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We study the influence of � hyperons on neutron drip properties in hypernuclear matter and hypernuclei,
using a microscopic �N force. We find an extension of the neutron drip line in bulk matter and stabilization of
neutron-rich isotopes due to added hyperons.
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I. INTRODUCTION

New experimental facilities under construction at GSI,
JLAB, J-PARC, and other sites will soon allow a much more
precise determination of the properties of hyperon-nucleon
and hyperon-hyperon forces than is currently available (see
Ref. [1] for a recent account of experimental data). Initial
investigations of hypernuclear physics were mainly focused
on the spectroscopy of single-� hypernuclei. The quantitative
information obtained and its theoretical analysis became one of
the most relevant tools to constrain �N interactions. Comple-
mentary to these studies, in this article we consider a particular
feature of hypernuclear physics that might be accessible in the
future [2]: The change of nuclear structure due to the effect
of added hyperons. In particular we focus on the modification
of states close to the neutron drip line when adding one or
more � hyperons to the system. A detailed study of this effect
in infinite hypernuclear matter will be complemented by the
consideration of some typical hypernuclei.

This subject has generated some theoretical interest in
the past and, apart from the exploration of hypernuclear
bulk matter [3–6], several studies of neutron-rich hypernuclei
have been performed in different theoretical frameworks. We
mention the relativistic mean-field treatments of Refs. [7]
and [8], the Skyrme-Hartree-Fock approach of Ref. [9], and
the use of a generalized mass formula in [10].

Obviously the results depend, apart from the theoreti-
cal scheme, on the nucleon-nucleon and hyperon-nucleon
interactions that are used. The purpose of our study is
to employ a microscopically derived hyperon-nucleon force
together with recent reliable nucleonic interactions suitable
for neutron-rich environments. More precisely, we use for
this purpose a microscopic in-medium �N force without
adjustable parameters, derived from Brueckner-Hartree-Fock
(BHF) calculations of isospin-asymmetric hypernuclear matter
[5,11] with the Nijmegen soft-core hyperon-nucleon potential
NSC89 [12] and the Argonne V18 nucleon-nucleon interaction
[13], including explicitly the coupling of the �N to the �N

states. This �N force is combined with a standard Skyrme
force for the nucleon-nucleon interaction to calculate the prop-
erties of homogeneous hypernuclear matter, while hypernuclei
are treated in a Skyrme-Hartree-Fock (SHF) model employing
the same interactions and including quadrupole deformations
and (nucleonic) pairing. This methodology gives access

to more refined information than just using a generalized
mass formula [10]. Furthermore, the microscopically founded
�N interaction that we use avoids the uncertainties of the
parametrizations of the �N Skyrme forces used in Ref. [9].

In the next section, we briefly review the necessary formal-
ism. The results for hypernuclear matter and hypernuclei are
presented in Sec. III and the main conclusions are summarized
in the last section.

II. FORMALISM

For the nucleonic energy density functional εN to be used
for infinite hypermatter or finite nuclei we choose a standard
Skyrme functional with the modern Skyrme forces SkI4 [14] or
SLy4 [15], which have been specifically devised with attention
to the description of neutron-rich systems. For the calculations
in the homogeneous system, we also consider alternatively
a simple analytical energy density functional developed in
Ref. [16] (hereafter referred to as Av18+3BF), which
parametrizes the results of the variational calculation in the
framework of correlated basis functions with Argonne V18

potential plus a Urbana three-body force and relativistic boost
corrections of Ref. [17]. These variational results are in very
good agreement with BHF calculations [16]. This energy
density functional is expressed in terms of a compressional
and a symmetry term:

εN = ε0(ρN ) + εsym(ρN )α2

= ρN

(
E0u

u − 2 − δ

1 + uδ
+ S0u

γ α2

)
. (1)

In this expression, ρN = ρn + ρp is the total nucleonic density,
α = (ρn − ρp)/ρN the nucleon asymmetry, and u = ρN/ρ0

the ratio of the nucleonic density to nuclear saturation density.
The best fit of the variational calculations of Ref. [17] with
this simple functional is obtained with ρ0 = 0.16 fm−3, E0 =
15.8 MeV, S0 = 32 MeV, γ = 0.6, and δ = 0.2.

The contribution to the energy density functional due to the
presence of hyperons, ε�, is written as [18]

ε� = τ�

2m�

+ εN�(ρn, ρp, ρ�)

+
(

m�

m∗
�(ρn, ρp, ρ�)

− 1

)
τ� − Cρ�

5/3

2m�

(2)
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with τ�/2m� being the � kinetic energy density, C =
(3π2)2/33/5 ≈ 5.742, and

εN� = (ρn + ρp + ρ�)
B

A
(ρn, ρp, ρ�)

− (ρn + ρp)
B

A
(ρn, ρp, 0) − Cρ�

5/3

2m�

. (3)

The last term in Eq. (2) vanishes in homogeneous hypermatter.
These energy functionals are obtained from a fit to the
binding energy per baryon, B/A(ρn, ρp, ρ�), of asymmetric
hypermatter, as generated by BHF calculations [5,11]. The
adequate � effective mass (used also in the SHF Schrödinger
equation),

m∗
�

m�

=
(

1 + U�(k(�)
F ) − U�(0)

k
(�)
F

2
/2m�

)−1

, (4)

is computed from the BHF single-particle potentials U�(k)
obtained in the same calculations. In practice we use the
following parametrizations of energy density and � effective
mass in terms of the partial densities ρn, ρp, ρ� (ρN and ρ�

given in units of fm−3, εN� in MeV fm−3):

εN� ≈ −[
368 − (1717 + 268α − 920α2)ρN

+ (2932 − 776α + 2483α2)ρ2
N

]
ρNρ�

+ [
449 − 2470ρN + 5834ρ2

N

]
ρNρ�

5/3, (5)

m∗
�

m�

≈ 1 − [1.58 + 0.12α − 0.12α2 + 0.54y − 0.14y2]ρN

+ [4.11 + 2.11α + 2.88α2 + 0.35y + 1.17y2]ρN
2

− [4.03 + 7.08α + 5.18α2 − 0.93y + 3.27y2]ρN
3,

(6)

where y = ρ�/ρN .
From the total energy density of hypernuclear matter, ε =

εN + ε�, one can then calculate the chemical potentials

µi = ∂ε

∂ρi

, i = n, p,� , (7)

and the pressure of the system,

p = ρ2 ∂

∂ρ

ε

ρ
, ρ = ρN + ρ� . (8)

Regarding the description of hypernuclei, we use the SHF
formalism developed in Refs. [18–20], using the �N energy
density functional Eq. (2) together with the same nucleonic
Skyrme force as in infinite hypermatter. This formalism
reproduces fairly well the binding energies and single-particle
levels of � hypernuclei and can thus be considered sufficiently
reliable for our purpose. Microscopic calculations of the �

self-energy for finite nuclei in certain simple cases (closed
shells) and using realistic NN [13] and YN [12] interactions
are also available and provide good agreement with the
single-particle levels of � hypernuclei [21].

In Ref. [20], the energy density functional has been
extended to arbitrary nuclear asymmetry, since we are now
interested in very neutron-rich nuclei. Furthermore, modern
nucleonic Skyrme forces (SkI4 [14] or SLy4 [15]) suitable for

this situation are now used and we include, as already said, the
effects of quadrupole deformation and (nucleonic) pairing.

III. RESULTS

A. Hypernuclear matter

We are mainly interested in the neutron drip properties,
determined by the vanishing of the neutron chemical potential,
of asymmetric hypermatter characterized by the total baryonic
density ρN , the nucleon asymmetry α, and the presence of a
certain amount of �’s described by ρ�. We consider the case
of saturated hypermatter with vanishing pressure as it is the
most significant situation for the analysis of finite nuclei.

Figure 1 shows the different chemical potentials, µn

and µp in the left panel and µ� in the right panel, as
a function of nucleon asymmetry for different fixed �

densities (ρ� = 0.0, 0.02, 0.04 fm−3) under the condition of
vanishing pressure, obtained with the SLy4 force together
with the parametrization of Eq. (5) to describe the nucleonic
and the hyperonic contributions, respectively. As expected,
the proton chemical potential decreases with the nuclear
asymmetry, while the neutron chemical potential increases,
and the crossing with zero defines the maximum (neutron
drip) asymmetry for a given value of ρ�. The neutron drip
asymmetry increases with the presence of �’s, which act as an
additional source of attraction for neutrons. One thus expects
that for finite nuclei the presence of one or more �’s should
translate in an increment of the number of neutrons that a
nucleus can support.

When the nucleon asymmetry vanishes, µn and µp coincide
if ρ� = 0. However, the presence of ρ� produces an isospin
breaking asymmetry (induced by the underlying NSC89
potential [12]) and the chemical potentials of neutrons and
protons become different even at α = 0, µp being slightly
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FIG. 1. (Color online) Neutron, proton, and lambda chemical
potentials at zero pressure as a function of the nucleon asymmetry for
different values of ρ�, obtained with the SLy4 interaction together
with the parametrization of Eq. (5). µn and µp are shown in the
left panel, while µ� is plotted in the right panel. The solid, dotted,
and dashed lines correspond to ρ� = 0.0, 0.02, and 0.04 fm−3,
respectively.
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more attractive than µn, which is changing very little with ρ�

for low asymmetries.
The � chemical potential at ρ� = 0 (impurity case) has

typical values of about −27 MeV (hyperon well depth), and
becomes more repulsive when ρ� increases, mainly due to
the increase of the Fermi motion of the �’s and the fact
that some of the �N bonds are replaced by �� bonds.
For all values of ρ� the dependence of µ� on the nucleon
asymmetry is very smooth, presenting a shallow maximum
at low asymmetries. For ρ� ≈ 0.04 fm−3 the � chemical
potential becomes positive and no more �’s can be bound
by the matter. However, this � drip point is in practice
unreachable, because �� → �N conversion sets in before
[4,5].

One should keep in mind the condition of zero pressure
along the curves, such that each asymmetry corresponds to
a different total density. In addition, for a given asymmetry,
the different values of ρ� correspond also to different values
of the nucleonic density. Figure 2 illustrates this condition by
showing the saturation baryon density as a function of nucleon
asymmetry for several values of ρ�, obtained with SLy4 for
the nucleonic energy density. One observes that the total
baryon density at zero pressure decreases with the asymmetry,
due to the increment of the Fermi motion and pressure
and concurrent reduction of the attractive interaction energy
with the asymmetry. Therefore the total density decreases to
keep the pressure equal to zero. On the other hand, the increase
of the total density with the � partial density can be understood
using the same type of arguments, i.e., the presence of �’s
decreases the Fermi motion and therefore one needs to increase
the density in order to keep the pressure constant. For each
value of ρ�, the curve is shown up to the nucleon asymmetry
corresponding to the neutron drip condition.

As expected, this asymmetry increases with ρ�, as can
be seen in Fig. 3, where we show the maximum nucleon
asymmetry corresponding to the neutron drip condition, as a
function of ρ� for the three different interactions considered in
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FIG. 2. (Color online) Total baryon density at zero pressure as a
function of the nucleon asymmetry for different values of ρ�, obtained
with the SLy4 interaction for the nucleonic energy density. Going
from low to high densities, the different curves correspond to ρ� =
0.0, 0.01, 0.02, 0.03, 0.04 fm−3.
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FIG. 3. (Color online) Maximum nucleon asymmetry (neutron
drip asymmetry) as a function of ρ� for three different nucleonic
interactions: SLy4 (dotted line), SkI4 (dashed line), and Av18+3BF
(solid line).

the paper. The results provided by the Av18+3BF and SLy4 are
very similar, while SkI4 produces a slightly larger maximum
asymmetry. The relevant fact is that the maximum asymmetry
increases with ρ�; this increment at the � drip point ρ� ≈
0.04 fm−3 is about 18%, 16%, and 23% for Av18+3BF, SLy4,
and SkI4, respectively. We remark that qualitatively similar
results were obtained in Ref. [3], employing various hyperonic
Skyrme forces.

Since in our case all calculations are performed using the
same hyperon-nucleon interaction, the differences are due
to the different NN interactions. The larger values of the
maximum nucleon asymmetry associated to SkI4 can be easily
understood by examining the symmetry energy of nuclear
matter shown in Fig. 4. In fact in the region of interest, up
to ρN ≈ 0.2 fm−3, SLy4 and Av18+3BF provide very similar
results for the symmetry energy, which are systematically
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FIG. 4. (Color online) Symmetry energy of nuclear matter for the
three different NN interactions used in the paper: SLy4 (dotted line),
SkI4 (dashed line), and Av18+3BF (solid line).
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larger than those of SkI4. Therefore the latter interaction
facilitates the creation of larger nuclear asymmetry.

It is not easy from these bulk matter results to make
quantitative predictions on how the presence of one or more
�’s will affect the neutron drip line in the case of finite nuclei,
due to the presence of shell structure, pairing, and deformation
in that more complex environment. In any case the effect in
homogeneous matter seems sizable enough to motivate explicit
calculations with finite nuclei. They will be discussed in the
next section.

B. Hypernuclei

The influence of a few hyperons on the nucleonic structure
of a nucleus is usually small: From Fig. 1 we deduce shifts
(additional attraction) of the order of 1 MeV for the neutron
and proton chemical potentials in the presence of typical �

densities of the order of 0.01 fm−3 in a hypernucleus. In
order to find appreciable effects we therefore focus on nuclei
close to the neutron drip line where the highest (partially)
occupied neutron single-particle level is very weakly bound or
where additional bound states can be expected with little added
attraction, in particular we perform an exploratory study of the
neutron-rich isotopes of beryllium and oxygen. In this case the
addition of �’s might stabilize an otherwise unbound neutron
level and thus allow the existence of new isotopes or extend
the neutron drip point. [By existence we mean the fulfillment
of two simultaneous conditions in our model: (i) A solution
of the SHF Schrödinger equation with negative single-particle
energies for all occupied neutron levels. (ii) This solution lies
in a (local) minimum of the energy vs. deformation plot.]
Furthermore the lifetime of very short-lived isotopes (neutron
emitters beyond the drip line) might be increased (up to the
typical hypernucleus lifetime of the order of 100 ps) and
neutron halo features might be either augmented or reduced
with respect to the parent nucleus.

In the theoretical treatment the same features might be
caused by relaxing the constraint of spherical symmetry and
performing deformed SHF calculations instead of spherical
ones. It is thus essential to properly take into account this
competing effect. In order to remain realistic, we compare in
the following ordinary nuclei and double-lambda hypernuclei,
which is the maximum that is perhaps experimentally feasible.

We begin in Fig. 5 with the complete chain of Be
isotopes and their properties obtained with the SLy4 force,
namely the neutron single-particle energies (upper panel),
the total binding energies (middle panel), and (lower panel)
the quadrupole deformation parameter β2 =√

π
5

〈2z2−r2〉
〈z2+r2〉 in

cylindrical coordinates. With the SLy4 Skyrme force we find
beryllium isotopes with N � 8 and N = 10, 11, 12, 14, 16.
The neutron drip defined by the minimum of the B vs. N curve
lies at 12Be, and the heavier isotopes (N > 8) are thus unstable
with respect to one or two neutron emission. Experimentally
the isotopes up to 16Be are known [22] and 15Be and 16Be may
decay via neutron emission and are therefore very short-lived.
The heaviest isotopes are extremely unstable due to the
very small binding energies of the highest occupied neutron
single-particle state. (The neutron Fermi energy is indicated by

N

FIG. 5. (Color online) Neutron single-particle levels (upper
panel), binding energies (middle panel), and quadrupole deformations
(lower panel) of several Be isotopes, obtained with the SLy4 force.
The (red) dashed line indicates the neutron Fermi energy.

a red-dashed line in the figure.) We find in fact that the isotopes
in the range 8 < N < 16 only exist due to the deformation of
the nucleus; in spherical calculations the highest neutron level
is unbound in these cases. In addition, N = 14 and N = 16
are metastable deformed states, i.e., they lie in local minima of
the energy vs. deformation plot, whereas in the global minima
their highest neutron levels would be unbound. Finally, the
odd nuclei N = 9, 13, 15 do not exist due to pair breaking.

The plot thus demonstrates the importance and interplay of
deformation and pairing for weakly bound isotopes close to
the drip line. In order to study these aspects and the effect of
added hyperons in more detail, we show in Fig. 6 the energy of
the highest (partially) occupied neutron 1d5/2 single-particle
level in several Be isotopes without �’s and with two �’s
and with or without deformation, obtained using the SLy4
force. We note that in general the addition of �’s as well as
allowing deformation increases clearly the neutron binding
energy. More precisely, in the undeformed case without �’s
only the isotopes N � 8 and N = 16 exist, while the addition of
two �’s stabilizes also N = 14. With deformation the isotopes
N � 8 and N = 10, 11, 12, 14, 16 exist, and the addition of �’s
substantially augments their binding energies and allows also
the N = 9, 13 nuclei, overcoming the pair breaking effect.
Thus, even if in this case the neutron drip point N = 8
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FIG. 6. (Color online) Upper panel: Energy of the highest
(partially) occupied neutron 1d5/2 single-particle level of several
beryllium isotopes containing no (solid lines) or two (dotted lines)
�’s. Deformed (black) and undeformed (green) SHF calculations
with the SLy4 force are compared. Lower panel: Quadrupole
deformation of the (hyper)nucleus.

(minimum of the B vs. N curve for Be) is not shifted, the two
short-lived isotopes N = 9, 13 are obtained by the addition of
two lambdas.

On the contrary, the same calculations using the SkI4 force
yield the neutron drip at N = 8 and with two �’s also N = 10
exists. No other isotopes with N > 8 are found in this case.
This demonstrates the strong dependence of the predictions on
the nuclear Skyrme forces used, which are mainly constrained
by nuclear data far from the drip line. Nevertheless, the main

qualitative effect of added hyperons is clearly demonstrated:
nuclei close to the drip line are stabilized and new isotopes are
potentially made available.

In Fig. 7 we show the equivalent results for oxygen nuclei.
In this case all isotopes up to N = 20 exist with both Skyrme
interactions. The deformations are very small and not shown
here. One observes clearly the attractive effect of the two �’s
on the neutrons, even if no new isotopes are made available.
The shifts of the neutron single-particle levels are slightly
smaller than for Be nuclei, because the � partial densities are
smaller in the larger O nucleus.

The lower panels of the figure show the one-neutron
separation energies computed from the binding energies,
Sn = B(N,Z) − B(N − 1, Z). The difference between Sn and
−en is due to the rearrangement of the core (including the
change of deformation) of the two nuclei involved. In general
the separation energies are slightly smaller in magnitude than
the single-particle energies, in particular, Sn can become
negative while the valence neutrons are still all bound. For
our purpose, however, the changes of both quantities due to
the addition of two �’s are very similar and of the order
of some hundreds of keV. Comparing with the experimental
values (red-dashed lines) one sees that also in this case
neither of the two Skyrme forces can give a really satisfactory
description of the neutron-rich isotopes. In particular, the
theoretical predictions give positive separation energies up
to N = 20, whereas experimentally the neutron drip point
is N = 16 [22,23]. (Note, however, that for N = 17, . . . , 20
the “experimental” data involve systematic extrapolations, see
Ref. [22].) However, this deficiency is not thought to affect
significantly the energy gain due to the addition of two �’s
extracted from the plotted results.

Confronting the results obtained with the two Skyrme
forces, one notes that the valence neutrons in the heaviest
isotopes (N > 16) are slightly more bound with the SkI4
force, whereas the opposite is true for the lighter isotopes. This
demonstrates the importance of finite-size effects beyond the
indications given by the nuclear matter results, where the SkI4
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FIG. 7. (Color online) Energy of the highest
(partially) occupied neutron single-particle level
(upper panels) and one-neutron separation ener-
gies (lower panels) of several oxygen isotopes
containing no (solid lines) or two (dotted lines)
�’s, using the SLy4 (left panels) and the SkI4
(right panels) nucleonic Skyrme forces. The (red)
dashed lines indicate experimental data from
Ref. [22].
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symmetry energy is the smaller one. In particular the spin-orbit
parts (and their isospin dependence) of the two Skyrme forces
are very different, have no influence on the nuclear matter
results, but play an important role in light nuclei.

IV. CONCLUSIONS

We studied the effect of adding � hyperons to nuclear mat-
ter or finite nuclei, in particular in view of the modification of
the neutron drip properties. We used a deformed Hartree-Fock
approach with a microscopic in-medium �N force derived
from BHF calculations of hypernuclear matter, together with
the modern nucleonic SkI4 or SLy4 Skyrme forces, including
nucleonic pairing correlations. The effect is particulary strong
in light nuclei due to the relatively high � partial densities
involved, and might stabilize otherwise unbound isotopes, or
increase the lifetime of existing ones beyond the neutron drip
line. This has been demonstrated explicitly in exploratory

calculations of neutron-rich beryllium and oxygen isotopes.
Clearly, the quantitative results depend on the �N force and
in particular on the nucleonic force used, which should be
refined in the future for these exotic situations in order to allow
more precise predictions, possibly within a more sophisticated
theoretical framework suited for the delicate problem of paired
weakly bound halo states [24].
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