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Mean-field approach to nuclear structure with semi-realistic nucleon-nucleon interactions
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Semirealistic nucleon-nucleon interactions applicable to the self-consistent mean-field (both Hartree-Fock and
Hartree-Fock-Bogolyubov) calculations are developed by modifying the M3Y interaction. The modification is
made to reproduce binding energies and rms matter radii of doubly magic nuclei, single-particle levels in 208Pb
and even-odd mass differences of the Sn isotopes. We find parameter sets with and without the tensor force. The
new interactions are further checked by the saturation properties of the uniform nuclear matter, including the
Landau-Migdal parameters. By the mean-field calculations, interaction dependence of the neutron drip line is
investigated for the O, Ca, and Ni isotopes, and of the single-particle energies for the N = 16, 32, 50, and 82
and Z = 50 nuclei. Results of the semirealistic interactions including the tensor force are in fair agreement with
available experimental data for all of these properties.
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I. INTRODUCTION

Mean-field (MF) theories provide us with a good first ap-
proximation to the nuclear structure problems. They are able to
describe the saturation and the shell structure simultaneously,
both of which are basic nuclear properties, based on effective
nucleon-nucleon (NN ) interactions. As far as we constrain to
the nonrelativistic approaches, most of the MF calculations
have been performed with the Skyrme interaction [1]. Finite-
range interactions have rarely been applied, except the Gogny
interaction [2], which has the Gaussian form for the central
channels. Most popular parameter sets of the Skyrme and the
Gogny interactions have been adjusted mainly to the nuclear
properties around the β stability. However, it is a question
whether such phenomenological effective interactions work
well for nuclei far off the β stability. For instance, whereas
role of the tensor force in nucleus dependence of the MF has
attracted interest [3,4], the tensor force is usually ignored in
those parameter sets.

Although direct application of the bare NN (and NNN )
interaction to the nuclear structure problems [5–7] is yet
limited to light nuclei or made to medium-mass nuclei but
with limited accuracy, guide from microscopic theories will be
valuable even in heavy-mass nuclei. The Michigan three-range
Yukawa (M3Y) interaction [8], which was derived by fitting
the Yukawa functions to Brueckner’s G matrix, has been used
in nuclear structure as well as in low-energy nuclear reaction
studies. There have been a few attempts applying the M3Y-type
interaction to MF calculations [9,10]. In Ref. [10], the author
has developed an M3Y-type interaction that is applicable
to the Hartree-Fock (HF) calculations. The original M3Y
interaction is incapable of reproducing the saturation and the
spin-orbit splitting within the MF regime. To cure this problem
a density-dependent contact term has been added and some of
the strength parameters have been modified. Such interactions,
which have originally been derived from microscopic theories
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but are slightly modified from phenomenological standpoints,
may be called semirealistic interactions. It has been shown
[10,11] that semirealistic NN interactions could give different
shell structure from the widely used Skyrme and Gogny
interactions. However, the pairing properties have not been
taken into account in the parameter-set M3Y-P2 that was
proposed in Ref. [10]. This implies that the singlet-even
channel in M3Y-P2 is not quite appropriate as long as the
pairing interaction is taken to be consistent with the HF
interaction, whereas this problem seems to be masked in
the HF approximation. To apply semirealistic interactions to
the MF studies extensively, we explore new parameter sets
of the M3Y-type interaction, taking the pairing properties
into account. Special attention is paid also to role of the
tensor force. Using the recently developed algorithm [12–14],
we apply the new semirealistic interactions to the Hartree-
Fock-Bogolyubov (HFB) as well as to the HF calculations of
spherical nuclei.

II. M3Y-TYPE INTERACTION

We express a nonrelativistic nuclear effective Hamiltonian
by

HN = K + VN ; K =
∑

i

p2
i

2M
, VN =

∑
i<j

vij , (1)

with i and j representing the indices of individual nucleons.
For the effective NN interaction vij , we consider the following
form,

vij = v
(C)
ij + v

(LS)
ij + v

(TN)
ij + v

(DD)
ij ;

v
(C)
ij =

∑
n

[
t (SE)
n PSE + t (TE)

n PTE + t (SO)
n PSO

+ t (TO)
n PTO

]
f (C)

n (rij ),

v
(LS)
ij =

∑
n

[
t (LSE)
n PTE + t (LSO)

n PTO
]
f (LS)

n (rij ) Lij · (si + sj ),
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v
(TN)
ij =

∑
n

[
t (TNE)
n PTE + t (TNO)

n PTO
]
f (TN)

n (rij )r2
ij Sij ,

v
(DD)
ij = {

t (SE)
ρ PSE · [ρ(ri)]

α(SE) + t (TE)
ρ PTE · [ρ(ri)]

α(TE)}
δ(rij ),

(2)

where rij = ri − rj , rij = |rij |, pij = (pi − pj )/2, Lij =
rij × pij , Sij = 4 [3(si · r̂ij )(sj · r̂ij ) − si · sj ] with r̂ij =
rij /rij , and ρ(r) denotes the nucleon density. The Yukawa
function fn(r) = e−µnr/µnr is assumed for all channels except
v(DD) in the M3Y-type interactions. The projection operators
on the singlet-even (SE), triplet-even (TE), singlet-odd (SO),
and triplet-odd (TO) two-particle states are defined as

PSE = 1 − Pσ

2

1 + Pτ

2
, PTE = 1 + Pσ

2

1 − Pτ

2
,

(3)

PSO = 1 − Pσ

2

1 − Pτ

2
. PTO = 1 + Pσ

2

1 + Pτ

2
,

where Pσ (Pτ ) expresses the spin (isospin) exchange operator.
We shall start from the M3Y-Paris interaction [15], which

will be denoted by M3Y-P0 in this article as in Ref. [10].
We change none of the range parameters µn of M3Y-P0 in
v(C), v(LS), and v(TN). In M3Y-P0, the longest range part in
v(C) is kept identical to the central channels of the one-pion
exchange potential (OPEP), v

(C)
OPEP. We also maintain this

reasonable assumption. As is well known, the spin-orbit (�s)
splitting plays a significant role in the nuclear shell structure.
Even though higher-order effects may account for the observed
�s splitting [16], it is desired to enhance v(LS) to describe
the shell structure within the MF regime. We here use an
overall enhancement factor to v(LS), which is determined from
the single-particle spectrum of 208Pb, as will be shown in
Sec. IV. Influence of the tensor force on single-particle
energies is a current topic, which could be relevant to the
new magic numbers in unstable nuclei [3]. We develop two
parameter sets having v(TN) without any modification from
M3Y-P0, as well as a parameter set in which we impose
v(TN) = 0.

The saturation properties are important to describe many
nuclei in a wide mass range. Because it is still hard to
describe accurately the saturation properties by the bare NN

(and NNN ) interaction despite certain progress [5], it will
be appropriate to modify realistic effective interaction to
reproduce the saturation properties. Density dependence in
the effective interaction has been known to be essential in
obtaining the saturation. We therefore add a density-dependent
contact force v(DD) [10]. The parameter α(TE) in v(DD), power
to ρ, is taken to be 1/3, by which the incompressibility K
becomes close to a reasonable value as shown later. However,
α(SE) is not quite sensitive to K, because the major source of
the saturation lies in the TE channel, not in the SE channel
[17]. Although we simply assumed α(SE) = α(TE) = 1/3 in
M3Y-P2 [10], this assumption makes it difficult to reproduce
pairing properties and to avoid instability of the neutron matter
[10,12] simultaneously. To overcome this problem, we adopt
α(SE) = 1 in the new parameter sets. The difference between
α(SE) and α(TE) may be attributed to the difference in origin of
the ρ dependence; the short-range repulsion in the bare NN

interaction in the SE channel while primarily the tensor force

in the TE channel. Validity of the choice α(SE) = 1 is further
discussed in Sec. III.

The remaining parameters are tn in v(C) [except those of
v

(C)
OPEP] and tρ in v(DD). We fit them to the measured binding

energies of 16O and 208Pb, in the HF approximation (see
Sec. IV). The proton and neutron Fermi energies of 208Pb,
which are primarily relevant to the symmetry energy, are
checked additionally. To determine t (SE)

n and t (SE)
ρ , we also

use the even-odd mass differences of the Sn isotopes, by
comparing results of the Hartree-Fock-Bogolyubov (HFB)
calculations with the experimental values (see Sec. V). The
new parameter-sets of the semirealistic M3Y-type interaction,
M3Y-P3 to P5, are tabulated in Table I. For comparison,
M3Y-P0 and -P2 are also shown. In the set M3Y-P3, we keep
both v(TN) and the odd-channel (SO and TO) strengths in v(C) of
M3Y-P0. The set M3Y-P4 is obtained by assuming v(TN) = 0,
while changing t (SO)

n and t (TO)
n (n = 1, 2) substantially. In the

set M3Y-P5, we somewhat modify t
(SO)
2 and t

(TO)
2 while keeping

v(TN), so as to reproduce the binding energies of several
doubly magic nuclei better than M3Y-P3, as will be shown
in Sec. IV. Thus the number of adjusted parameters are 7,
11, and 9 [including the overall enhancement factor to v(LS)]
for M3Y-P3, -P4, and -P5, respectively. It will be useful to
compare results of these parameter sets for pinning down
which part of the interaction is important to individual physical
quantities. In particular, the role of the tensor force will be of
interest. It is remarked that, although schematic tensor forces
have been introduced into some of the recent MF studies [4,18],
the present v(TN) in M3Y-P3 and -P5 is much more realistic.

III. PROPERTIES OF NUCLEAR MATTER AT AND
AROUND SATURATION POINT

We first view properties of the infinite nuclear matter that
are predicted by the semirealistic NN interactions. In the HF
approximation, energy of the nuclear matter can be expressed
by the following variables:

ρ =
∑
στ

ρτσ ,

ηs =
∑

στ σρτσ

ρ
= ρp↑ − ρp↓ + ρn↑ − ρn↓

ρ
,

(4)

ηt =
∑

στ τρτσ

ρ
= ρp↑ + ρp↓ − ρn↑ − ρn↓

ρ
,

ηst =
∑

στ στρτσ

ρ
= ρp↑ − ρp↓ − ρn↑ + ρn↓

ρ
.

ρτσ (τ = p, n and σ =↑,↓, which are sometimes substituted
by ±1 without confusion) stands for densities depending on
the spin and the isospin, and is related to the Fermi momentum
kFτσ by

ρτσ = 1

6π2
k3
Fτσ . (5)

In the interaction of Eq. (2), only v(C) + v(DD) contributes to the
energy of the uniform nuclear matter. Formulas to calculate the
nuclear matter energy and its derivatives for given kFτσ have
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TABLE I. Parameters of M3Y-type interactions.

Parameters M3Y-P0 M3Y-P2 M3Y-P3 M3Y-P4 M3Y-P5

1/µ
(C)
1 (fm) 0.25 0.25 0.25 0.25 0.25

t
(SE)
1 (MeV) 11466. 8027. 8027. 8027. 8027.

t
(TE)
1 (MeV) 13967. 6080. 7130. 5503. 5576.

t
(SO)
1 (MeV) −1418. −11900. −1418. −12000. −1418.

t
(TO)
1 (MeV) 11345. 3800. 11345. 3700. 11345.

1/µ
(C)
2 (fm) 0.40 0.40 0.40 0.40 0.40

t
(SE)
2 (MeV) −3556. −2880. −2637. −2637. −2650.

t
(TE)
2 (MeV) −4594. −4266. −4594. −4183. −4170.

t
(SO)
2 (MeV) 950. 2730. 950. 4500. 2880.

t
(TO)
2 (MeV) −1900. −780. −1900. −1000. −1780.

1/µ
(C)
3 (fm) 1.414 1.414 1.414 1.414 1.414

t
(SE)
3 (MeV) −10.463 −10.463 −10.463 −10.463 −10.463

t
(TE)
3 (MeV) −10.463 −10.463 −10.463 −10.463 −10.463

t
(SO)
3 (MeV) 31.389 31.389 31.389 31.389 31.389

t
(TO)
3 (MeV) 3.488 3.488 3.488 3.488 3.488

1/µ
(LS)
1 (fm) 0.25 0.25 0.25 0.25 0.25

t
(LSE)
1 (MeV) −5101. −9181.8 −10712.1 −8671.7 −11222.2

t
(LSO)
1 (MeV) −1897. −3414.6 −3983.7 −3224.9 −4173.4

1/µ
(LS)
2 (fm) 0.40 0.40 0.40 0.40 0.40

t
(LSE)
2 (MeV) −337. −606.6 −707.7 −572.9 −741.4

t
(LSO)
2 (MeV) −632. −1137.6 −1327.2 −1074.4 −1390.4

1/µ
(TN)
1 (fm) 0.40 0.40 0.40 0.40 0.40

t
(TNE)
1 (MeV fm−2) −1096. −131.52 −1096. 0. −1096.

t
(TNO)
1 (MeV fm−2) 244. 29.28 244. 0. 244.

1/µ
(TN)
2 (fm) 0.70 0.70 0.70 0.70 0.70

t
(TNE)
2 (MeV fm−2) −30.9 −3.708 −30.9 0. −30.9

t
(TNO)
2 (MeV fm−2) 15.6 1.872 15.6 0. 15.6

α(SE) – 1/3 1 1 1

t (SE)
ρ (MeV fm3) 0. 181. a 220. 248. 126.

α(TE) – 1/3 1/3 1/3 1/3

t (TE)
ρ (MeV fm) 0. 1139. 1198. 1142. 1147.

aMeV fm.

been derived in Ref. [10]. Note that, even when superfluidity
makes the nuclear matter energy somewhat lower, it is not
much different from the energy in the HF approximation.

The spin-saturated symmetric matter is characterized by
ηs = ηt = ηst = 0, for which we denote kFτσ simply by kF .
The minimum of the energy per nucleon E = E/A, given by

∂E
∂ρ

∣∣∣∣
0

= ∂E
∂kF

∣∣∣∣
0

= 0, (6)

defines the saturation density ρ0 (equivalently, kF0) and
energy E0. The expression |0 indicates evaluation at the
saturation point. As well as ρ0 and E0, second derivatives
of E carry basic information of the effective NN interaction.
Two of the curvatures of E at the saturation point are called

incompressibility and volume symmetry energy,

K = k2
F

∂2E
∂k2

F

∣∣∣∣
0

= 9ρ2 ∂2E
∂ρ2

∣∣∣∣
0

, at = 1

2

∂2E
∂η2

t

∣∣∣∣
0

, (7)

and are related to the Landau-Migdal (LM) parameters f0 and
f ′

0 as

K = 3k2
F0

M∗
0

(1 + f0), at = k2
F0

6M∗
0

(
1 + f ′

0

)
, (8)

where M∗
0 represents the effective mass (k mass) at the

saturation point. See Ref. [10] for definition of the LM
parameters. The other curvatures of E with respect to ηs and
ηst , denoted by as and ast , are defined analogously to at and
are expressed in terms of the LM parameters g0 and g′

0 [10].
The k mass is defined by a derivative of the single-particle
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TABLE II. Nuclear matter properties at the saturation point.

D1S M3Y-P2 M3Y-P3 M3Y-P4 M3Y-P5

kF0 (fm) 1.342 1.340 1.340 1.340 1.340
E0 (MeV) −16.01 −16.14 −16.51 −16.13 −16.12
K (MeV) 202.9 220.4 245.8 235.3 235.6
M∗

0 /M 0.697 0.652 0.658 0.665 0.629
at (MeV) 31.12 30.61 29.75 28.71 29.59
as (MeV) 26.18 21.19 20.17 15.61 19.56
ast (MeV) 29.13 38.19 36.45 39.89 41.01
Lt (MeV) 22.44 27.98 25.30 17.87 24.63

energy ε(kστ ):

∂ε(kστ )

∂k

∣∣∣∣
0

= kF0

M∗
0

, (9)

and is connected to the LM parameter f1 by

M∗
0

M
= 1 + 1

3
f1. (10)

In addition, density dependence of the symmetry energy, which
is represented by a third derivative of E as

Lt = 1

2
kF

∂3E
∂kF ∂η2

t

∣∣∣∣
0

= 3

2
ρ

∂3E
∂ρ ∂η2

t

∣∣∣∣
0

, (11)

is under interest in relevance to structure of the neutron
star crust [19]. These quantities calculated from the new
semirealistic interactions are tabulated in Table II. We here set
M = (Mp + Mn)/2, where Mp (Mn) is the measured mass of
a proton (a neutron) [20]. For comparison, the values obtained
by the D1S parameter set [21] of the Gogny interaction and
from M3Y-P2 are also displayed.

Related to the global systematics of the binding energies
and the radii, kF0 ≈ 1.33–1.34 fm−1 and E0 ≈ −16 MeV
have been established empirically. Although the M3Y-P3
interaction yields deeper E0 than the other interactions, it is
still within the range of ambiguity in extracting the volume
energy from the experimental data [22]. In practice, M3Y-P3
does not yield overbinding for any of the doubly magic nuclei
presented in Sec. IV.

For the incompressibility, K ≈ 240 MeV is extracted from
the experimental data [23]. The k mass is empirically known to
be M∗

0 ≈ (0.6 − 0.7)M [24]. The volume symmetry energy at

is important in reproducing global trend of the binding energies
for the Z �= N nuclei, and from empirical viewpoints at ≈
30 MeV seems appropriate [25]. These are fulfilled reasonably
well in all the new parameter sets M3Y-P3 to -P5. The choice
α(SE) = 1 contributes to the slightly higher K in M3Y-P3 to
-P5 than in D1S and M3Y-P2.

Global characters of the spin and isospin responses are
customarily discussed in terms of the LM parameters. By
using the formulas given in Ref. [10], we evaluate the LM
parameters for the new semirealistic interactions, as shown
in Table III. It has been known that g0 is small, whereas g′

0 is
relatively large (≈1) [26]. Although the LM parameters should
eventually be checked by corresponding excitation modes in
actual nuclei, which is beyond the scope of this article, all the

semirealistic M3Y-type interactions seem to have reasonable
characters on the spin and isospin channels. Not necessarily
true for phenomenological interactions such as D1S, this may
be linked to the microscopic origin of the interactions. In
particular, v

(C)
OPEP carries about half of g′

0 in the results of the
M3Y-type interactions [10].

Figure 1 illustrates E(ρ) for the spin-saturated symmetric
nuclear matter obtained from the M3Y-type and the D1S
interactions. As pointed out in Ref. [10], difference among
the saturating forces is not large at ρ <∼ ρ0. At relatively
high density (ρ >∼ 0.3 fm−3), the M3Y-P3 to -P5 interactions
have higher E than M3Y-P2 and D1S, reflecting higher K.
E(ρ) of M3Y-P4 and -P5 is close to each other even at
ρ ≈ 0.6 fm−3(≈ 4ρ0).

In Fig. 2, contributions of the SE, TE, SO, and TO channels
in v(C) + v(DD) to E of the symmetric matter are shown as
a function of kF . The contribution of the TE and the SO
channels in M3Y-P4 is hard to be distinguished from that in
M3Y-P5. So is the contribution of the TE channel in M3Y-P2.
The TE channel takes a minimum at kF ≈ 1.5 fm−1, primarily
responsible for the saturation at kF = kF0 ≈ 1.3 fm−1. Both
the SO and the TO channels do not contribute to E significantly
at ρ <∼ ρ0 (i.e., kF <∼ kF0). Although the SO channel becomes
attractive in the D1S interaction, it is repulsive in the M3Y-type

TABLE III. Landau-Migdal parameters at the saturation point.

D1S M3Y-P2 M3Y-P3 M3Y-P4 M3Y-P5

f0 −0.369 −0.357 −0.276 −0.300 −0.336
f1 −0.909 −1.044 −1.027 −1.005 −1.112
f2 −0.558 −0.436 −0.355 −0.429 −0.367
f3 −0.157 −0.210 −0.184 −0.210 −0.182
f ′

0 0.743 0.607 0.578 0.538 0.502
f ′

1 0.470 0.635 0.670 0.797 0.692
f ′

2 0.342 0.245 0.271 0.286 0.267
f ′

3 0.100 0.096 0.104 0.106 0.100
g0 0.466 0.113 0.070 −0.164 −0.007
g1 −0.184 0.273 0.214 0.374 0.299
g2 0.245 0.162 0.160 0.190 0.178
g3 0.091 0.078 0.079 0.085 0.081
g′

0 0.631 1.006 0.933 1.136 1.081
g′

1 0.610 0.202 0.213 0.109 0.087
g′

2 −0.038 0.040 0.063 0.016 0.029
g′

3 −0.036 −0.002 0.005 −0.008 −0.002
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FIG. 1. (Color online) Energy per nucleon E = E/A in the
symmetric nuclear matter for several effective interactions. Purple
dashed, green dot-dashed, and red solid lines represent the results
with the M3Y-P3, -P4, and -P5 interactions, respectively. Those with
the M3Y-P2 and D1S interactions are also displayed for comparison
by orange and blue solid lines.

interactions at ρ > ρ0. The TO channel is repulsive in M3Y-P3
and -P5, while attractive in M3Y-P4, although the attraction in
M3Y-P4 is not so strong as to cause spin polarization in the pure
neutron matter up to ρ = 1.3 fm−3(≈ 8ρ0). Remember that the
odd channels in M3Y-P3 are unchanged from M3Y-P0.

FIG. 3. (Color online) Energy per nucleon E = E/A in the
neutron matter for several effective interactions. Circles are the results
of Ref. [27]. See Fig. 1 for the other conventions.

Energy per nucleon in the spin-saturated neutron matter
(i.e., ηt = −1) is presented in Fig. 3. The result from a
microscopic calculation in Ref. [27] is also shown as a
reference. The unphysical behavior at high ρ in the D1S result,
which comes from the absence of density dependence in the SE
channel, was pointed out in Refs. [10,12]. The present M3Y-P3
to -P5 interactions have relatively strong ρ dependence at high
ρ for the neutron matter, if compared to M3Y-P2 and D1S.
This originates in α(SE)(= 1) and tends to make E(ρ) closer to
the result of Ref. [27].

FIG. 2. (Color online) Contribution of the SE, TE, SO, and TO channels to E . See Fig. 1 for conventions.
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TABLE IV. Binding energies and rms matter radii of several doubly magic nuclei. Experimental data are taken from
Refs. [28–31].

Exp. D1S M3Y-P2 M3Y-P3 M3Y-P4 M3Y-P5

16O −E (MeV) 127.6 129.5 127.2 118.6 126.3 126.1√
〈r2〉 (fm) 2.61 2.61 2.61 2.65 2.60 2.59

24O −E (MeV) 168.5 168.6 165.7 158.2 164.0 166.7√
〈r2〉 (fm) 3.19 3.01 3.06 3.08 3.04 3.03

40Ca −E (MeV) 342.1 344.6 338.8 325.2 337.0 335.1√
〈r2〉 (fm) 3.47 3.37 3.38 3.42 3.37 3.37

48Ca −E (MeV) 416.0 416.8 411.9 401.0 409.4 414.1√
〈r2〉 (fm) 3.57 3.51 3.53 3.56 3.52 3.50

90Zr −E (MeV) 783.9 785.9 779.4 767.9 775.1 779.8√
〈r2〉 (fm) 4.32 4.24 4.25 4.27 4.24 4.23

132Sn −E (MeV) 1102.9 1104.1 1099.0 1089.3 1095.7 1098.4√
〈r2〉 (fm) – 4.77 4.79 4.81 4.77 4.76

208Pb −E (MeV) 1636.4 1639.0 1636.5 1635.2 1632.1 1633.2√
〈r2〉 (fm) 5.49 5.51 5.54 5.55 5.51 5.51

IV. PROPERTIES OF DOUBLY MAGIC NUCLEI

We next turn to doubly magic nuclei, for which the spherical
HF approach is expected to be a good approximation.

To all the following calculations of finite nuclei, we apply
the recently developed algorithm based on the Gaussian
expansion method (GEM) [12,13]. In this method we employ
the single-particle bases of

ϕν�jm(r) = Rν�j (r)[Y (�)(r̂)χσ ](j )
m ;

(12)
Rν�j (r) = Nν�j r� exp(−νr2),

apart from the isospin index. Here Y (�)(r̂) expresses the spher-
ical harmonics and χσ the spin wave function. The parameter
ν = νr + iνi indicates a complex number corresponding to the
range of the Gaussian. Irrespective to nuclide, we adopt the
following basis parameters [14]:

νr = ν0 b−2n,

{
νi = 0 (n = 0, 1, . . . , 5)
νi
νr

= ±π
2 (n = 0, 1, 2)

, (13)

with ν0 = (2.40 fm)−2 and b = 1.25 for each (�, j ). It is
notable that, without parameters specific to mass number
or nuclide, a single set of the GEM bases is applicable to
wide range of the nuclear mass table [14]. The Hamiltonian
is H = HN + VC − Hc.m., where VC and Hc.m. represent the
Coulomb interaction and the center-of-mass Hamiltonian,
while HN has been given in Eq. (1). The exchange term of VC

is treated exactly, in the same manner as the nuclear force VN .
Both the one- and the two-body terms of Hc.m. are subtracted
before iteration.

The calculated binding energies and rms matter radii of
several doubly magic nuclei are displayed in Table IV. The
results of the new semirealistic interactions are compared with
those of D1S and M3Y-P2 as well as with the experimental
data. Influence of the center-of-mass motion on the matter radii
is subtracted in a similar manner to the center-of-mass energies
[10]. The binding energies of these nuclei obtained from D1S
(M3Y-P2) are in agreement with the measured values within

the 3 MeV(5 MeV) accuracy. Though the accuracy is slightly
worse, the new interactions also reproduce the binding energies
moderately well. M3Y-P3 yields underbinding by about
9–17 MeV except for 208Pb. For M3Y-P4 and -P5, maximum
deviation in the binding energies shown in Table IV is
∼7 MeV. Because correlations due to the residual interaction
could influence, we do not take this deviation seriously at the
present stage. The rms matter radii of these nuclei calculated
from the semirealistic interactions are comparable to those
from the D1S interaction, in fair agreement with the data.

The single-particle levels in 208Pb are depicted in Fig. 4.
The levels obtained from M3Y-P5 are compared with those
from D1S and the experimental levels. M3Y-P3 and -P4
give single-particle levels similar to, though slightly different
from, those of M3Y-P5. The experimental single-particle
energies are obtained from the levels of the neighboring nuclei;
207,209Pb,207 Tl, and 209Bi. In the HF results, the overall level
spacing is relevant to M∗

0 shown in Table II. In the usual HF

FIG. 4. (Color online) Single-particle energies for 208Pb. Experi-
mental values are extracted from Refs. [31,32].

054301-6



MEAN-FIELD APPROACH TO NUCLEAR STRUCTURE WITH . . . PHYSICAL REVIEW C 78, 054301 (2008)

FIG. 5. (Color online) Single-particle energies for 40Ca. Experi-
mental values are extracted from Refs. [31,32].

calculations we have larger level spacing than in the data, and
it is not (should not be) remedied until correlations due to the
residual interaction (or the ω mass) are taken into account [24].
We thus confirm that the present interactions yield as plausible
single-particle levels as D1S does.

In Ref. [4], it has been shown that the Z = N = 20 shell
gaps are narrowed by the tensor force. It is also true in the
M3Y-type interactions. The single-particle energy difference
ετ (0f7/2) − ετ (0d3/2) (τ = p, n) in 40Ca obtained by the D1S
interaction is in good agreement with the experimental values,
both for protons and neutrons, as viewed in Fig. 5. Although
M3Y-P2 and -P4 give almost the same size of the shell gaps
as D1S does, we have narrower gaps in the HF calculations
with M3Y-P3 and -P5. However, the shell gaps do not collapse
by v(TN) of M3Y, in contrast to the zero-range tensor force of
Ref. [4]. We still have 5.2 MeV (7.7 MeV) gap for the proton
(neutron) orbits with M3Y-P5. These gaps are close to those
obtained from the tensor-free Skyrme interaction “T22” in Ref.
[4]. It is also worth commenting that, for M3Y-P5, the octupole
correlations significantly influence the ground state of 40Ca, as
will be discussed elsewhere. This can make the shell gap look
wider, having possibility to account for the observed gap.

V. PAIRING PROPERTIES

The M3Y-P2 interaction seems to have reasonable charac-
ters in the HF regime, as exemplified in Table IV. However,
M3Y-P2 has too strong pair correlations, indicating too strong
attraction in the SE channel at low densities though almost
invisible in Fig. 2. This character is inherited from the
original M3Y interaction. We have developed the M3Y-P3
to -P5 parameter sets by taking the pairing properties into
consideration. In this section we shall show characters of
the new interactions with respect to the pairing. We restrict
ourselves to the pairing among like nucleons, as usual.

We implement the spherical HFB calculations for finite
nuclei, using the GEM bases of Eqs. (12) and (13) together
with the � � 7 truncation. The blocked HFB calculations

are applied to the odd-mass nuclei, by assuming that a
quasiparticle occupies a specified spherical orbital. When
several quasiparticle levels lie closely in energy, we compare
the total energies by filling each quasiparticle level and adopt
the lowest-energy solution.

A. Even-odd mass difference in Sn isotopes

The t (SE)
n (n = 1, 2) and t (SE)

ρ parameters of M3Y-P3 to
-P5 are adjusted to the even-odd mass differences of the Sn
isotopes with 66 < N < 80. For the mass difference we use
the three-point formula �Z

mass(N ) = E(Z,N ) − 1
2 [E(Z,N +

1) + E(Z,N − 1)], with Z = 50 and N = odd. The mass
differences calculated with M3Y-P4 and -P5 are displayed
in Fig. 6, in comparison with the experimental data and with
those of D1S. Though not shown to keep the figure viewable,
M3Y-P3 gives similar �Z=50

mass (N ) to M3Y-P4. The calculations
are not fully convergent for the � truncation. Moreover, the
restoration of the particle-number conservation [33] and the
nonspherical mean fields [34] could influence �Z

mass(N ). Each
of them could vary �Z

mass(N ) by up to a few hundred keV. Not
attempting fine tuning of the parameters, we just point out that
some of these effects tend to compensate one another in the
mass differences and that the new interactions give �Z=50

mass (N )
to comparable accuracy to the D1S interaction in the same
model space.

At N ∼ 50, 64, and 90, we find that the calculated mass
differences depend on the interactions. This is ascribed to
interaction dependence of the shell structure. Irregularity and
discrepancy at N = 63 and 65 should be relevant to the N =
64 subshell. In M3Y-P5 the subshell effect seems stronger
than in the other interactions. At N ∼ 90 all the M3Y-type
interactions yield larger mass differences than D1S. This takes
place because n1f7/2 and n2p3/2 well mix due to the pairing, in
the M3Y-type interactions. At N ∼ 50 M3Y-P5 yields larger
mass difference than the other interactions. This is traced back
to appreciable excitation from n1d5/2 to n0g7/2, which takes
place because these two orbits are close in energy. Possibly
carrying information of the shell structure, data on the masses
in N ∼ 50 and N ∼ 90 will be of interest.

FIG. 6. (Color online) Even-odd mass differences in the Sn
isotopes, �Z=50

mass (N ). The results of D1S, M3Y-P4 and M3Y-P5 are
shown by blue open circles, green open squares and red diamonds,
respectively. Experimental values, presented by black crosses, are
taken from Ref. [31].
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B. Pairing gap in nuclear matter

We next view the pairing property in the nuclear matter
obtained from the new semirealistic interactions. In phe-
nomenological studies using the Skyrme energy density
functionals, it has been argued [35] whether and how much the
pair correlations are dominated by the nuclear surface region.
Results of the semirealistic interactions for the nuclear matter
may provide certain information on this point. However, we
find that, in calculating the pairing properties, the Yukawa
function gives quite slow convergence for the maximum
momentum of the single-particle states. In practice, even if
we cut off the momentum at k = 50 fm−1, which corresponds
to ε ≈ 50 GeV, the pairing gap is not yet fully convergent. It is
impractical to include such high energy states in calculations of
finite nuclei. As shown in the preceding subsection, we have
fixed the SE channel parameters from the HFB calculations
of the Sn nuclei using the basis parameters of Eq. (13).
High-momentum components are automatically excluded in
the basis set. It will be natural to introduce a certain cutoff in
arguing the pairing in the nuclear matter, and the cutoff should
desirably be consistent with the basis set of Eq. (13).

The basis set is composed of radial Gaussians whose Fourier
transforms are again Gaussians in the momentum space. We
here consider a cut-off factor for the single-particle momentum
space of

g(k) = θ (kc − k) + θ (k − kc) exp

[
−

(
k − kc

kd

)2
]

. (14)

The measure in the k integration is multiplied by g(k). Among
the bases of Eq. (13), the highest k component is given by the
ν = ν0(1 ± π

2 i) basis. Because the Fourier transform of this

basis is proportional to exp[−k2(1 ± π
2 i)/4ν0(1 + π2

4 )], k <∼
k0 = 2

√
ν0(1+ π2

4 )(≈1.55 fm−1) components are well included
in the set. To be consistent with the basis set, it will be
reasonable to take kc ∼ k0 for the nuclear matter calculation.
We here consider three cases, (kc, kd ) = (k0, k0), (2k0, k0), and
(4 fm−1, 0). The last choice of the kd → 0 limit indicates a
sharp cutoff, and kc = 4 fm−1 approximately corresponds to
the maximum quasiparticle energy in the HFB calculations of
the Sn nuclei.

In Fig. 7, the pairing gap at the Fermi energy, which is
obtained from the Bardeen-Cooper-Schrieffer (BCS) calcu-
lation in the symmetric nuclear matter using the method of
Ref. [36], is plotted as a function of kF = (3π2ρ/2)1/3. The
pairing among like nucleons arises from the SE channel in the
effective interaction. The result of the M3Y-P5 interaction is
compared with that of the Gogny D1S interaction. The cutoff
is not needed for the Gogny interaction, and the present cut-off
does not influence the D1S gap. The pairing gaps of M3Y-P3
and -P4 are similar to that of M3Y-P5.

The new semirealistic interactions are not drastically differ-
ent from D1S, in respect to the pairing properties in the nuclear
matter. The gap has a peak at kF ≈ 0.8 fm−1 ≈ 0.6kF0, namely
at ρ ≈ 0.2ρ0, for all cases. However, the peak height and the
behavior at ρ > 0.2ρ0 are different between the M3Y-type
interactions and D1S. With rapid decrease at ρ > 0.2ρ0, the
M3Y-type interactions have more surface-dominant pairing

FIG. 7. (Color online) Pairing gap at the Fermi level εF in the
symmetric nuclear matter. Red dot-dashed, solid, and dotted curves
are obtained from M3Y-P5 with the momentum cutoff (kc, kd ) =
(k0, k0), (2k0, k0) and (4 fm−1, 0) in Eq. (14), respectively. Blue solid
curve displays gap of the D1S interaction.

than D1S. In D1S, the pair correlation may have sizable
contribution from the bulk, even though it is stronger at
the nuclear surface. Note that the cut-off parameter does not
influence the nuclear matter pairing qualitatively, as long as it
is more or less harmonious with the basis set adopted in the
calculations of finite nuclei.

VI. NEUTRON DRIP LINE

Prediction of the neutron drip line depends on effective
interactions to a certain degree. In this section we compare
location of the neutron drip line predicted by the spherical
HFB calculations with the present semirealistic interactions
and with the Gogny D1S interaction for the O, Ca, and Ni
isotopes. Although complete description of the drip line may
require fine tuning of the parameters as well as taking account
of correlation effects, it will be interesting to see what is
relevant to location of the drip line.

A. Z = 8 nuclei

We present the two-neutron separation energies S2n for the
O isotopes in Fig. 8. The calculated values are compared
with the experimental data. We do not show S2n if the
neutron chemical potential is positive. Though not displayed in
Fig. 8, S2n obtained from M3Y-P3 is close either to that from
D1S or M3Y-P4. Whereas 25−28O have experimentally been
established to be unbound [37], most MF calculations so far
have failed to reproduce this nature. It would be noteworthy
that one of the present semirealistic interactions, M3Y-P5,
correctly describes the location of the neutron drip line for
oxygen within the spherical HFB approximation; 24O is the
heaviest bound oxygen isotope. The 25O nucleus has higher
energy than 24O, and in 26−28O the chemical potential becomes
positive. In contrast, 26O is bound in the HFB calculations
with M3Y-P3 and P4, as in the calculation with the D1S
interaction.

The reason why 26O is not bound with M3Y-P5 can be
traced back to εn(0d3/2), the single-particle energy of n0d3/2. In
Fig. 9, the neutron single-particle energies in the HF cal-
culations are depicted. We show the energies obtained from
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FIG. 8. (Color online) S2n of the O isotopes (N = even). The
calculations are performed in the spherical HFB approximation. Ex-
perimental data are taken from Ref. [31]. See Fig. 6 for conventions.

the bases of Eq. (13) even when the single-particle energy
is positive, not treating the boundary condition carefully.
We view that M3Y-P5 gives higher εn(0d3/2) than the other
interactions, which originates from the slightly stronger
v(LS) as well as from the relatively small M∗

0 . Note that we
have fixed the enhancement factor for v(LS) in M3Y-P5 so as
to reproduce the single-particle spectrum around 208Pb, not
adjusting accurately to, e.g., the �s splitting around 16O. It is
commented that v(TN) has small but attractive contribution to
εn(0d3/2), and therefore is irrelevant to the higher εn(0d3/2) in
the M3Y-P5 result.

B. Z = 20 and 28 nuclei

Location of the neutron drip line for the Ca and Ni nuclei
could be investigated by the currently constructed or designed
experimental facilities [38]. We tabulate location of the neutron

FIG. 9. (Color online) HF single-particle energies in the O
isotopes. Blue, green, and red lines represent the results with the D1S,
M3Y-P4, and M3Y-P5 interactions, respectively. For each interaction,
dot-dashed line is for εn(0d5/2), solid line for εn(1s1/2) and dashed
line for εn(0d3/2).

TABLE V. Neutron numbers of the heaviest bound Ca and Ni
nuclei predicted by the spherical HFB calculations with several
interactions.

Isotope D1S M3Y-P3 M3Y-P4 M3Y-P5

Ca 44 50 48 50
Ni 58 64 62 60

drip line predicted by the spherical HFB calculations with the
M3Y-type and the D1S interactions, in Table V.

If we use the D1S interaction, the heaviest bound Ca nucleus
is 64Ca, because the neutron chemical potential is positive in
N � 45. The M3Y-P3 and -P5 interactions predict that 70Ca
is bound, whereas 68Ca is the heaviest bound Ca isotope in
the M3Y-P4 result. We depict difference between the HF
and the HFB energies for the Ca nuclei in Fig. 10, which
represents the pair correlation. Though not shown, M3Y-P3
gives similar results to M3Y-P5. While the pairing effects are
in good agreement among all of these interactions in N � 32,
the M3Y-type interactions give stronger pairing than D1S in
N � 34.

Both in the predicted position of the neutron drip line and
in the pair correlation in N � 34, the single-particle energy
of n0g9/2 plays an important role. The neutron drip line can
extend up to 70Ca if εn(0g9/2) is sufficiently low. At 60Ca
we have εn(0g9/2) = +0.73,−0.63,+0.23, and −0.65 MeV
in the HF calculations with D1S and M3Y-P3, -P4, and -P5,
respectively, well correlated to the location of the drip line.
The lower εn(0g9/2) leads to the smaller shell gap at N =
40, εn(0g9/2) − εn(0f5/2), which makes the pair excitation
across N = 40 easier. The gap is 3.8, 2.0, 3.7, and 1.7 MeV in
D1S and M3Y-P3, -P4, and -P5. It is noted that this quenching
of the shell gap in M3Y-P3 and -P5 comes from the relatively
strong v(LS) to some degree, but not from v(TN), because
v(TN) hardly contributes to the single-particle energies in an
�s-closed shell.

The vanishing difference between the HF and HFB energies
is often connected to the shell (or subshell) closure. Figure 10

FIG. 10. (Color online) Difference between the HF and HFB
energies for the Ca isotopes (N = even), obtained from D1S, M3Y-
P4, and -P5. See Fig. 6 for conventions. Dotted lines are drawn to
guide eyes.
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FIG. 11. (Color online) Difference between the HF and HFB
energies for the Ni isotopes (N = even). See Fig. 6 for conventions.

indicates that, although 60Ca is stiff against the pair excitation
with D1S and M3Y-P4, significant pair excitation occurs by
M3Y-P5 (and by M3Y-P3), because of the small shell gap
at N = 40. On the contrary, N = 50 is stiff against the pair
excitation in the present M3Y-P3 and -P5 results, in which
70Ca is bound. We have εn(0g9/2) ≈ −2 MeV at 70Ca, and the
gap between n0g9/2 and the continuum seems large enough
for N = 50 to keep the magic nature against the pairing, if
we use the present semirealistic pairing interaction. Figure 10
also suggests shell closure at N = 32. We shall return to this
point in Sec. VII.

In Fig. 11, difference between the HF and HFB energies is
shown for the Ni isotopes. For all the interactions, the energy
difference becomes vanishingly small at N = 20, 28, 40, 50,
and 58. We view significant interaction dependence in
28 < N < 40. In particular, the pair correlation is suppressed
at N = 32 with D1S, whereas no such effect is found with
M3Y-P5. It is noted that, with M3Y-P5, 68Ni seems almost
doubly magic as is consistent with experiments [39], although
60Ca is not, as has been seen in Fig. 10. For the neutron-rich Ni
region, energy sequence of the single-particle orbitals above
N = 50 is 1d5/2, 2s1/2, 1d3/2, and 0g7/2, from the lower orbit
to the higher. The hindrance of the pair excitation at 86Ni
suggests magic or submagic nature of N = 58 due to the gap
between n2s1/2 and n1d3/2. Unlike the M3Y-type interactions,
by D1S the pair excitation is hindered also at N = 56. The
predicted neutron drip line appreciably depends on εn(1d3/2)
and εn(0g7/2). The D1S interaction yields higher εn(1d3/2)
than the M3Y-type interactions, which causes the drip line at
N = 58. The low εn(0g7/2) in M3Y-P3 induces pair excitation
to 0g7/2, leading to the binding up to 92Ni.

In the highly neutron-rich region, the diffuseness of the
nuclear surface becomes larger than in the β-stable region.
Then the pair correlation could be relatively strong if it has
the surface-dominant nature. However, it is not easy to argue
precisely the extent of surface dominance in the pairing from
location of the drip line, because it is obscured by influence of
the shell structure. In practice, when we use M3Y-P5 for the HF
Hamiltonian and D1S for the pair potential, predicted location
of the drip line for Ca is the same as the result of the pure
M3Y-P5 prediction. For the Ni case, although 88Ni becomes
unbound when D1S is used for the pair potential, the chemical
potential is only −0.07 MeV in the pure M3Y-P5 result. It will
be fair to say that the difference in the pairing channel between
the M3Y-type interactions and D1S is not quite significant
to location of the neutron drip line. Dependence of the rms

matter radii on the pairing interaction is not apparent either,
as long as we work with the present M3Y-type or the D1S
interactions, whereas the radii near the drip line are sensitive
to the separation energies.

VII. NUCLEUS DEPENDENCE OF SINGLE-PARTICLE
ENERGIES

It has been pointed out that the shell structure, particularly
its nucleus-dependence (sometimes called shell evolution),
may be connected to characters of effective interactions
[3,10,40]. In recent studies role of the tensor force in the shell
structure has attracted great interest [3,4]. It is known that
observed energies of one-particle states on top of a certain
core are appreciably disturbed by correlations beyond the
MF regime. However, it is presumable that those correlations
do not vary in a certain region of nuclei. In the Sb and the
N = 83 nuclei, single-particle energies of a few orbitals are
extracted from several fragmented states [41], by averaging
their energies weighted by the spectroscopic factors. As a
result, the averaged single-particle energies are shifted from
the lowest states with specific spin-parity nearly by a constant,
from nucleus to nucleus. Although data on the averaged
energies are not available in many cases, we proceed to
investigate nucleus dependence of the shell structure by using
the measured energies of the lowest states.

In this section we shall investigate nucleus-dependence
of single-particle energies, using the spherical HF or HFB
calculations. Results of several interactions are compared. In
the HF calculations for open-shell nuclei, the HF Hamiltonian
is obtained by folding the interaction by the occupation
numbers on each spherical orbital up to the Fermi level.

A. Neutron orbits and shell gap in N = 16 nuclei

Nucleus dependence of single-particle energies could be
relevant to the new magic numbers in unstable nuclei [3,40].
We investigated the single-particle energies in the N = 16 and
32 nuclei in Refs. [10,11] and disclosed role of v

(C)
OPEP for the

N = 16 isotones, using the M3Y-P2 interaction. We shall rein-
vestigate nucleus dependence of the single-particle energies in
these nuclei, drawing attention also to the tensor force.

Z dependence of the neutron single-particle energy
εn(0d3/2) relative to εn(1s1/2) is appreciably affected by
effective interactions [10,42]. Figure 12 depicts �εn =
εn(0d3/2) − εn(1s1/2) for varying Z obtained from the HF
calculations in the N = 16 isotones. Though not shown, �εn

of M3Y-P3 resembles that of M3Y-P5. To clarify role of
v(TN) and v

(C)
OPEP, we also plot their contributions to �εn in

the M3Y-P5 result, which are calculated as
∑

j ′ 〈Nj ′ 〉(2J + 1)
〈jj ′J |v|jj ′J 〉/(2j + 1)(2j ′ + 1) and shifted by the values at
N = 14.

The present semirealistic interactions yield increasing �εn

as Z goes from 14 to 8, in contrast to the D1S interaction.
We view in Fig. 12 that v

(C)
OPEP [42] and v(TN) produce this

feature cooperatively. This Z dependence of the single-particle
energies could be relevant to the new magic number N = 16
in the neutron-rich region [43]. It has been confirmed that
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FIG. 12. (Color online) �εn = εn(0d3/2) − εn(1s1/2) for the N =
16 isotones. Blue, green, and red lines correspond to the results with
the D1S, M3Y-P4, and P5 interactions, respectively. Thin red solid
and dashed lines represent relative contributions of v(TN) and v

(C)
OPEP in

the M3Y-P5 result.

several popular Skyrme interactions show similar behavior to
D1S [42].

B. Neutron orbits and shell gap in N = 32 nuclei

In Fig. 13, Z dependence of the neutron single-particle
energies relative to εn(1p3/2),�εn(j ) = εn(j ) − εn(1p3/2), is
shown for the N = 32 nuclei, by taking j = 0f5/2 and 1p1/2.
As in the preceding subsection, contributions of v(TN) and
v

(C)
OPEP to �εn(0f5/2) in the M3Y-P5 result are also presented,

after shifting by the values at Z = 28. With the M3Y-P5
interaction we obtain strong Z dependence in �εn(0f5/2),

FIG. 13. (Color online) �εn(0f5/2) = εn(0f5/2) − εn(1p3/2)
(solid lines) and �εn(1p1/2) = εn(1p1/2) − εn(1p3/2) (dot-dashed
lines) for the N = 32 isotones. See Fig. 12 for conventions of colors.
Thin red solid and dashed lines represent relative contributions of
v(TN) and v

(C)
OPEP to �εn(0f5/2) in the M3Y-P5 result.

which could be relevant to the magicity of N = 32 in the
neutron-rich region [44]. Once again this Z dependence
originates in v

(C)
OPEP [11] and v(TN).

This behavior of �εn(0f5/2) is reflected in the pair correla-
tions shown in Figs. 10 and 11. The pairing effects are small
at N = 32 for all the interactions in the calcium case, because
�εn(0f5/2) as well as �εn(1p3/2) are greater than 2 MeV.
Recall that this single-particle energy difference competes with
the pairing gap, whose typical value is estimated to be � ≈
12A−1/2 ≈ 1.7 MeV. However, in the nickel case the narrow
�εn(0f5/2) leads to substantial pair excitation at N = 32 for
the M3Y-type interactions, whereas such excitation is kept
suppressed in the D1S result.

In the neutron-rich region of Z ∼ 20, there was a prediction
that N = 34 should be a magic number, based on a shell-
model calculation [45]. The present MF calculations with
the semirealistic interactions do not support this prediction.
Although the N = 32 shell gap is 2.7 MeV for 52Ca in the HF
calculation with M3Y-P5, the N = 34 gap is only 1.2 MeV
for 54Ca. The pair excitation across N = 34 is sizable, as has
been viewed in Fig. 10.

C. Proton orbits in Z = 50 nuclei

In recent studies, nucleus dependence of single-particle
energies in the Sn isotopes and in the N = 82 isotones has
been disclosed from experiments [41]. It has been pointed out
that the tensor force seems to play a crucial role in the N

dependence of the proton single-particle energies in the Sn
isotopes [18]. We now have the M3Y-type interactions with
quite realistic tensor force (M3Y-P3 and -P5) and without
tensor force (M3Y-P4), both of which reproduce the properties
of doubly magic nuclei as well as the pairing properties to
reasonable accuracy. We apply the HFB calculations with these
new interactions to investigating the nucleus dependence of the
single-particle energies in the Sn nuclei in this subsection, and
in the N = 50 and N = 82 nuclei in the subsequent subsection.

In the previous studies [18,41], the relative proton single-
particle energies εp(0h11/2) − εp(0g7/2) were the point of
discussion. We here consider the energies of these two orbits
relative to 1d5/2,�εp(j ) = εp(j ) − εp(1d5/2) with j = 0g7/2

and 0h11/2. Taking �εp(j ) at N = 64 to be a reference and
denoting it by �ε0

p(j ), we plot δ�εp(j ) = �εp(j ) − �ε0
p(j )

in Fig. 14. The values of the M3Y-type interactions (M3Y-P4
and -P5) are presented together with those of D1S and the
experimental data. For the data we use the energies of the
lowest states in the Sb nuclei.

The semirealistic M3Y-P5 interaction reproduces δ�εp(j )
remarkably well. In the 64 � N � 82 region, the N dependence
of �εp(j ) takes place due primarily to the occupation of
n0h11/2, to which contribution of v(TN) is significant. Though
not shown, δ�εp(j ) with M3Y-P3 is close to the M3Y-P5
result. With D1S, whereas δ�εp(0g7/2) is in qualitative
agreement with the data, δ�εp(0h11/2) is not, because the
tensor force is absent. The same holds for M3Y-P4. Although
M3Y-P4 reproduces the tendency of the observed N depen-
dence of εp(0h11/2) − εp(0g7/2), it gives wrong behavior for
δ�εp(0h11/2); i.e., N dependence of εp(0h11/2) relative to
εp(1d5/2). It is also remarked that M3Y-P5 gives quite different
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FIG. 14. (Color online) δ�εp(j ) in the Sn isotopes (N = even)
for j = 0g7/2 (dot-dashed lines) and 0h11/2 (solid lines). Blue, green,
and red lines represent the results of D1S, M3Y-P4, and M3Y-P5, as
before. Pluses (j = 0g7/2) and crosses (j = 0h11/2) are experimental
values taken from the lowest states of the Sb nuclei [32]. Thin red
lines are contributions of v(TN) in the single-particle levels of M3Y-P5.

behavior of δ�εp(j ) from D1S and M3Y-P4 in N < 64, and
that the currently available data favor the result of M3Y-P5.
We have confirmed that v

(C)
OPEP does not have important effects

on the N dependence of �εp(j ).
It is emphasized that the M3Y-P5 interaction can reproduce

the variation of the single-particle energy difference in the Sn
isotopes without destroying the shell structure of the doubly
magic nuclei shown in Sec. IV. This could be an advantage
of the present realistic tensor force. In Ref. [4], no such
parameters were found within the Skyrme density functional
including the zero-range tensor force.

D. Neutron orbits in N = 50 and N = 82 nuclei

In the preceding subsection, we have seen that the tensor
force affects εp(0g7/2) and εp(0h11/2) via the occupation of
n0h11/2. This is accounted for by the attractive (repulsive)
nature of the tensor force between a neutron occupying a j> =

FIG. 15. (Color online) δ�εn(j ) in the N = 50 isotones (Z =
even), for j = 0g7/2 and 0h11/2. Conventions are the same as in
Fig. 14, except that j represents the neutron orbits and Z = 40 is
taken to be a reference. Experimental values are taken from the lowest
states of the N = 51 nuclei [32].

FIG. 16. (Color online) δ�εn(j ) in the N = 82 isotones (Z =
even), for j = 0h9/2 (dot-dashed lines), and 0i13/2 (solid lines). See
Fig. 14 for conventions of colors. Pluses (j = 0h9/2) and crosses
(j = 0i13/2) are experimental values taken from the lowest states of
the N = 83 nuclei [32].

� + 1/2 orbit and a proton occupying j ′
< = �′ − 1/2(j ′

> =
�′ + 1/2) [18]. The same mechanism is expected for εn(0g7/2)
and εn(0h11/2) in the N = 50 nuclei, as p0g9/2 is occupied. We
define �εn(j ) = εn(j ) − εn(1d5/2) and take its value at Z =
40 to be �ε0

n(j ). In Fig. 15 δ�εn(j ) = �εn(j ) − �ε0
n(j ) is

displayed for j = 0g7/2 and 0h11/2. Although εn(0g7/2) varies
almost in parallel to εn(0h11/2) in Z � 40 for D1S, notable
Z dependence arises for M3Y-P5, in qualitative agreement
with the observed single-particle levels. The tensor force has
significant contribution to this behavior as in the Z = 50 case.
More realistic than D1S in the central channels but not having
the tensor force, M3Y-P4 yields δ�εn(j ) in between, which is
qualitatively good but quantitatively insufficient.

For the N = 82 nuclei, we consider �εn(j ) = εn(j ) −
εn(1f7/2), from which δ�εn(j ) = �εn(j ) − �ε0

n(j ) is ob-
tained by assuming the value at Z = 64 as �ε0

n(j ).
Figure 16 shows δ�εn(j ) for j = 0h9/2 and 0i13/2. The
M3Y-P5 interaction well describes δ�εn(j ) in Z � 64, which
is affected mainly by the occupation of p0h11/2. However, we
cannot fully reproduce the tendency in Z < 64, which was
argued in Ref. [41], although the M3Y-P5 results of δ�εn(j )
are substantially better than those of D1S and M3Y-P4. Further
investigation will be necessary.

VIII. SUMMARY AND OUTLOOK

We have developed semirealistic effective interactions to
describe low-energy phenomena of nuclei. Starting from the
M3Y interaction, we add a density-dependent contact force
and modify several strength parameters in a phenomenological
manner, whereas maintain the OPEP part in the central force.
We have obtained three new parameter sets; two of them
(M3Y-P3 and -P5) keep the tensor force of the M3Y-Paris
interaction, and the other (M3Y-P4) has no tensor force. Basic
characters of the interactions are checked by the Hartree-Fock
calculations for the infinite nuclear matter and for the doubly
magic nuclei. The singlet-even channels of the interactions,
which are relevant to the pairing properties, are fixed from
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the even-odd mass differences in the Sn isotopes, by using the
Hartree-Fock-Bogolyubov calculations.

We further implement the Hartree-Fock and the Hartree-
Fock-Bogolyubov calculations for spherical nuclei, applying
the new interactions. Predicted shell structure depends on the
effective interactions to certain extent. This may significantly
affect location of the drip lines. The new semirealistic
interaction M3Y-P5 correctly describes the experimental
consequence that the heaviest bound oxygen is 24O. We have
argued location of the neutron drip line for the Ca and the
Ni nuclei, and its relevance to the shell structure. Variation
of the single-particle energies, particularly contribution of the
tensor force to it, is a current topic. It is suggested that the
tensor force as well as the OPEP part of the central force
play a significant role in the magic numbers N = 16 and 32
in the neutron-rich region. It has been shown that the new
semirealistic interactions including the tensor force, M3Y-P5
in particular, describe the variation of the single-particle levels

fairly well in Z = 50, N = 50, and N = 82 nuclei. It is
remarked that this interaction can reproduce the variation of
the single-particle energy difference in the Sn isotopes without
destroying the shell structure of the doubly magic nuclei.

It will be of interest to apply the semirealistic interactions
to deformed nuclei and to excited states via the random-phase
approximation (RPA). Both projects are in progress (for the
latter, see Ref. [46]).
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