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Abundance of ground states with positive parity
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We investigate analytically and numerically a random-matrix model for m fermions occupying �1 single-particle
states with positive parity and �2 single-particle states with negative parity and interacting through random
two-body forces that conserve parity. The single-particle states are completely degenerate and carry no further
quantum numbers. We compare spectra of many-body states with positive and with negative parity. We show
that in the dilute limit defined by m, �1,2 → ∞ and m/�1,2 → 0, ground states with positive and negative parity
occur with equal probability. Differences in the ground-state probabilities are, thus, a finite-size effect and are
mainly due to different dimensions of the Hilbert spaces of either parity.
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I. MOTIVATION AND AIM

Johnson et al. [1] observed that in the two-body random
ensemble (TBRE) of the nuclear shell model, ground states
with spin zero occur much more frequently than expected from
their statistical weight. That observation caused considerable
theoretical activity (see the reviews in Refs. [2,3]). A similar
preponderance for states with positive parity was found in
Ref. [4]. We wish to explore the reason for that preponderance.
We focus attention on parity (rather than spin) because that
quantum number is analytically more easily accessible. We
use a model with spinless fermions that interact via random
two-body forces. The degenerate single-particle states carry
no orbital angular momentum quantum number but have either
positive or negative parity. The model is a modified version
of EGOE(2), the embedded two-body ensemble of Gaussian
random matrices [5]. We investigate the model by using both an
analytical approach and numerical simulations. The analytical
approach evaluates traces of powers of the Hamiltonian up
to very high order and uses results of Refs. [6,7] to estimate
the position of the ground state. The numerical simulations
involve diagonalization of matrices drawn at random from the
ensemble and can be done only for Hamiltonian matrices of
sufficiently small dimension, whereas the analytical approach
is suited also for large-dimensional matrices.

To motivate our focus on traces of the Hamiltonian, we
recall in Sec. II how the ground-state energy was estimated
in Refs. [6,7]. That method is used and compared with
numerical simulations in Sec. V. Prior to that, we define
our model in Sec. III. The first and second moments of the
Hamiltonian are calculated for both parities in Sec. IV. After
presenting our numerical results, we investigate our model in
the limit of large matrix dimension N in Sec. VI. We show
that for N → ∞, both the first and second moments of the
Hamiltonian have the same values for either parity. Combining
that fact with the well-known result [5] that the shape of the
average spectrum is asymptotically (N → ∞) Gaussian, we
conclude that ground states of either parity are equally likely. In
Sec. VII we show that the strong correlations found asymptot-
ically for the first and second moments extend to higher (but

not to all) moments. We discuss the implications of that result
for correlations between the spectral fluctuation properties of
positive- and negative-parity states and show that the result
reinforces our conclusions. We conclude with a summary and
discussion.

II. SIMPLE ESTIMATE FOR THE GROUND-STATE
ENERGY

To estimate the ground-state energy, we use with proper
modifications the method introduced for states with spin in
Ref. [6] and improved in Ref. [7]. Let H denote the Hamilto-
nian of the system, P± the projectors onto states with positive
and negative parity, and Eground(±) the energies of the lowest
state with positive or negative parity. We estimate Eground(±)
by writing

Eground(±) = nTr(HP±) − r±σ±. (1)

The symbol nTr stands for the normalized trace (the actual
trace divided by the dimension N± of Hilbert space), and the
width σ is defined as

σ 2
± = nTr(H 2P±). (2)

In Ref. [6], the analog of Eq. (1) was used without the
first term on the right-hand side. That term was added in
Ref. [7]. It represents the fluctuations of the centroid of the
spectrum. Inclusion of that term improves the agreement with
numerical simulations: the fluctuations of the parameter r are
reduced. Equation (1) has a simple interpretation: shell-model
spectra have nearly Gaussian shape [5] and thus are essentially
characterized by the centroid and the width. The distance of
the lowest state from the centroid of the spectrum is given by
a multiple r± of the width. In the case of spin, the stochastic
fluctuations of r were found to be small, so that r can be
considered a constant. In Ref. [7], an explicit expression for r

was obtained by fitting the results of numerical calculations.
It reads

r = √
0.99 ln N + 0.36. (3)
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We actually prefer to determine r± by a fit to numerical data. In
Sec. V we compare the result with Eq. (3). We also compare
the numerically determined probability of finding a ground
state of given parity with predictions derived from Eqs. (1)
and (2).

III. MODEL

We consider a system of m spinless fermions distributed
over a set of degenerate single-particle states. There are �1

states of positive parity and �2 states of negative parity, with
associated creation and destruction operators a

†
1µ, a1µ (µ =

1, 2, . . . , �1) and a
†
2ρ, a2ρ (ρ = 1, 2, . . . , �2), respectively. The

single-particle states carry no further quantum numbers. The
many-body states of the system have positive (negative) parity
if the number m2 of fermions in negative-parity states is even
(odd). The total numbers N+ and N− of positive- and negative-
parity states are

N+ =
∑

m1,m2

δm1+m2,mδm2,even

(
�1

m1

)(
�2

m2

)
,

(4)

N− =
∑

m1,m2

δm1+m2,mδm2,odd

(
�1

m1

)(
�2

m2

)
.

The Hamiltonian H is a sum of two-body interactions that
conserve parity,

H = 1

4

∑
µνρσ

V (1)
µν;ρσ a

†
1µa

†
1νa1σ a1ρ + 1

4

∑
µνρσ

V (2)
µν;ρσ a

†
2µa

†
2νa2σ a2ρ

+ 1

4

∑
µνρσ

X(1)
µν;ρσ (a†

1µa
†
1νa2σ a2ρ + a

†
2ρa

†
2σ a1νa1µ)

+
∑
µνρσ

X(2)
µν;ρσ a

†
1µa

†
2ρa2σ a1ν . (5)

The ranges of the summation indices depend in an obvious
way on the creation operators and matrix elements on which
they appear. The two-body matrix elements obey the symmetry
relations

V (1)
µν;ρσ = V (1)

ρσ ;µν = −V (1)
νµ;ρσ = (

V (1)
µν;ρσ

)∗
,

V (2)
µν;ρσ = V (2)

ρσ ;µν = −V (2)
νµ;ρσ = (

V (2)
µν;ρσ

)∗
,

(6)
X(1)

µν;ρσ = −X(1)
νµ;ρσ = −X(1)

µν;σρ = (
X(1)

µν;ρσ

)∗
,

X(2)
µν;ρσ = (

X(2)
µν;ρσ

)∗
.

An ensemble of Hamiltonians is obtained when we consider
the matrix elements in Eq. (5) as Gaussian-distributed random
variables. We assume that the V (1)

µν;ρσ are not correlated with

the V
(2)
µ′ν ′;ρ ′σ ′ and likewise for the pairs V (i)

µν;ρσ ,X
(k)
µ′ν ′;ρ ′σ ′ for

i = 1, 2 and k = 1, 2, and for the pair X(1)
µν;ρσ ,X

(2)
µ′ν ′;ρ ′σ ′ . All

matrix elements have zero mean values. For the variances, we
define pairs of indices α, β by writing α = {µν} and likewise
for β, and have for i = 1, 2,

V
(i)
α;βV

(i)
α′;β ′ = v2(δαα′δββ ′ + δαβ ′δβα′),

(7)
X

(1)
α;βX

(1)
α′;β ′ = v2δαα′δββ ′ .

The bar denotes the average over the ensemble, and δαβ stands
for (δµµ′δνν ′ − δµν ′δνµ′), etc. The matrix elements X(2) do not
possess any symmetry properties and obey

X
(2)
µν;ρσ X

(2)
µ′ν ′;ρ ′σ ′ = v2δµµ′δνν ′δρρ ′δσσ ′ . (8)

Without loss of generality, we put v2 = 1 in the sequel.

IV. CALCULATION OF nTr(H) AND nTr(H2)

These two traces are needed for the evaluation of Eqs. (1)
and (2). The only nonvanishing contributions to the two traces
arise from terms in H and in H 2 which leave the number
of fermions in every single-particle state unchanged. These
terms are found by using Wick contractions of the creation
and annihilation operators in the expressions for H and H 2.
We indicate the omission of all other terms by an arrow. For
H we obtain

H → 1

2

∑
µν

V (1)
µν;µνn1µn1ν + 1

2

∑
µν

V (2)
µν;µνn2µn2ν

+
∑
µρ

X(2)
µµ;ρρn1µn2ρ. (9)

Here niµ is the number operator for state (iµ) with i = 1, 2.
The diagonal element of n1µn1ν taken between one of

the states with m1 fermions in positive-parity single-particle
states and m2 fermions in negative-parity single-particle states
vanishes unless both states (1µ) and (1ν) are occupied,
in which case the matrix element equals unity. There are
altogether

(
�1−2
m1−2

)(
�2

m2

)
such states. We consider separately the

normalized traces over the positive- and negative-parity many-
body states. We recall that P± are the projection operators
onto the many-body states with positive and negative parity.
We obtain

nTr(HP+)

= 1

2N+

∑
µν

V (1)
µν;µν

∑
m1m2

δm1+m2,m δm2,even

(
�1 − 2

m1 − 2

)(
�2

m2

)

+ 1

2N+

∑
µν

V (2)
µν;µν

∑
m1m2

δm1+m2,mδm2,even

(
�1

m1

)(
�2 − 2

m2 − 2

)

+ 1

N+

∑
µρ

X(2)
µµ;ρρ

∑
m1m2

δm1+m2,mδm2,even

(
�1 − 1

m1 − 1

)

×
(

�2 − 1

m2 − 1

)
,

nTr(HP−)

= 1

2N−

∑
µν

V (1)
µν;µν

∑
m1m2

δm1+m2,m δm2,odd

(
�1 − 2

m1 − 2

)(
�2

m2

)

+ 1

2N−

∑
µν

V (2)
µν;µν

∑
m1m2

δm1+m2,mδm2,odd

(
�1

m1

)(
�2 − 2

m2 − 2

)
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+ 1

N−

∑
µρ

X(2)
µµ;ρρ

∑
m1m2

δm1+m2,mδm2,odd

(
�1 − 1

m1 − 1

)

×
(

�2 − 1

m2 − 1

)
. (10)

Both traces are seen to depend on the same three uncorrelated
random variables,

z1 =
∑
µν

V (1)
µν;µν , z2 =

∑
µν

V (2)
µν;µν , z3 =

∑
µρ

X(2)
µµ;ρρ.

(11)

As sums of uncorrelated random variables with equal
Gaussian distributions, z1, z2, and z3 have Gaussian dis-
tributions with mean values zero and second moments
[�1(�1 − 1)/4], [�2(�2 − 1)/4], and �1�2, respectively. Thus,
the distribution of the traces in Eq. (10) is completely known.

The pattern that emerges in Eq. (10) will be seen to apply
quite generally to traces of arbitrary powers of H : the traces
are sums of products. The first factor in each product depends
only on the random variables and is the same for both parities.
The second factor differs for states of positive and states of
negative parity but is independent of the random variables.
That general pattern will be decisive for our understanding of
the preponderance of ground states with positive parity.

We turn to Tr(H 2). The following terms yield nonzero con-
tributions: the square of the first term on the right-hand side of
Eq. (5), the square of the second term, the product of the first
and second terms, the square of the third term, and the square
of the fourth term. We consider these terms in turn.

In the square of the first term, there appear the two matrix
elements V (1) with their associated creation and annihilation
operators. Wick contraction is possible in three different ways:
(i) We contract the two creation and the two annihilation
operators associated with the same matrix element. That is the
same procedure as used in formula (9) and yields a total of four
contraction patterns. (ii) We contract one of the two creation
operators associated with the first matrix element with an
annihilation operator associated with the same matrix element,
and the other with an annihilation operator associated with the
second matrix element. That yields a total of 16 contraction
patterns. (iii) We contract the two creation operators associated
with the first matrix element with the two annihilation oper-
ators associated with the second matrix element. That yields
a total of four contraction patterns. It is straightforward to
check that because of the fermionic anticommutation rules and
the symmetry properties of Eq. (6), the different contraction
patterns in each of the three groups yield identical results. For
the square of the second term on the right-hand side of Eq. (5),
these considerations apply likewise. For the product of the
first and second terms, only the contraction patterns used in
formula (9) are possible. In the square of the third term on
the right-hand side of Eq. (5), only the product of the two
terms in round brackets gives a nonvanishing contribution,
with obvious contraction patterns. In the square of the fourth
term, the same three possibilities occur as in the square of the

first term. Altogether this yields

H 2 →

 2∑

i=1

∑
αβ

1

2
V

(i)
αβ;αβniαniβ




2

+
2∑

i=1

∑
αββ ′

V
(i)
αβ;αβV

(i)
αβ ′;αβ ′niαniβniβ ′

+
2∑

i=1

∑
αβα′β ′

V
(i)
αβ;α′βV

(i)
αβ ′;α′β ′niαniβ(1 − niα′ )niβ ′

+
2∑

i=1


1

2

∑
αβ

(
V

(i)
αβ;αβ

)2
niαniβ

+
∑
αβα′

(
V

(i)
αβ;α′β

)2
niαniβ(1 − niα′ )

+ 1

4

∑
αβα′β ′

(
V

(i)
αβ;α′β ′

)2
niαniβ(1 − niα′ )(1 − niβ ′ )




+ 1

4

∑
αβα′β ′

(
X

(1)
αβ;α′β ′

)2
(n1αn1β(1 − n2α′ )(1 − n2β ′ )

+ (1 − n1α)(1 − n1β)n2α′n2β ′ )

+
(∑

µρ

X(2)
µµ;ρρn1µn2ρ

)2

+
∑
µνρσ

X(2)
µν;ρρX

(2)
νµ;σσ n1µ(1 − n1ν)n2ρn2σ

+
∑
µνρσ

X(2)
µµ;ρσX(2)

νν;σρn1µn1νn2ρ(1 − n2σ )

+
∑
µνρσ

X(2)
µν;ρσ X(2)

νµ;σρn1µ(1 − n1ν)n2ρ(1 − n2σ ).

(12)

Before working out the trace of this expression, it is useful
to rearrange it in such a way that in all summations, no two
summation indices take the same values. This yields

H 2 →
2∑

i=1

(
2
∑
αβ

(
V

(i)
αβ;αβ

)2
niαniβ

+ 2
∑
αββ ′

(
V

(i)
αβ;β ′β

)2
niαniβ(1 − niβ ′)

+ 2
∑
αββ ′

(1 − δββ ′ )V (i)
αβ;αβV

(i)
αβ ′;αβ ′niαniβniβ ′

+ 1

4

∑
αβα′β ′

(
V

(i)
αβ;α′β ′

)2
niαniβ(1 − niα′ )(1 − niβ ′)

+ 1

4

∑
αβα′β ′

(1 − δαα′ )(1 − δαβ ′ )(1 − δβα′ )(1 − δββ ′ )

×V
(i)
αβ;αβV

(i)
α′β ′;α′β ′niαniβniα′niβ ′

+
∑

αβα′β ′
(1 − δαα′ )(1 − δββ ′ )V (i)

αβ;α′βV
(i)
αβ ′;α′β ′
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× niαniβ(1 − niα′ )niβ ′

)

+ 1

2

∑
αβα′β ′

V
(1)
αβ;αβV

(2)
α′β ′;α′β ′n1αn1βn2α′n2β ′

+ 1

4

∑
αβα′β ′

(
X

(1)
αβ;α′β ′

)2
(

n1αn1β (1 − n2α′ )(1 − n2β ′ )

+ (1 − n1α)(1 − n1β)n2α′n2β ′

)

+
∑
µρ

(
X(2)

µµ;ρρ

)2
n1µn2ρ

+
∑
µµ′ρ

(1 − δµµ′)X(2)
µµ;ρρX

(2)
µ′µ′;ρρn1µn1µ′n2ρ

+
∑
µρρ ′

(1 − δρρ ′ )X(2)
µµ;ρρX

(2)
µµ;ρ ′ρ ′n1µn2ρn2ρ ′

+
∑

µµ′ρρ ′
(1 − δµµ′)(1 − δρρ ′)X(2)

µµ;ρρ

×X
(2)
µ′µ′;ρ ′ρ ′n1µn1µ′n2ρn2ρ ′

+
∑
µνρ

X(2)
µν;ρρX

(2)
νµ;ρρn1µ(1 − n1ν)n2ρ

+
∑
µνρσ

(1 − δρσ )X(2)
µν;ρρX

(2)
νµ;σσ n1µ(1 − n1ν)n2ρn2σ

+
∑
µρσ

X(2)
µµ;ρσ X(2)

µµ;σρn1µn2ρ(1 − n2σ )

+
∑
µνρσ

(1 − δµν)X(2)
µµ;ρσX(2)

νν;σρn1µn1νn2ρ(1 − n2σ )

+
∑
µνρσ

X(2)
µν;ρσ X(2)

νµ;σρn1µ(1 − n1ν)n2ρ(1 − n2σ ).

(13)

In calculating the trace, we observe that the number of
nonequal summation indices in the terms on the right-hand
side of Eq. (13) determines the weight factors. The result is

nTr(H 2P+)

=
∑
m1m2

δm1+m2,mδm2,even

×
{

2

N+

∑
αβ

(
V

(1)
αβ;αβ

)2
(

�1 − 2

m1 − 2

)(
�2

m2

)

+ 2

N+

∑
αβ

(
V

(2)
αβ;αβ

)2
(

�1

m1

)(
�2 − 2

m2 − 2

)

+ 2

N+

∑
αββ ′

(1 − δαβ ′)
(
V

(1)
αβ;β ′β

)2
(

�1 − 3

m1 − 2

)(
�2

m2

)

+ 2

N+

∑
αββ ′

(1 − δαβ ′)
(
V

(2)
αβ;β ′β

)2
(

�1

m1

)(
�2 − 3

m2 − 2

)

+ 2

N+

∑
αββ ′

(1 − δββ ′)V (1)
αβ;αβV

(1)
αβ ′;αβ ′

(
�1 − 3

m1 − 3

)(
�2

m2

)

+ 2

N+

∑
αββ ′

(1 − δββ ′)V (2)
αβ;αβV

(2)
αβ ′;αβ ′

(
�1

m1

)(
�2 − 3

m2 − 3

)

+ 1

4N+

∑
αβα′β ′

(1 − δαα′ )(1 − δαβ ′)(1 − δβα′ )(1 − δββ ′ )

× (
V

(1)
αβ;α′β ′

)2
(

�1 − 4

m1 − 2

)(
�2

m2

)

+ 1

4N+

∑
αβα′β ′

(1 − δαα′ )(1 − δαβ ′)(1 − δβα′ )(1 − δββ ′ )

× (
V

(2)
αβ;α′β ′

)2
(

�1

m1

)(
�2 − 4

m2 − 2

)

+ 1

4N+

∑
αβα′β ′

(1 − δαα′ )(1 − δαβ ′)(1 − δβα′ )(1 − δββ ′ )

×V
(1)
αβ;αβV

(1)
α′β ′;α′β ′

(
�1 − 4

m1 − 4

)(
�2

m2

)

+ 1

4N+

∑
αβα′β ′

(1 − δαα′ )(1 − δαβ ′)(1 − δβα′ )(1 − δββ ′ )

×V
(2)
αβ;αβV

(2)
α′β ′;α′β ′

(
�1

m1

)(
�2 − 4

m2 − 4

)

+ 1

N+

∑
αβα′β ′

(1 − δαα′ )(1 − δββ ′ )V (1)
αβ;α′βV

(1)
αβ ′;α′β ′

×
(

�1 − 4

m1 − 3

)(
�2

m2

)

+ 1

N+

∑
αβα′β ′

(1 − δαα′ )(1 − δββ ′ )V (2)
αβ;α′βV

(2)
αβ ′;α′β ′

×
(

�1

m1

)(
�2 − 4

m2 − 3

)

+ 1

2N+

∑
αβα′β ′

V
(1)
αβ;αβV

(2)
α′β ′;α′β ′

(
�1 − 2

m1 − 2

)(
�2 − 2

m2 − 2

)

+ 1

4N+

∑
αβα′β ′

(
X

(1)
αβ;α′β ′

)2

[(
�1 − 2

m1 − 2

)(
�2 − 2

m2

)

+
(

�1 − 2

m1

)(
�2 − 2

m2 − 2

)]

+ 1

N+

∑
µρ

(
X(2)

µµ;ρρ

)2
(

�1 − 1

m1 − 1

)(
�2 − 1

m2 − 1

)

+ 1

N+

∑
µµ′ρ

(1 − δµµ′)X(2)
µµ;ρρX

(2)
µ′µ′;ρρ

×
(

�1 − 2

m1 − 2

)(
�2 − 1

m2 − 1

)
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+ 1

N+

∑
µρρ ′

(1 − δρρ ′)X(2)
µµ;ρρX

(2)
µµ;ρ ′ρ ′

(
�1 − 1

m1 − 1

)

×
(

�2 − 2

m2 − 2

)

+ 1

N+

∑
µµ′ρρ ′

(1 − δµµ′)(1 − δρρ ′ )X(2)
µµ;ρρX

(2)
µ′µ′;ρ ′ρ ′

×
(

�1 − 2

m1 − 2

)(
�2 − 2

m2 − 2

)

+ 1

N+

∑
µνρ

(1 − δµν)X(2)
µν;ρρX

(2)
νµ;ρρ

(
�1 − 2

m1 − 1

)(
�2 − 1

m2 − 1

)

+ 1

N+

∑
µνρσ

(1 − δµν)(1 − δρσ )X(2)
µν;ρρX

(2)
νµ;σσ

×
(

�1 − 2

m1 − 1

)(
�2 − 2

m2 − 2

)

+ 1

N+

∑
µρσ

(1 − δρσ )X(2)
µµ;ρσX(2)

µµ;σρ

(
�1 − 1

m1 − 1

)

×
(

�2 − 2

m2 − 1

)

+ 1

N+

∑
µνρσ

(1 − δµν)(1 − δρσ )X(2)
µµ;ρσX(2)

νν;σρ

×
(

�1 − 2

m1 − 2

)(
�2 − 2

m2 − 1

)

+ 1

N+

∑
µνρσ

(1 − δµν)(1 − δρσ )X(2)
µν;ρσ X(2)

νµ;σρ

×
(

�1 − 2

m1 − 1

)(
�2 − 2

m2 − 1

)}
. (14)

For nTr(H 2P−) we find exactly the same expression except
that the second Kronecker δ in the first line on the right-hand
side of Eq. (14) is replaced by δm2,odd, and that N+ is replaced
everywhere by N−.

As in the case of Tr(H ), the trace of H 2 is a sum of terms
each of which is the product of two factors. One factor depends
only on the random variables and is the same for both parities.
The distribution of these factors can be worked out and is
not done here. Some of the factors are correlated with each
other. The other factor is a weight factor, which is a sum over
products of binomial factors. It does not depend on the random
variables and is not obviously the same for the two parities.
Our result would not apply in the case of states with spin where
the linear or bilinear forms containing the random variables
will depend on the total spin. Assuming that Eqs. (1)–(3) hold,
we conclude that a preponderance of ground states with even
parity—if it exists—can have only one of two causes: it may
be due to differences between the nonstatistical weight factors
or to differences in the scale factors r+ and r−. [We recall that
according to Eq. (3), the latter depend on the matrix dimensions
N±.]
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FIG. 1. (Color online) Scale factors r± of Eq. (1) for a system
of m = 9 fermions on �1 = 9 single-particle orbitals with positive
parity and �2 = 9 orbitals with negative parity as a function of the
ground-state energies Eground(±).

V. NUMERICAL RESULTS

For a test of Eq. (1), we perform numerical simulations.
To this end, we consider several systems that differ in the
parameters �1, �2, and m. For each set of parameters, we
set up the matrix corresponding to the Hamiltonian (5) in
a space of Slater determinants. The Gaussian-distributed
two-body matrix elements are computed by a pseudorandom
number generator, and the ground-state energies Eground(±) are
obtained from a numerical diagonalization of the Hamiltonian
matrix. For the largest dimensional matrices, we employ the
ARPACK package [8] in the diagonalization. In addition to the
ground-state energy, we also compute the normalized traces
nTr(HkP±) for k = 1, 2. Our ensemble consists of 100 random
Hamiltonians for each set of parameters �1, �2, and m, and we
record the ground-state energies Eground(±) and the first two
moments nTr(HkP±) (with k = 1, 2) of the parity-projected
Hamiltonian for each member of the ensemble. We employ
Eq. (1) and determine the scale factors r± that relate the
ground-state energy to the first and second moment of the
Hamiltonian by fit. An example is shown for the set of
parameters m = �1 = �2 = 9 in Fig. 1. The results obtained
for the scale factors (with their rms variances) are shown in
Table I. The table also shows the probability p+ that the ground
state has positive parity. Inspection of Table I shows that the
parity of the ground state is very sensitive to r±. A small
difference in the scale factors r± is more strongly correlated
with the parity of the ground state than is a small difference in
the numbers N± of many-body basis states.

Once the scale factors are determined, we can test how well
the right-hand side of Eq. (1) can be used to determine the
parity of the ground state. Our results show that the application
of Eq. (1) with an energy-independent scale factor does not
yield reliable predictions. Indeed, Fig. 1 suggests that a linear
relation r± Eground(±) = a± + b±Eground(±) should describe
the data more accurately. Again, we determine the coefficients
a± and b± by fit, and then employ the right-hand side of Eq. (1)
with the energy-dependent scale factor to determine the parity
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TABLE I. Results of numerical simulations. Here, m, �1, and �2 denote the number
of fermions and the number of single-particle levels with positive and negative parity,
respectively. N± is the number of many-body states with the indicated parity, and r± denote
the scale factors. p+ denotes the probability that the ground state has positive parity, while
p+(est) is the probability that the estimated ground state has positive parity [based on Eq. (1)
with a scale factor that is a polynomial of degree one in the energy].

�1 �2 m N+ N− r+ r− p+ p+(est)

6 6 6 452 472 2.39 ± 0.12 2.43 ± 0.12 0.18 0.00
7 7 5 1001 1001 2.42 ± 0.08 2.42 ± 0.08 0.47 0.49
7 7 6 1484 1519 2.51 ± 0.08 2.55 ± 0.08 0.20 0.03
7 7 7 1716 1716 2.61 ± 0.08 2.60 ± 0.08 0.48 0.56
9 9 5 4284 4284 2.47 ± 0.06 2.47 ± 0.06 0.55 0.54

10 8 5 4312 4256 2.48 ± 0.06 2.46 ± 0.05 0.84 1.00
9 7 8 6435 6435 2.77 ± 0.07 2.76 ± 0.08 0.54 0.58
8 8 8 6470 6400 2.78 ± 0.07 2.74 ± 0.08 0.83 1.00

10 6 8 6390 6480 2.73 ± 0.08 2.77 ± 0.09 0.18 0.00
9 9 9 24310 24310 2.90 ± 0.08 2.90 ± 0.07 0.52 0.57
8 10 9 24240 24380 2.87 ± 0.07 2.91 ± 0.07 0.20 0.00
7 11 9 24310 24310 2.88 ± 0.07 2.89 ± 0.07 0.50 0.27

of the ground state as

sign

(
nTr(HP−) − a−σ−

1 + b−σ−
− nTr(HP+) − a+σ+

1 + b+σ+

)
. (15)

Though this estimate is not correct for each individual member
of the ensemble, it yields reasonably reliable predictions for
the estimated probability p+(est) of finding a ground-state with
positive parity. Our results for this probability are shown in the
last column of Table I.

VI. DILUTE LIMIT

In canonical random-matrix theory, attention is usually
focused on the limit of large matrix dimension. We follow
suit by considering our model in the “dilute limit” [5] defined
by �1,2,m → ∞ and m/�1,2 → 0. In practice, we compute
the leading order of expressions of interest under the strong
conditions 1 � m � �1,2. We show that the weight factors
appearing in the traces of Hk with k = 1, 2 for positive and
negative parity become asymptotically equal. That statement
holds not only for �1 = �2 but also for �1 �= �2.

Equations (10) and (14) show that for the positive-parity
states, all weight factors have the general form∑

m1,m2

δm1+m2,mδm2,even
1

N+

(
�1 − α1

m1 − β1

)(
�2 − α2

m2 − β2

)
, (16)

with α1, α2, β1, β2 small positive integers. We evaluate the
sums in Eq. (16) and the corresponding sums defining N+
with the help of Stirling’s formula, n! ≈ exp{n ln n − n}. With
µ integer, we write m2 = 2µ, m1 = m − 2µ and have for the
numerator of Eq. (16) [all terms except for (N+)−1]∑

µ

exp{(�1 − α1) ln(�1 − α1) − (m − 2µ − β1)

× ln(m − 2µ − β1) − (�1 − α1 − m + 2µ + β1)

× ln(�1 − α1 − m + 2µ + β1) + (�2 − α2)

× ln(�2 − α2) − (2µ − β2) ln(2µ − β2)

− (�2 − α2 − 2µ + β2) ln(�2 − α2 − 2µ + β2)}. (17)

We write the sum as an integral over µ. The integrand assumes
its maximum value at

µ
(0)
+ = 1

2

(m − β1)(�2 − α2) + β2(�1 − α1)

�1 − α1 + �2 − α2
. (18)

With δµ = µ − µ0, expansion around the maximum yields
the negative-definite quadratic form

− 2(δµ)2

m − 2µ
(0)
+ − β1

− 2(δµ)2

�1 − α1 − m + 2µ
(0)
+ + β1

− 2(δµ)2

2µ
(0)
+ − β2

− 2(δµ)2

�2 − α2 − 2µ
(0)
+ + β2

= 1

2

(δµ)2

τ 2
. (19)

Here the last equation defines the width τ . For �1 	 1, �2 	
1, and m 	 1, we have µ0 	 1. For the dilute limit, we neglect
terms of higher order, and the resulting integral is Gaussian.
We extend the integration from −∞ to +∞. The numerator
of expression (16) becomes

√
2πτ exp{(�1 − α1) ln(�1 − α1) + (�2 − α2) ln(�2 − α2)}

× exp{−(m − 2µ
(0)
+ − β1) ln(m − 2µ

(0)
+ − β1)}

× exp{−(2µ
(0)
+ − β2) ln(2µ

(0)
+ − β2)}

× exp{−(�1 − α1 − m + 2µ
(0)
+ + β1)

× ln(�1 − α1 − m + 2µ
(0)
+ + β1)}

× exp{−(�2 − α2 − 2µ
(0)
+ + β2)

× ln(�2 − α2 − 2µ
(0)
+ + β2)}. (20)

Using the same approximations to calculate N+, we obtain
a result of the form (20) but with α1, α2, β1, β2 everywhere
(including the definitions of τ and µ

(0)
+ ) replaced by zero.

We turn to the negative-parity states. For these states,
the word “even” in Eq. (16) is replaced by “odd” and N+
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by N−. The calculation is completely analogous except for
the replacements β1 → β1 + 1 and β2 → β2 − 1. For the
maximum of the integrand, that implies that 2µ

(0)
− = 2µ

(0)
+ − 1.

As a consequence, the terms 2µ(0) + β1 and 2µ(0) − β2 have
the same values for states with positive and negative parity.
This in turn implies that the widths τ and the terms in
the exponential in expression (20) have the same values for
states with positive and negative parity. It follows that in our
approximation, every weight factor for states with positive
parity has the same value as the corresponding weight factor
for states with negative parity. This result is valid beyond the
Gaussian approximation used in obtaining Eq. (20). Indeed, the
fundamental form (17) depends on µ only through the invariant
combinations µ + β1 and µ − β2. Modifications can arise only
in cases where the limits of integration (which depend on
α1, α2, β1, and β2) play a role, i.e., for small values of �1, �2,
or m.

We have shown that in the dilute limit and for every
realization of our random-matrix model, both the first and the
second moments of H coincide in leading order for states with
positive and for states with negative parity. The same is true of
the matrix dimensions N+ and N−. Thus for every realization,
our Eqs. (1)–(3) predict equal values for the ground-state
energies for both parities. How reliable is that prediction?
We recall that in the dilute limit, the average spectrum of the
embedded random two-body ensemble [EGOE(2)] is Gaussian
[5]. The proof given in Ref. [5] applies likewise to our model.
We expect, therefore, that in the dilute limit and to a very high
degree of approximation, the spectrum of any given realization
of the ensemble also has a Gaussian shape. (For a single
realization, the shape of the spectrum is defined by taking
local averages over a number n � N± of neighboring levels.)
That expectation rests on the plausible assumption that our
random-matrix model is ergodic, at least in the dilute limit, and
implies that for every realization, our Eqs. (1)–(3) become even
better approximations as the matrix dimension increases. We
conclude that the probabilities for ground states of positive and
negative parity are equal in the dilute limit. That conclusion
holds with the following proviso. A preference for ground
states of, say, positive parity might occur if the local spectral
fluctuation properties of the two ensembles are locked in such
a way that the positive-parity ground state fluctuates more
often toward smaller energies than does its opposite number.
In the next section, we exclude that possibility. We do so by
investigating higher moments of H .

VII. SPECTRAL FLUCTUATIONS

Given the coincidence of both the first and second moments
of H for states of either parity in the dilute limit, we ask:
Does that coincidence extend to all higher moments so that
the local spectral fluctuation properties of both ensembles
are completely locked? We approach the answer by studying
higher moments of H .

We consider nTr(HkP±) for k integer and k � 3. These
traces are now shown to have the same structure as the first
and second moments of H : each trace is a sum of terms each of
which is the product of a monomial (or polynomial) of order k

in the two-body matrix elements (the same for the projectors
P+ and P−) and a weight factor that does not depend on the
random variables but may have a different value for positive
and negative parity.

We proceed as in Sec. IV but are interested only in the
general form of the result. The operator Hk is a monomial
of order k in the matrix elements V (1), V (2), X(1), X(2). Each
matrix element carries four indices. Thus, in Hk there occur
4k independent summations over single-particle level indices.
Nonvanishing contributions to the trace of Hk arise only from
Wick-contracted terms. Each pairwise Wick contraction of a
creation and an annihilation operator in Hk produces a factor
of the form n1α, (1 − n1α), n2α , or (1 − n2α), as the case may
be. At the same time, two summation indices become equal.
After all Wick contractions are done, Hk contains at most 2k

independent summations over level indices. [That number may
be smaller than 2k, since two or more of the resulting factors
n1α, (1 − n1α), n2α , or (1 − n2α) may carry the same index.] By
using the identity n2 = n for the number operator, the Wick-
contracted Hk can be written in such a way that the summation
indices on all such factors are different. For k = 2, that was
done in Eq. (13). We consider a single term resulting from this
procedure and denote by k1, k2, k3, k4 the powers of the four
types of factors (in the same sequence as listed above) in that
term. The maximum power with which all factors jointly can
appear is 2k, so that k1 + k2 + k3 + k4 � 2k. Clearly we must
also have k1 + k2 � �1 and k3 + k4 � �2. We conclude that a
general term in the Wick-contracted form of Hk , characterized
by the four integers k1, k2, k3, k4 as constrained above, has the
form

∑
α1,α2,...,αk1

∑
β1,β2,...,βk2

∑
γ1,γ2,...,γk3

∑
δ1,δ2,...,δk4{

k1∏
r=1

n1αr

k2∏
s=1

(1 − n1βs
)

k3∏
t=1

n2γt

k4∏
u=1

(1 − n2δu
)

× fα1,...,αk1 ;β1,...,βk2 ; γ1,...,γk3 ; δ1,...,...k4

}
. (21)

The sums in this expression are jointly constrained by the
condition that no two summation indices are equal. The form of
the function f depends upon the value of k. f is a monomial of
order k in the matrix elements V 1, V 2, X1, X2. These carry the
summation indices. The Wick contraction of Hk yields a sum
of terms of the form (21). For the calculation of nTr(HkP±),
we observe that the expression

�±(k1, k2, k3, k4)

= nTr

{
k1∏

r=1

n1αr

k2∏
s=1

(1 − n1βs
)

k3∏
t=1

n2γt

k4∏
u=1

(1 − n2δu
)P±

}

(22)

does not depend on the values of the indices α1, . . . , δk4 .
Therefore, the normalized traces of the projections of the
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expression (21) are given by∑
α1,...,αk1

∑
β1,...,βk2

∑
γ1,...,γk3

∑
δ1,...,δk4

fα1,...,αk1 ;β1,...,βk2 ;γ1,...,γk3 ;δ1,...,...k4

×�±(k1, k2, k3, k4). (23)

Expression (23) shows that the results derived in Sec. IV for
nTr(HP±) and for nTr(H 2P±) hold for arbitrary powers k

of H : each trace nTr(HkP±) is a sum of terms; every term
in the sum is the product of two factors. The first factor
contains the random variables and is the same for the states
with positive and with negative parity. The second factor, a
weight factor, may depend on parity. Thus, we have shown
that the Hamiltonians for positive- and negative-parity states
are very highly correlated.

This is a remarkable result in its own right. Indeed,
with increasing values of �1 and �2, the matrix dimensions
N+ and N− grow approximately like [(�1 + �2)/m]m, while
the number of two-body matrix elements only grows like
(�1 + �2)4. Thus, for (�1 + �2) > m2, the matrix dimensions
become asymptotically very much larger than the number of
independent matrix elements. Still, in the sense of Eq. (23),
the two Hamiltonians remain totally correlated.

We turn to the weight factors appearing in Eq. (23) and show
that these are also asymptotically equal. Our statement applies
up to a maximum value of k, which we determine approx-
imately. The weight factors �±(k1, k2, k3, k4) are explicitly
given by

�+(k1, k2, k3, k4)

= 1

N+

∑
m1,m2

δm1+m2,mδm2,even

(
�1 − k2

m1 − k1

)(
�2 − k4

m2 − k3

)
, (24)

and

�−(k1, k2, k3, k4)

= 1

N−

∑
m1,m2

δm1+m2,m δm2,odd

(
�1 − k2

m1 − k1

)(
�2 − k4

m2 − k3

)
. (25)

In the summations over m1,m2, we obviously must have
m1 � k1 and m2 � k3. Since m1 and m2 are both bounded
by m, that condition in fact limits k1 and k3. It is obvious
that for large values of k, the two weight factors cannot
always be equal. Consider, for instance, the case k1 = 0, k3 =
m. Then we have m1 = 0 and m2 = m. That implies that
�+(k1, k2, k3, k4) = 0,�−(k1, k2, k3, k4) �= 0 if m is odd, and
�−(k1, k2, k3, k4) = 0,�+(k1, k2, k3, k4) �= 0 if m is even. To
avoid such cases, we must have k < m. Even then �+ and �−
may differ. This happens when the bounds on the summation
indices in Eqs. (24) and (25) are relevant. We avoid these cases
by choosing k � m. We recall that the asymptotic regime
is characterized by the relations 1 � m � �1, �2. We thus
require that m is sufficiently large to accommodate the relation
k � m and yet allows k to assume values large compared to
unity. With these assumptions, the arguments used above for
k = 1, 2 show that �+ = �−.

We have shown that in the asymptotic regime and for
all k with k � k0, the moments Tr(HkP±) pairwise have the
same values for states with positive and with negative parity.
Here k0 obeys 1 � k0 � m. That conclusion does not depend

on assuming any symmetry such as �1 = �2. We have also
shown that for k 	 k0, the moments differ. As k increases,
the bounds on the summations over products of binomial
factors become ever more important. As a consequence, the
differences between moments for states with positive and
negative parity increase with k. That statement is relevant for
the local spectral fluctuation properties of both ensembles.
Indeed, it is known [9] that such fluctuation properties depend
on the very highest moments of H . In the limit of infinite matrix
dimension, there exists a clear separation between the overall
shape of the spectrum (defined by averaging over an energy
interval that is large compared to the average level spacing
d) and the local spectral fluctuations (defined on a scale of
order d). Since the moments of H for states of positive and
negative parity differ for k 	 k0, we conclude that the local
fluctuation properties of both ensembles are uncorrelated in the
dilute limit, even though the moments of H for both parities
coincide up to k ≈ k0. This excludes the possibility mentioned
in Sec. VI that the local spectral fluctuation properties of the
two ensembles are locked in such a way that the positive-parity
ground state fluctuates more often toward smaller energies than
does its opposite number or vice versa and completes the proof
that in the dilute limit, ground states of either parity carry equal
probabilities.

VIII. SUMMARY AND DISCUSSION

We have shown that in the dilute limit, ground states of
either parity carry equal probabilities. That conclusion is based
on the following facts. (i) The spectra are asymptotically
Gaussian, and Eqs. (1)–(3) become asymptotically strictly
valid. (ii) The first and second moments of H and the di-
mensions of the Hamiltonian matrices become asymptotically
equal for either parity so that Eqs. (1)–(3) predict equal
probabilities for either parity. (iii) The local spectral fluctuation
properties of the two spectra are asymptotically uncorrelated
because very high moments have different values. Fact
(iii) excludes a locking of these fluctuations.

Deviations from equal ground-state probabilities thus are
finite-size effects. For values of the parameters m, �1, and
�2 that are sufficiently small for numerical simulations, we
have indeed found such deviations. They occur whenever the
dimensions N+ and N− differ. Conversely, for N+ = N−, we
have not found significant deviations from equal probabilities.
The small fluctuations found for r± in the fits to the data show
that Eqs. (1) and (2) are approximately valid: they do predict
correctly which parity has the higher probability to furnish
the ground state. The values of the predicted probabilities are
semiquantitatively correct.

Calculations using the two-body random ensemble (TBRE)
reported in Ref. [10] displayed correlations between spectra
carrying different quantum numbers. (The TBRE uses the
shell model, confines itself to a major shell, assumes that the
two-body matrix elements are random variables, and conserves
angular momentum and parity. For a review of the TBRE,
see Ref. [11]). One may argue that the results of Ref. [10]
contradict our present findings. This is not the case: numerical
calculations using the TBRE are necessarily restricted to small
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matrix dimensions, while our argument for independence of
spectral fluctuation properties of states of positive and negative
parity applies only in the dilute limit, i.e., for infinite matrix
dimension. Still, the question persists as to whether in the
limit of a large matrix dimension, correlations between spectra
carrying different quantum numbers would likewise disappear
in the TBRE. We cannot answer that question analytically at
the present time. In our model, moments of H are calculated
using Wick contraction. That fact allows us to go to the
dilute limit. In the TBRE, a similar simplification does not
seem to exist. Similarities between the two models make us
expect, however, that our result also applies to the TBRE. The
calculations in Sec. VI show that in our model, the difference
between high moments taken for states of positive and negative
parity is due to the finite size of the single-particle basis.
A similar (but stronger) restriction exists also in the TBRE,
because each major shell is made up of a number of different
subshells, each with a finite number of single-particle states.
That fact and angular-momentum coupling effects cause even
the low moments of H in the TBRE to differ for different
spin states (while these moments are identically equal in our
model). We expect that difference to increase as the power
of H increases. Our argument clearly fails for bosons where
the occupation numbers of the single-particle states are not
restricted, and the sp-boson models reviewed in Ref. [4] do
indeed display different patterns.

Our results may have interesting implications for the sta-
tistical theory of nuclear reactions, wherein lies the following
open question: Are S-matrix elements carrying different quan-
tum numbers, such as total spin, uncorrelated? The assumption
that they are uncorrelated is always used in the theory and is
consistent with the observed symmetry of compound-nucleus
cross sections about 90◦ in the center-of-mass system. Still,
the assumption is not obviously valid for a realistic random-

matrix model of nuclear reactions. Normally the statistical
theory of nuclear reactions uses the Gaussian orthogonal
ensemble (GOE). It would be more realistic to use instead
the TBRE. But then it is the same set of random variables that
govern scattering matrix elements carrying different quantum
numbers, just as in the model considered above, the same
random two-body matrix elements govern the Hamiltonians
for states of different parity. To approach the question, we
observe that for orthogonally invariant ensembles, universality
holds also for elements of the scattering matrix carrying
identical quantum numbers [12]. That statement implies that
correlations between such elements depend only on local
spectral fluctuation properties. This conclusion is supported by
the explicit calculation in Ref. [13] of the correlation function
of a pair of S-matrix elements: aside from the strength of the
coupling to the open channels, the correlation depends solely
on the value of the local mean level density. If we assume that
these statements carry over to the TBRE, and if we further
assume that in the TBRE, just as in the model studied above,
the local spectral fluctuation properties of spectra carrying
different quantum numbers are uncorrelated in the limit of
a large matrix dimension, we are led to the conclusion that
S-matrix elements carrying different quantum numbers are,
likewise, uncorrelated. The limit of a large matrix dimension
is appropriate, because the resonances relevant in the statistical
theory correspond to states above the ground state.
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