ meson. The photon field is also taken into account
to describe the Coulomb interaction between protons. The
effective Lagrangian for � hypernuclei may be given as
[12–19]

L = LN + ψ̄�[γµ(i∂µ − gω�ωµ) − m� − gσ�σ ]ψ�, (1)

where ψ� and m� are the Dirac spinor and the mass
for the � particle, respectively. Notice that the � particle
couples only to the σ and ω mesons, as it is neutral and
isoscalar. Those coupling constants are denoted as gσ� and
gω�, respectively. For simplicity, we neglect the tensor �-ω
interaction. This is justified because we consider only the
ground state configuration, in which the � particle occupies
the lowest Kπ = 1/2+ single-particle state [16,17], K be-
ing the projection of the single-particle angular momentum
onto the symmetry axis. LN in Eq. (1) is the standard RMF
Lagrangian for the nucleons. See, e.g., Refs. [17,21,22] for its
explicit form.

We solve the RMF Lagrangian (1) in the mean-field
approximation. The variational principle leads to the Dirac
equation for the � particle,

[−iα · ∇ + β (m� + gσ�σ (r)) + gω�ω0(r)]ψ� = ε�ψ�,

(2)
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where ε� is the single-particle energy for the � particle state,
and to the Klein-Gordon equation for the mesons,[ − ∇2 + m2

σ

]
σ (r) = −gσρs(r) − g2 σ (r)2 − g3 σ (r)3

− gσ�ψ
†
�(r)γ 0ψ�(r), (3)[ − ∇2 + m2

ω

]
ω0(r) = gωρv(r) + gω�ψ

†
�(r)ψ�(r). (4)

To derive these equations, we have used the time-reversal
symmetry and retained only the time-like component of
ωµ [21]. ρs and ρv are the scalar and vector densities for
the nucleons, which are constructed with the spinor for
the nucleons using the so called no-sea approximation, i.e.,
neglecting the contribution from the antiparticles. gσ and gω

are the coupling constants of the nucleons to the σ and the ω

mesons, respectively, and g2 and g3 are the coefficients in the
nonlinear σ terms in LN .

We solve these equations, together with the Dirac equation
for the nucleons and the Klein-Gordon equations for the
ρ meson and the photon field, iteratively until the self-
consistency condition is achieved. For this purpose, we modify
the computer code RMFAXIAL [23] to include the � particle. In
this code, the RMF equations for the nucleons are solved with
the harmonic oscillator expansion method [21], assuming the
axial symmetry. The pairing correlation among the nucleons
is also taken into account in the BCS approximation.

With the self-consistent solution of the RMF equations, we
compute the intrinsic quadrupole moment of the hypernucleus,

Q =
√

16π

5

∫
d r [ρv(r) + ψ

†
�(r)ψ�(r)] r2Y20(r̂). (5)

The quadrupole deformation parameter β2 is then estimated
with the intrinsic quadrupole moment as [21,24,25]

Q =
√

16π

5

3

4π
(Ac + 1)R2

0 β2, (6)

where Ac = A − 1 is the mass number of the core nucleus for
the hypernucleus. We use R0 = 1.2A

1/3
c fm for the radius of

the hypernucleus.

III. QUADRUPOLE DEFORMATION OF � HYPERNUCLEI

We now numerically solve the RMF equations and discuss
the quadrupole deformation parameter of � hypernuclei. For
this purpose, we use the NL3 parameter set [26] for the RMF
Lagrangian for the nucleons, LN . For the �-meson coupling
constants, we follow Refs. [15,17] and take gω� = 2

3gω and
gσ� = 0.621gσ . The value for gω� was determined from the
naive quark model [16], while the value for gσ� was slightly
fine-tuned to reproduce the � binding energy of 17

� O [15].
For the pairing correlation among the nucleons, we employ
the constant gap approximation with the pairing gap given in
Ref. [27], that is, �n = 4.8/N1/3 and �p = 4.8/Z1/3 MeV
for the neutron and the proton pairing gaps, respectively.
(It has been known that these pairing gaps underestimate
the deformation parameter of the 20Ne nucleus when it is
calculated with the NL3 parameter set [28,29]. We therefore
arbitrarily switch off the pairing interaction when we calculate
the 20Ne and 21

�Ne nuclei.)
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FIG. 1. (Color online) Quadrupole deformation parameter for Ne
isotopes obtained with the RMF method with the NL3 parameter set.
The dashed line is the deformation parameter for the core nucleus,
while the solid line is for the corresponding hypernucleus.

Figures 1 and 2 show the deformation parameter for the
ground state of Ne and Si isotopes, respectively. The dashed
line is the deformation parameter for the even-even core nuclei,
while the solid line is for the corresponding hypernuclei. For
the Ne isotopes, the deformation parameter is always similar
between the core nucleus and the corresponding hypernucleus,
although the deformation parameter for the hypernucleus
is slightly smaller than that for the core nucleus. This is
consistent with the previous results with the nonrelativistic
Skyrme-Hartree-Fock method [11]. On the other hand, for the
Si isotopes, the deformation parameter for the 28,30,32Si nuclei
is drastically changed when a � particle is added, although
the change for the other Si isotopes is small. That is, the
28,30,32Si nuclei have oblate shape in the ground state. When a
� particle is added to these nuclei, remarkably they turn to be
spherical.

The potential energy surfaces for the 22,22+�Ne and
28,28+�Si nuclei are shown in Figs. 3 and 4, respectively.
These are obtained with the constrained RMF method with
quadrupole constraint [24,30]. The meaning of each line is the
same as in Figs. 1 and 2. To facilitate the comparison, we shift
the energy surface for the hypernuclei by a constant amount as
indicated in the figures. For the 22Ne nucleus, the prolate mini-
mum in the energy surface is relatively deep (the energy differ-
ence between the oblate and the prolate minima is 3.04 MeV
and that between the spherical and prolate configurations is
3.63 MeV), and it is affected little by the addition of the � par-
ticle. On the other hand, the energy surface for the 28Si nucleus
shows a relatively shallow oblate minimum, with a shoulder at
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FIG. 2. (Color online) Same as Fig. 1, but for Si isotopes.
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FIG. 3. (Color online) The potential energy surface for the 22Ne
(the dashed line) and 22+�Ne (the solid line) nuclei obtained with the
constrained RMF method with the NL3 parameter set. The energy
surface for 22+�Ne is shifted by a constant amount as indicated in the
figure.

the spherical configuration. The energy difference between
the oblate and the spherical configurations is 0.754 MeV
and could be easily inverted when a � particle is added.

To check the parameter set dependence of the results, we
repeat the same calculation with the NLSH parameter set [31].
The potential energy surface for the 28,28+�Si nuclei obtained
with the NLSH set is shown in Fig. 5. One sees that the potential
energy surface is qualitatively almost the same between the
NL3 and NLSH parameter sets, although the � binding energy
is slightly different. Namely, the oblate 28Si nucleus becomes
spherical in the presence of the � particle, again with the
NLSH parameter set. We also check the dependence of the
results on the treatment of the pairing correlation. For this
purpose, we perform the calculations (i) without taking into
account the pairing correlation and (ii) with the constant
force approach for the strength of the seniority pairing force.
For the latter approach, we determine Gp and Gn so that
they lead to �n = 4.8/N1/3 and �p = 4.8/Z1/3 MeV for the
ground state of each nucleus. (For instance, Gp = 17.38/A

and Gn = 15.97/A MeV for the NL3 calculation of 28Si
nucleus.) We confirm that our conclusion remains the same
for both the treatments of the pairing correlation, due to the
fact that N or Z = 14 is an oblate magic number [32]. We
therefore conclude that the � particle significantly changes
the deformation of 28Si nucleus, at least for the two parameter
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FIG. 4. (Color online) Same as Fig. 3, but for the 28Si and 28+�Si
nuclei.
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FIG. 5. (Color online) Same as Fig. 4, but obtained with the
NLSH parameter set.

sets of the RMF Lagrangian and irrespective of the treatment
of pairing correlations.

In contrast, for the 30,32Si nuclei, the dependence on the
parameter set and the treatment of pairing is much stronger. For
instance, with the NLSH parameter set, the 30+�Si is slightly
oblate and the deformation parameter is similar between 32Si
and 32+�Si. Without the pairing correlation, the deformation
is similar between 32Si and 32+�Si for both NL3 and NLSH.
Apparently more careful investigations will be necessary for
these nuclei before we can draw a definite conclusion on their
deformation parameter. We summarize our results for 28,30,32Si
and 28,30,32Si + � in Table I.

As another example that shows a large effect of � particle
on nuclear deformation, we next discuss the 12C nucleus.
For this nucleus, the calculation with the NL3 parameter set
did not converge, due to the instability of the scalar meson
field [33,34], and we here show only the results with the NLSH
set. Figure 6 shows the potential energy surface obtained
with the NLSH parameter set together with the constant gap
approximation for the pairing correlation. The behavior of
the energy surface of 12C is similar to that of 28Si shown in
Figs. 4 and 5. That is, the energy surface has a shallow oblate
minimum and a shoulder at the spherical configuration. For
this nucleus, the energy difference between the oblate and the
spherical configurations is as small as 0.13 MeV. By adding
a � particle, the oblate minimum disappears and the ground
state becomes spherical. This is exactly the same effect of the
� particle as that in the 28Si nucleus. For this light nucleus,
the pairing correlation does not play an essential role, and we
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FIG. 6. (Color online) Same as Fig. 5, but for the 12C and 12+�C
nuclei.
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TABLE I. Comparison of deformation parameters for the 28,30,32Si,28,30,32+�Si, and 12,12+�C
nuclei obtained with the NL3 and NLSH parameter sets of the RMF Lagrangian. The pairing
correlation is taken into account either in the constant � (i.e., constant pairing gap) or in the
constant G (i.e., constant pairing force) approximations for a seniority pairing interaction. The
results without the pairing correlation are also shown. The calculation with the NL3 set did not
converge for 12,12+�C and the results are not shown in the table.

Nucleus NL3 NLSH

Const. � Const. G No pairing Const. � Const. G No pairing

28Si −0.31 −0.29 −0.33 −0.29 −0.25 −0.32
28+�Si 0.00 0.01 0.00 0.00 0.00 0.00
30Si −0.19 −0.19 0.15 −0.19 −0.19 0.19
30+�Si 0.00 0.00 0.00 −0.06 0.06 0.18
32Si −0.14 −0.14 −0.20 −0.15 −0.15 −0.20
32+�Si 0.00 −0.00 −0.18 −0.11 0.12 −0.18
12C −0.25 −0.25 −0.286
12+�C 0.00 0.00 0.00

confirm that our conclusion remains the same even if we do
not include the pairing correlation (see Table I).

IV. SUMMARY

We have used the RMF theory to investigate quadrupole
deformation of � hypernuclei. We have shown that, while the
addition of the � particle does not influence much the shape
of many nuclei, 12C and 28Si make important exceptions. That
is, we have demonstrated that the � particle makes the shape
of these nuclei change from oblate to spherical. For the 28Si
nucleus, this conclusion was achieved with both the NL3 and
NLSH parameter sets of the RMF Lagrangian, although the
calculation with NL3 was not converged for the 12C nucleus
because of the instability of the σ field. We have also confirmed
that the conclusion is independent of the treatment of the
pairing correlation among the nucleons.

An important next question will be how to observe
experimentally the drastic structure change of the hypernuclei

found in this article. For this purpose, a measurement of
the energy of the first 4+ state, and thus a deviation from
a rotational spectrum, will be extremely useful. On the
other hand, the potential energy surface for the 13

�C and
29
�Si nuclei is somewhat soft and a large anharmonic effect
of collective vibration might be expected. One may thus
need to perform, e.g., a generator coordinate method (GCM)
calculation [3], on top of the mean-field calculation presented
in this article, and calculate the excitation spectra before one
can compare the theoretical results with the experimental
data.
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