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Wigner symmetry, large Nc, and renormalized one-boson exchange potentials
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Wigner symmetry in nuclear physics provides a unique example of a nonperturbative medium and long distance
symmetry, a symmetry strongly broken at short distances. We analyze the consequences of such a concept within
the framework of one-boson exchange potentials in NN scattering and keeping the leading Nc contributions.
Phenomenologically successful relations between singlet 1S0 and triplet 3S1 scattering phase shifts are provided
in the entire elastic region. We establish symmetry breaking relations among noncentral phase shifts which are
successfully fulfilled by even-L partial waves and strongly violated by odd-L partial waves, in full agreement
with large Nc requirements.
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I. INTRODUCTION

Symmetries have traditionally been very useful in nuclear
physics partly because the force at the hadronic level is not well
known at short distances [1–3]. In cases such as isospin, chiral,
or heavy quark symmetry, the invariance can directly be traced
from the fundamental QCD Lagrangian and formulated in
terms of the underlying quark and gluonic degrees of freedom.
In some other cases. the connection is less straightforward.
Many years ago Wigner and Hund proposed [4,5] extending
the spin and isospin SUS(2) ⊗ SUI (2) symmetry into the
larger SU(4) group where the nucleon-spin states p↑, p↓,

n↑, n↓ correspond to the fundamental representation, and
hence providing a supermultiplet structure of nuclear energy
levels. From a fundamental viewpoint, it is clear that SU(4)
and more generally SU(6) (spin-flavor) symmetry cannot be
realized exactly and dynamically due to the Coleman-Mandula
theorem [6]. However, as a static symmetry, it yields interesting
selection rules for nuclear transitions and response functions
[7]. In addition, the corresponding SU(4) mass formula was
found to be at least as good as the well-known Weizsäcker
one [8,9]. Spin-orbit interaction of the shell model obviously
violates the symmetry, and indeed a breakdown of SU(4) has
been reported for heavier nuclei [10], while nuclear matter has
been addressed in Ref. [11]. Double binding energy differences
have been shown to be a useful test of the symmetry [12].
Recently, inequalities for light nuclei based on SU(4) and
Euclidean path integrals have been derived by neglecting all
but S-wave interactions [13].

Despite its relative success along the years, SU(4) symme-
try has been treated as an accidental one within the traditional
approach to nuclear physics and guessing its origin from QCD
has been a subject of some interest in the last decade. Indeed,
attempts to justify SU(4) spin-flavor symmetry from a more
fundamental level have been carried out along several lines.
Based on the limit of a large number of colors Nc of QCD
[14,15], it was shown [16,17] that if the nucleon momentum
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scales as p ∼ N0
c , the nuclear potentials scale either as Nc

or 1/Nc, depending upon the particular spin-isospin channel,
which shows that the NN force could be determined with
1/N2

c relative accuracy. It was found that the leading potential
would be SU(4) symmetric if the tensor force was neglected in
addition, a plausible assumption for light nuclei where S waves
dominate. Although these estimates are conducted directly in
terms of quarks and gluons, quark-hadron duality allows one
to reformulate these results in terms of purely hadronic degrees
of freedom, providing a rationale for the one-boson-exchange
(OBE) potential models [18], and the internal consistency of
two- [19] and multiple-boson exchanges [20,21]. The analysis
of sizes of volume integrals of phenomenologically successful
potentials confirms the large-Nc expectations [22]. The large
size of scattering lengths was regarded as a fingerprint of
the SU(4) symmetry within an effective field theory (EFT)
viewpoint [23] using the power divergent subtracted (PDS)
scheme; singlet and triplet renormalized couplings coincide
at the natural renormalization scale µ ∼ mπ � 1/αs, 1/αt ,
with αs and αt the scattering lengths, and a contact interaction
makes sense in such a scaling regime. Resonance saturation
based on the elimination of exchanged mesons in the OBE
Bonn potential [18] at very low energies was also shown
to reproduce the EFT approach and to agree numerically
with the Wigner symmetry expectations [24]. According to
Refs. [26–29], QCD might be close to a point where the
effective theory had an SU(4) symmetry at zero energy as
well as discrete scale invariance if the pion mass was larger
than its physical value, around mπ ∼ 200 MeV. This nice idea
might be confirmed by recent fully dynamical lattice QCD
determinations of the scattering lengths [30] and quenched
lattice QCD evaluations of NN potentials [31,32] where
indeed unphysical pion masses are probed.

While the proclaimed symmetry holds in a range where
scale invariance sets in and EFT methods based on contact
interactions can be applied [23,24], it is not obvious what
the implications are for the lightest NN system itself for
finite energies and for physical pion masses. In particular, the
scale dependence of the contact interaction is modified when
the finite range of the medium and long distance potential is
taken into account. To be specific, low energy NN scattering is
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dominated by S waves in different (S, T ) channels where spin
and isospin are interchanged, (1, 0) = 1S0 ↔ (0, 1) = 3S1.
Wigner SU(4) symmetry predicts identical interactions in
both 1S0 and 3S1 channels. The above-mentioned identity
of the 1S0 and 3S1 potentials holds also in the large-Nc

expansion [16,17], so we take advantage of this fact by using
the leading Nc-OBE potentials, which simplifies the discussion
to a large extent as we discuss in Sec. II. In contrast, the
corresponding phase shifts from partial wave analyses [33]
are very different at all energies. We are thus confronted with
an intriguing puzzle, since it is not at all obvious how the
symmetry should be interpreted for the NN system; it would
be difficult to understand otherwise the successes of SU(4)
for light nuclei. A second puzzle arises from an embarrassing
cohabitation of conflicts and agreements between large-Nc

studies and Wigner symmetry. Despite the initial claim [16],
a more complete analysis [17] could only justify the Wigner
symmetry in even-L partial waves, while for odd-L a violation
of the symmetry was expected. However, doing so requires
neglecting the tensor force, which according to the Wigner
symmetry should vanish, but it is a leading contribution to
the potential in the large-Nc limit. Thus, while some pieces of
the NN potential (such as spin orbit) are suppressed in both
schemes, some others are not simultaneously small. These
conflicts between the time-honored SU(4) Wigner symmetry
and the QCD based large-Nc expansion for odd-L channels
require an explanation and naturally pose the question on the
validity of either framework.

In the present work, we analyze both puzzles by introducing
the concept of a long distance symmetry1 first to understand the
meaning of Wigner symmetry in those cases where its validity
complies with large-Nc expectations. This is a case where we
expect the symmetry to be more robust. Once this is done, it
is pertinent to elucidate the validity of the symmetry in those
cases where a possible conflict with the large-Nc expansion
arises. Our discussion is tightly linked to the coordinate
space renormalization discussed in previous works [34,35].
This approach, while borrowing the physical motivation from
EFT theories, provides a quantum mechanical framework in
which the emphasis is placed on the nonperturbative aspects
of the NN problem, a playground where the standard EFT
viewpoint has encountered notorious difficulties. The method
is reviewed in Sec. III for completeness. We find that for
S waves, the Wigner symmetry holds in a much wider
range than the applicability of a contact interaction suggests
if the finite range of the interaction is incorporated. As a
byproduct, we provide in Sec. IV quantitative predictions; the
seemingly independent triplet and singlet S-wave phase shifts
corresponding to isovector and isoscalar states, respectively,
for the np system are shown to be neatly intertwined in
the entire elastic region. A similar correlation can also be
established between the 1S0 virtual state and the 3S1 deuteron
bound state. Actually, we show how the symmetry may be
visualized for large scattering lengths due to the onset of scale

1Strictly speaking, we mean long and medium range effects,
although we will be using long distance for brevity and to emphasize
the renormalization aspect of the problem.

invariance. Symmetry breaking due to inclusion of further
counterterms, tensor interaction, and spin-orbit interaction
are discussed in Sec. V. We show how a sum rule for
supermultiplet phase-shift splitting due to spin-orbit and tensor
interactions is well fulfilled for noncentral L-even waves,
and strongly violated in L-odd waves where a Serber-like
symmetry holds instead. This pattern of SU(4)-symmetry
breaking complies with the large-Nc expectations, a somewhat
unexpected conclusion. Finally, in Sec. VI we provide our main
conclusions and outlook for further work.

II. OBE POTENTIALS, LARGE Nc, AND
WIGNER SYMMETRY

Our starting point is the field theoretical OBE model of
the NN interaction [18], which includes all mesons with
masses below the nucleon mass, i.e., π, σ (600), η, ρ(770), and
ω(782). For the purpose of discussing SU(4) Wigner symmetry
within the OBE framework (see Appendix A for a brief
overview), we will deal here only with S waves, neglecting
for the moment the S-D wave mixing stemming from the
tensor force as required by Wigner symmetry. Our results of
Sec. IV and estimates in Sec. V B will provide the a posteriori
justification of this simplifying assumption. Noncentral waves
and the role of spin-orbit as well as tensor force will be treated
in Sec. V C as SU(4) breaking perturbations.

For S waves, the NN potential reads

V = VC + τWC + σVS + τσWS, (1)

where τ = τ1 · τ2 = 2T (T + 1) − 3 and σ = σ1 · σ2 =
2S(S + 1) − 3, and the Pauli principle requires (−)S+T +L =
−1. Thus, for the spin-singlet 1S0 and spin-triplet 3S1 states
we get

Vs = VC + WC − 3VS − 3WS, (2)

Vt = VC − 3WC + VS − 3WS, (3)

To simplify the discussion, we will discard terms in the poten-
tial that are phenomenologically small. Actually, according to
Refs. [16,17] in the leading large Nc, one has VC ∼ WS ∼ Nc,

while VS ∼ WC ∼ 1/Nc. In terms of meson exchanges (see
also Ref. [19]), one has the contributions

Vs(r) = Vt (r) = −g2
πNN m2

π

16πM2
N

e−mπ r

r
− g2

σNN

4π

e−mσ r

r

+ g2
ωNN

4π

e−mωr

r
− f 2

ρNN m2
ρ

8πM2
N

e−mρr

r

+O
(
Nc

−1
)
, (4)

where gσNN is a scalar-type coupling, gπNN a pseudoscalar
derivative coupling, gωNN a vector coupling, and fρNN a
tensor derivative coupling (see Ref. [18] for notation). Here,
the scheme proposed in Ref. [36] of neglecting both energy
and nonlocal corrections is realized explicitly. In principle,
the large-Nc limit contains infinitely many multi-meson
exchanges which decay exponentially with the sum of the
exchanged meson masses. However, NN scattering in the
elastic region below pion production threshold probes c.m.
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momenta p < pmax = 400 MeV. Given the fact that 1/mω =
0.25 fm � 1/pmax = 0.5 fm, we expect heavier meson scales
to be irrelevant, and in particular ω and ρ themselves are
expected to be at most marginally important.2 Note that,
in any case, when mω = mρ the redundant combination
g2

ωNN − f 2
ρNNm2

ρ/(2M2
N ) appears, indicating a further source

of cancellation between ρ and ω in this channel. Moreover,
since the leading contributions to the potential are ∼Nc and
the subleading ones are ∼1/Nc, the neglected terms are of
relative 1/N2

c order, so we might expect an a priori ∼10%
accuracy.

The coincidence between 1S0 and 3S1 potentials complies
with the Wigner SU(4) symmetry, which we review for
completeness in Appendix A for the two-nucleon system.
Modern high quality potentials [37] describing accurately NN

scattering below pion production threshold show some traces
of the symmetry for distances above 1.4–1.8 fm. Quenched
lattice QCD evaluations of NN potentials for mπ/mρ ∼ 0.6
[31,32] also yield similar 1S0 and 3S1 potentials for r >

1.4 fm. Thus, at first sight, one might conclude that Wigner
symmetry holds when OPE dominates and thus has a limited
range of applicability. An important result of the present
investigation, which will be elaborated in this paper, is that this
is not necessarily so, provided the relevant scales of symmetry
breaking are properly isolated with the help of renormalization
ideas.

Let us analyze the consequences of the symmetry [Eq. (4)]
within the standard approach to OBE potentials. The scattering
phase shift δ0(p) is computed by solving the (S-wave)
Schrödinger equation in r-space, i.e.,

− u′′
p(r) + MN V (r) up(r) = p2 up(r), (5)

up(r) → sin (pr + δ0(p))

sin δ0(p)
, (6)

with a regular boundary condition at the origin up(0) = 0.
Moreover, for a short range potential such as the one in
Eq. (4), one also has the effective range expansion (ERE)

p cot δ0(p) = − 1

α0
+ 1

2
r0 p2 + · · · , (7)

where the scattering length α0 is defined by the asymptotic
behavior of the zero-energy wave function as

u0(r) → 1 − r

α0
, (8)

and the effective range r0 is given by

r0 = 2
∫ ∞

0
dr

[(
1 − r

α0

)2

− u0(r)2

]
. (9)

In the usual approach [18,38], everything is obtained from
the potential assumed to be valid for 0 � r < ∞. We note
incidentally that the Wigner symmetry relation, Eq. (4), holds

2This of course does not exclude explicit and leading Nc un-
correlated multiple pion exchanges, i.e., background nonresonant
contributions in ππ or πρ scattering. We expect them not to be
dominant once σ, ρ, and ω are included.

at all distances.3 In addition, due to the unnaturally large
NN1S0 scattering length (αs ∼ −23 fm), any change in the
potential V → V + 	V has a dramatic effect on α0, since
one obtains

	α0 = α2
0MN

∫ ∞

0
	V (r)u0(r)2 dr, (10)

and thus the potential parameters must be fine-tuned, and
in particular the short distance physics. As discussed in
Refs. [39,40], this short distance sensitivity is unnatural as long
as the OBE potential does not truly represent a fundamental
NN force at short distances. Indeed, the sensitivity manifests
itself as tight constraints for the potential parameters when the
1S0 phase shift is fitted, resulting in incompatible values of
the coupling constants as obtained from other sources as NN

scattering. Of course, there is nothing wrong with the need of a
fine-tuning, as this is an unavoidable consequence of the large
scattering length; the relevant point is whether this should be
driven by a potential that will not be realistic at short distances.

In any case, in the traditional approach to NN potentials,
we are confronted with a paradox: on the one hand, the
symmetry seems to suggest that somewhere the phase shifts
should coincide, while on the other hand, a fine-tuning is
required because of the large scattering lengths. In the standard
approach, if Vs(r) = Vt (r), then δs(k) = δt (k), and thus αs =
αt , as one naturally expects. A straightforward explanation,
of course, is to admit that the symmetry is strongly violated.
This would make it difficult to understand how SU(4) can work
at all for light nuclei if the simpler two nucleon system does
not manifestly show the symmetry.

Before presenting our solution to this dilemma in the next
section, let us note that a good condition for an approximate
symmetry is that it be stable under symmetry breaking, oth-
erwise a tiny perturbation Vs(r) − Vt (r) = 	V (r) �= 0 would
yield a large change, and this is precisely the bizarre situation
we are bound to evolve because of the large scattering lengths.
This suggests a clue to the problem; namely, we should provide
a framework in which the highly potential-sensitive scattering
length becomes a variable independent of the potential. More
generally, we want to avoid the logical conclusion that a
symmetry of the potential is a symmetry of the S matrix.4

As we will explain below, the puzzle may be overcome by
the concept of long distance symmetry: a symmetry that
is only broken at short distances by a suitable boundary
condition.

3In practice, strong form factors are included mimicking the finite
nucleon size and reducing the short distance repulsion of the potential,
but the regular boundary condition is always kept.

4This situation resembles the case of anomalies in quantum field
theory, where the parallel statement would be that a symmetry of the
Lagrangian becomes a symmetry of the S matrix, a conclusion that
may be invalidated by the impossibility of preserving the symmetry
by the necessary regularization of loop integrals. The present case is
a bit more subtle, as it corresponds to the case of finite but ambiguous
theories (see, e.g., Ref. [41]).
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III. UNIVERSALITY RELATIONS AND
RENORMALIZATION

We cut the Gordian knot by appealing to renormalization
in coordinate space [34,35]. As we will show, this enables
us to disentangle short and long distances in a way that the
symmetry is kept at all nonvanishing distances. The main idea
is to fix the scattering length independently of the potential
by means of a suitable short distance boundary condition.
As a result the undesirable dependence of observables on the
potential is reduced at short distances, precisely the region
where a determination of the NN force in terms of hadronic
degrees of freedom becomes less reliable.

Let us review in the case of S waves the renormalization
procedure in coordinate space pursued elsewhere [34,35] and
which will prove particularly suitable in the sequel. This
is fully equivalent to introducing one counterterm in the
cutoff Lippmann-Schwinger equation in momentum space
(see Ref. [42] for a detailed discussion on the connection).
The superposition principle of boundary conditions implies

uk(r) = uk,c(r) + k cot δ0uk,s(r), (11)

with uk,c(r) → cos(kr) and uk,s(r) → sin(kr)/k for r → ∞.
At zero energy, k → 0, and δ0(k) → −α0k yields

u0(r) = u0,c(r) − 1

α0
u0,s(r), (12)

with u0,c(r) → 1 and u0,s(r) → r for r → ∞. Combining the
zero- and finite-energy wave functions, we get

[u′
k(r)u0(r) − u′

0(r)uk(r)]|∞rc
= k2

∫ ∞

rc

uk(r)u0(r) dr,

(13)

where rc is a short distance cutoff radius which will
be removed at the end. To calculate the contribution from the
term at infinity, we use the long distance behavior, Eq. (6).
The integral and the boundary term at infinity yield two
canceling δ functions. This corresponds to∫ ∞

0
uk(r)up(r)dr = πδ(k − p)

2 sin2 δ0(k)
, (14)

as can be readily seen. We are thus left with the boundary term
at short distances; taking the limit rc → 0. we get

lim
rc→0

[u′
k(rc)u0(rc) − u′

0(rc)uk(rc)] = 0. (15)

Note that the regular solution uk(rc) = u0(rc) = 0 is a particu-
lar choice for rc = 0. Writing out the orthogonality condition
via the superposition principle at finite and zero energies,
Eqs. (11) and Eq. (12), respectively, one gets

0 =
∫ ∞

0
dr

[
u0,c(r) − 1

α0
u0,s(r)

]
×[uk,c(r) + k cot δ0(k)uk,s(r)]. (16)

Expanding the integrand and defining

A(k) =
∫ ∞

0
dru0,c(r)uk,c(r),

B(k) =
∫ ∞

0
dru0,s(r)uk,c(r),

C(k) =
∫ ∞

0
dru0,c(r)uk,c(r),

D(k) =
∫ ∞

0
dr u0,s(r)uk,s(r), (17)

we get the explicit formula

k cot δ0(k) = α0A(k) + B(k)

α0C(k) + D(k)
. (18)

The functions A,B, C, and D are even functions of k which
depend only on the potential. Note that the dependence of the
phase shift on the scattering length is wholly explicit; cot δ0 is
a bilinear rational mapping of α0. Further, using Eq. (12), one
gets the effective range

r0 = A + B

α0
+ C

α2
0

, (19)

where

A = 2
∫ ∞

0
dr

(
1 − u2

0,c

)
, (20)

B = −4
∫ ∞

0
dr(r − u0,cu0,s), (21)

C = 2
∫ ∞

0
dr

(
r2 − u2

0,s

)
, (22)

depend only on the potential parameters. Again, the interesting
thing is that all explicit dependence on the scattering length α0

is displayed by Eq. (19).
We turn now to discuss the case of a bound state correspond-

ing to the case of negative energy E = −γ 2/M, where γ is
the wave number. The wave function behaves asymptotically
as

uγ (r) → ASe
−γ r , (23)

and is chosen to fulfill the normalization condition∫ ∞

0
uγ (r)2dr = 1. (24)

In principle, such a state would be unrelated to the scattering
solutions. An explicit relation may be determined from the
orthogonality condition, which applied in particular to the
zero-energy state yields

0 =
∫ ∞

0
dr

[
u0,c(r) − 1

α0
u0,s(r)

]
uγ (r). (25)

This generates a correlation between the scattering length α0

and the bound state wave number γ ,

α0(γ ) =
∫ ∞

0 druγ (r)u0,s(r)∫ ∞
0 druγ (r)u0,c(r)

. (26)

We recall that the two independent zero-energy solutions,
u0,c(r) and u0,s(r), depend only on the potential.

A trivial realization of the conditions discussed above is
given by the case with no potential, U (r) = 0. Hence, the
general solution for a positive energy state E = k2/M is given
by

uk(r) = cot δ0(k) sin(kr) + cos(kr), (27)
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and using the low energy limit condition δ0(k) → −α0k, we
obtain

u0(r) = 1 − r

α0
. (28)

Orthogonality between zero- and finite-energy states yields,
after evaluating the integrals,

k cot δ0(k) = − 1

α0
, (29)

and as a consequence the effective range vanishes r0 = 0, in
accordance with the fact that the range of the potential is
zero. For a negative energy state E = −γ 2/M, the normalized
bound state is

uγ (r) = ASe
−γ r , AS =

√
2γ . (30)

Orthogonality between the zero-energy and the bound state,
again, yields the correlation

α0 = 1/γ. (31)

In the Appendix B we illustrate further the procedure in the
case of weak potentials for which a form of perturbation theory
may be applied for the case of weak potentials but arbitrary
scattering lengths.

Before going further, we should ponder the need to take the
limit rc → 0, which corresponds to eliminating the cutoff. We
note that the potential V (r) is used at all distances in both the
standard approach, which involves the regular solution only,
and the renormalization approach, which requires the regular
as well as the irregular solution. However, the sensitivity to
the short distance behavior of the potential is quite different:
the standard approach displays much stronger dependence,
while the renormalization approach is fairly independent of
the hardly accessible short distance region, a feature that
becomes evident perturbatively [see, e.g., Eq. (B6)]. This is
in fact the key property that allows us to eliminate the cutoff in
the renormalization approach. Thus, removing the cutoff does
not mean that the OBE potential is believed to hold all the way
down to the origin.

The procedure carried out before is described in purely
quantum mechanical terms, but it can be mapped onto field
theoretical terminology; it is equivalent to the method of intro-
ducing one counterterm in the cutoff Lippmann-Schwinger
equation in momentum space [42,43]. Moreover, Eq. (12)
represents the corresponding renormalization condition, which
is chosen to be on-shell at zero energy. In the case of the
bound state, the corresponding renormalization condition is
given by Eq. (23) at negative energy. Imposing more than
one renormalization condition, i.e., introducing more than one
counterterm and removing the cutoff, presents some subtleties,
which have been discussed in Refs. [35,42]. We will analyze
below this issue in the present context (see Sec. V A).

IV. CENTRAL PHASES AND THE DEUTERON

A. Potential parameters

To proceed further, we fix the potential parameters, keeping
in mind that the leading Nc nature of the potential embodies

some systematic 1/N2
c uncertainties. Of course, while we will

use relations compatible with large-Nc scaling, the numerical
values can only be fixed phenomenologically. The main point
is that besides the σ -meson mass (see below), we may choose
quite natural values for the masses and couplings unlike the
usual OBE potentials [18]. As discussed at the end of Sec. II,
the standard approach suffers from tight constraints reflecting
the unnatural short distance sensitivity. In this regard, let us
note that, as emphasized in Refs. [39,40], it is a virtue of the
renormalization viewpoint, which we are applying here to the
OBE potential, that the unwanted short distance sensitivity
is largely removed, allowing a determination of the potential
parameters using independent sources.

For definiteness, we take gπNN = 13.1 and gσNN = 10.1,
which are quite close to the Goldberger-Treiman values for σ

and π, gσNN = MN/fπ and gπNN = gAMN/fπ, respectively.
We also take the SU(3) value gωNN = 3gρNN − gφNN , which
on the basis of the OZI rule gφNN = 0, Sakurai’s universal-
ity gρNN = gρππ/2, and the KSFR relation 2g2

ρππf 2
π = m2

ρ

yields gωNN = Ncmρ/(2
√

2fπ ) = 8.8. The ρ tensor cou-
pling is taken to be fρNN = √

2MNgωNN/mρ = 15.5, which
cancels the vector meson contributions in the potential and
yields κρ = fρNN/gρNN = 5.5, a quite reasonable result
[18].5 Note that 1/Nc effects include not only other mesons
but also finite width effects of σ and ρ, since for large Nc one
has stable mesons, σ , ρ ∼ 1/Nc.

For the masses, we take mπ = 140 MeV and mω =
783 MeV. This fixes all parameters except mσ (actually the
real part), which we identify with the lightest J PC = 0++
meson f0(600). According to the recent analysis based on
Roy equations, mσ − iσ /2 = 441+16

−8 − i272+9
−12 MeV [44].

A fit to the pn data of Ref. [37] in the 1S0 channel yields
mσ = 510(1) MeV, where the error is statistical. The fitted
mass value differs by about 10% from the location of the real
part of the resonance, in harmony with the expected 1/N2

c

corrections.6 Although a more quantitative estimate of the
large-Nc corrections to the potentials parameters would be
very useful, for the present purposes of discussing Wigner
symmetry in light of large Nc, it is more than sufficient. Thus,
we make no attempt here to make any systematic expansion.

B. Low energy parameters and phase shifts

Clearly, in the traditional approach, if we have Vs(r) =
Vt (r) and impose the regular boundary condition, us(0) =
ut (0) = 0, the only possible solution is αs = αt , rs = rt ,

and δs(p) = δt (p). However, in the renormalization ap-
proach, we allow different short distance boundary conditions

5As shown in previous work [39,40], the net vector meson exchange
contribution corresponding to the combined repulsive coupling
g2

ωNN − f 2
ρNNm2

ρ/2M2
N (referred there simply as g2

ωNN ) cannot be
pinned down accurately from a fit to the 1S0 phase shift being
compatible with zero within errors. This is due to the short distance
insensitivity embodied by the renormalization approach.

6Actually, our estimate of the σ mass as a pole in the second
Riemann sheet for ππ scattering for large Nc [40] yields the value
mσ ∼ 507 MeV.

054002-5
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u′
s(0

+)/us(0+) �= u′
t (0

+)/ut (0+),7 and hence we may have
αs �= αt . Note that this corresponds to a breaking of the
symmetry at short distances and hence postulating its validity
at long distances. The previous equations imply straight away
the following expressions for the effective ranges in the singlet
and triplet channels:

rs = A + B

αs

+ C

α2
s

,

(32)
rt = A + B

αt

+ C

α2
t

.

As already mentioned, the remarkable aspect of these two
equations is that the coefficients A,B,C are identical in the
triplet and singlet channels as long as Vs(r) = Vt (r), thus the
only difference resides in the numerical values of the scattering
lengths αs and αt . Numerically, we obtain (everything in fm)

r0 = 1.3081 − 4.5477

α0
+ 5.1926

α2
0

(π ),

= 1.5089 fm (α0 = αs) (exp. 2.770 fm),

= 0.6458 fm (α0 = αt ) (exp. 1.753 fm),
(33)

r0 = 2.4567 − 5.5284

α0
+ 5.7398

α2
0

(π + σ ),

= 2.6989 fm (α0 = αs) (exp. 2.770 fm),

= 1.5221 fm (α0 = αt ) (exp. 1.753 fm),

where the corresponding numerical values when the ex-
perimental αs = −23.74 and αt = 5.42 fm as well as the
experimental values for the effective ranges have also been
added. More generally, for any fixed potential, the correlation
of r0 on 1/α0 is a parabola, which we plot in Fig. 1 for
the OPE and OPE+σ . This dependence is universal to all S

waves having the same potential, and from this viewpoint there
is nothing in this curve making unnaturally large scattering
lengths particularly different from smaller ones. The present
analysis, however, does sheds no light on the origin of the
large size of the α nor howαs and αt are interrelated.8 In
any case, as we see from Fig. 1, the experimental values fall
strikingly almost on top of the curve, pointing toward a correct
interpretation of the underlying symmetry.

We turn next to the phase shifts. According to Eq. (18),
they are given in terms of the universal functions A,B, C, and
D defined in Eq. (17) and presented in Fig. 2 in appropriate
length units as a function of the c.m. momentum p in MeV for

7The limit from above, u(0+) = limrc→0+ u(rc) is really necessary
to pick both the regular and irregular solutions. If one starts exactly
from the origin, the only possible solution is the regular one.

8This is in fact a price we pay for the built-in short distance
insensitivity. We note, however, that after Refs. [25–29], both
scattering lengths might coincide for a pion mass around mπ ∼
200 MeV. As a consequence, QCD might be close to a point where
the effective theory had a standard SU(4) symmetry at zero energy.
Actually, in Ref. [26] the similarity between 1S0 and 3S1 phase shifts
can be seen. This scenario would turn the long distance symmetry we
propose for the physical pion mass into a standard symmetry for such
an unphysical value of the pion mass.
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FIG. 1. Wigner correlation for the effective range r0 (in fm) of a
np S wave as a function of an arbitrary inverse scattering length α0

in the case of the OPE and OPE+σ potentials. The parabolic shape
is determined by a unique long distance potential. The points in
the solid curve correspond to the two different values of the effective
range rs in the singlet 1S0 and rt in the triplet 3S1 channels when the
scattering length is taken to be αs = −23.74 fm and αt = 5.42 fm,
respectively. Experimental points are also shown for comparison.

completeness. As we see, these functions are smooth. From
them, the corresponding singlet and triplet phase shifts are
obtained by

k cot δs = αsA(k) + B(k)

αsC(k) + D(k)
,

(34)
k cot δt = αtA(k) + B(k)

αtC(k) + D(k)
,

respectively. When the experimental scattering lengths αs =
−23.74 and αt = 5.42 fm are taken, we can fit the singlet
1S0 channel and predict the triplet 3S1 channel. The result is
shown in Fig. 3, and we see that the agreement is remarkably
good, considering that we neglected the tensor force and the a
priori 1/N2

c systematic corrections to the potential. Note that
the identity of the singlet and triplet potentials is not sufficient;
the simple OPE fulfills this property but does not explain either
phase shift. Actually, it shows that both failures are correlated.9

C. Renormalization and scale invariance

It is interesting to analyze our results in light of
Refs. [16,23,24], where a square well potential, PDS, and
sharp momentum cutoff were used to model the short distance
contact interactions arising when all exchanged particles are
integrated out. Here we are interested in the dependence
on the arbitrary renormalization scale separating the contact
and the extended particle exchange interaction, since they
are not independent of each other; by keeping this scale
dependence, we may enter the interaction region where, as
we will show now, the symmetry can be visualized. We appeal

9The reason why OPE fails at much lower energies in the 1S0

channel than in the 3S1 channel is because of a stronger short distance
sensitivity of the channel with larger scattering length.
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FIG. 2. Universal functions A,B, C, and D defined by Eqs. (17) in appropriate length units as a function of the c.m. momentum p

(in MeV). These functions depend only on the potential Vs(r) = Vt (r), but are independent of the scattering length.

to the coordinate space version of the renormalization group
[35,45] (for a momentum space version, see Ref. [46]), where
the version of the Callan-Zymanzik equation for potential
scattering reads

Rc′
0(R) = c0(R)(1 − c0(R)) + MR2V (R), (35)

where c0(R) = Ru′
0(R)/u0(R) is a suitable combination of

the short distance boundary condition, and we have chosen
for simplicity to work at zero energy.10 The above equation
provides the evolution of the boundary condition as a function
of the distance R (the renormalization scale) in order to have
a fixed scattering amplitude (see Ref. [35] for a thorough
discussion). Clearly, at long distances r � 1/mπ , the potential
becomes negligible and the equation is scale invariant, only
broken by the renormalization condition which fixes the value
of c0 at some scale.11 In fact, the solution of the above
equation is given in terms of the scattering length α0 in the
infrared, R → ∞ and c0(R) → α0/R. On the other hand, if
the scattering length is large, we also have an intermediate

10The orthogonality conditions discussed above correspond to taking
cp(R) → c0(R) for R → 0.

11In Appendix C, we analyze a case where the dilatation symmetry
of a 1/r2 potential must necessarily be broken by a renormalization
condition.

regime with clear scale separation and

c0(R) = α0

R − α0
∼ −1, 1/mπ � R � α0, (36)

indicating the onset of scale invariance [35]. This is in agree-
ment with the PDS argument of Refs. [23] if the identification
µ ∼ 1/R is done. Eventually the infrared stable fixed point
c0 → 0 will be achieved. Note, however, that cs(R) ∼ ct (R)
in a much wider range, particularly in the scaling violating
region, where the potential acts.

In the more conventional language of wave functions, the
situation corresponds to a case where both wave functions
us(r) ∼ ut (r) for r � αs, αt . The situation is illustrated in
Fig. 4 where the similarity in the range below 1 fm can
clearly be seen and does not differ much from the solution
u0,c(r) entering the superposition principle [Eq. (12)] and
corresponding to the limit α0 → ±∞. Note that the symmetry
can be visualized within the range of the potential only when
the scattering length is large because there exists the scaling
regime 1/mπ � r � α0, but the long distance correlations
between the two S-wave channels due to the identity of
potentials hold regardless of the unnatural size of the scattering
lengths.
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FIG. 3. Phase shifts (in degrees) for the fitted 1S0 and predicted
3S1 channels as a function of the c.m. momentum (in MeV). In
both cases, the potential is the same, Vs(r) = Vt (r), while the only
difference is in the scattering lengths: in the singlet channel, αs =
−23.74 fm; and in the triplet channel, αt = 5.42 fm, corresponding
to a different short distance boundary condition. We also plot the
cases with only 1σ exchange and 1π exchange for comparison. Data
from Ref. [37].

D. Virtual and bound states

It is of course tempting to analyze the kind of features for
the deuteron that may be obtained from this simplified picture
where the tensor force is neglected from the start. The deuteron
is determined by integrating in the Schrödinger equation
with negative energy E = −γ 2

d /M with γd = 0.2316 fm−1

the wave number and imposing the long distance boundary
condition, Eq. (23). We also compute the matter radius

r2
m = 1

4

∫ ∞

0
r2ud (r)2 (37)

and the MM1 matrix element

ASMM1 =
∫ ∞

0
drud (r)u0,1S0 (r), (38)

which correspond to the dominant magnetic contribution
to neutron capture process np → γ d in the range of
thermal neutrons (∼keV) in stars.12 For the experimen-
tal γd = 0.2316 fm−1, we get AS = 0.8643 fm−1/2 [exp.

12In this normalization, the total cross section is given by σM (np →
γ d) = πα(µp − µn)2

√
B/2E(B/MN )γM2

M1, where E is the neu-
tron energy, and µp and µn the proton and neutron magnetic moments
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FIG. 4. Zero-energy S-wave radial functions for the singlet 1S0

and triplet 3S1 channels as a function of distance (in fm). The
normalization is such that u0,1S0

→ 1 − r/αs and u0,3S1
→ 1 − r/αt

with αs = −23.74 and αt = 5.42 fm the singlet and triplet scattering
lengths, respectively. The potentials generating these wave functions
are the same, Vs(r) = Vt (r).

0.8846(9) fm−1/2] and rm = 1.9138 fm [exp. 1.9754(9) fm]
and MM1 = 4.0464 fm (exp. 3.979 fm). As mentioned above,
orthogonality between the bound state and the zero-energy
state yields an explicit correlation between the triplet scattering
length αt and the deuteron wave number γ , i.e.,

αt = α0(γd ) =
∫ ∞

0 dr uγ (r)u0,s(r)∫ ∞
0 dr uγ (r)u0,c(r)

∣∣∣∣
γ=γd

. (39)

Since the two independent zero-energy solutions, u0,c(r) and
u0,s(r), depend only on the potential and hence are identical
for the S-wave components of the singlet and triplet channels,
this correlation is a consequence of the Wigner symmetry as
well, as long as we take Vs(r) = Vt (r). Note that taken as a
function of the scattering length, the expression

M(γ, α0) =
∫ ∞

0
dr uγ (r)u0(r) (40)

yields both the orthogonality relation as well as MM1:

M(γd, αt ) = 0,
(41)

M(γd, αs) = MM1.

Actually, the dependence on the inverse scattering length
is a straight line, which we show in Fig. 5. As we see, both
conditions are very well fulfilled. Similarly to the previous
case, the orthogonality between finite-energy states and the
deuteron corresponds to the magnetic contribution to the
photodisintegration of the deuteron. The result, however,
does not differ much from the potential-less theory, and
so we will not discuss it any further. For the experimental
γd = 0.2316 fm−1, we get αt = 5.32 fm. This value improves
over the simple formula αt = 1/γ = 4.31 fm obtained from
the case without potential, or the single OPE case where

in units of the nuclear magneton, µN = e/2Mp . We neglect meson
exchange currents in the calculation of MM1.
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αt = 4.60 fm. It is worth stressing that the same relation above
yields the virtual state, a purely exponentially growing wave
function, uv(r) → e+γvr , in the singlet channel, yielding for
αs = −23.74 fm, the value γv = 0.042 fm−1. In other words,
the function α0(γ ) fulfills α0(γd ) = αt and simultaneously
α0(γv) = αs . Numerically, we get

α0(−0.042 fm−1) = −23.74 fm, (42)

α0(0.2265 fm−1) = 5.42 fm. (43)

In the region below 1 fm, the virtual state uv(r) and the
deuteron bound state ud (r) look very much like the correspond-
ing singlet and triplet zero-energy wave functions, respectively
(see Fig. 4). Thus, u0,1S0 (r) ∼ uv(r) and u0,3S1 (r) ∼ ud (r) are
consequences of the closeness of the poles to the real axis,
either in the second or first Riemann sheets, respectively.
However, u0,1S0 (r) ∼ u0,3S1 (r) and uv(r) ∼ ud (r) are further
consequences of the identity of the potentials Vs(r) = Vt (r).

V. SYMMETRY BREAKING

A. Symmetry breaking with two counterterms

An essential ingredient of the present analysis is the
requirement of orthogonality between different energy states,
which ultimately reflects the self-adjoint character of the
Hamiltonian. This implies that for the Yukawa-like potentials
we are dealing with, the only way to parametrize the unknown
information at short distances is by allowing, besides the
regular solution, the irregular one and fixing the appropriate
combination by imposing a value of the scattering length as
an independent renormalization condition. This may appear
too restrictive, and in fact it is possible to renormalize using
energy-dependent boundary conditions, a procedure essen-
tially equivalent to imposing more renormalization conditions
or counterterms. Although there are subtleties on how short
distances should be parametrized in such way that the cutoff

may be removed [35,42], the procedure in coordinate space
turns out to be rather simple. In the case of two conditions, we
would fix the scattering length α0 and the effective range r0

independently of the potential. The coordinate space procedure
[35,42] consists of expanding the wave function in powers of
the energy

up(r) = u0(r) + p2u2(r) + · · · , (44)

where u0(r) and u2(r) satisfy the equations

− u′′
0(r) + MV (r)u0(r) = 0,

(45)
u0(r) → 1 − r/α0,

− u′′
2(r) + MV (r)u2(r) = u0(r),

(46)
u2(r) → (r3 − 3α0r

2 + 3α0r0r)/6α0.

The asymptotic conditions correspond to fixing α0 and r0

as independent parameters (two counterterms). The matching
condition at the boundary r = rc becomes energy dependent
[35]

u′
p(rc)

up(rc)
= u′

0(rc) + p2u′
2(rc) + · · ·

u0(rc) + p2u2(rc) + · · · , (47)

whence the corresponding phase shift may be deduced by
integrating in Eqs. (45) and (46) and integrating out the
finite-energy equation. It is worth mentioning that the energy-
dependent matching condition, Eq. (47), is quite unique, since
this is the only representation guaranteeing the existence of
the limit rc → 0 for singular potentials [35]. In any case, if
r0 is fixed from the start to their experimental values in the
singlet and triplet channels, the Wigner correlation given by
Eq. (32) and generating the universal curve shown in Fig. 1
would not be predicted, and the symmetry between the 1S0

and 3S1 channels would be further hidden into the phase shifts.
Note that the breaking of the symmetry with two counterterms
is a short distance one when the cutoff is eliminated, rc → 0,
since at any rate the potential is kept fixed and Vs(r) = Vt (r)
for any nonvanishing distance, r ≥ rc > 0. Thus, if we write

r0 = A + B

α0
+ C

α2
0

+ rshort
0 , (48)

with rshort
0 the effect of the second counterterm, we would

obtain

rt − rs ∼ rshort
t − rshort

s + B

[
1

αt

− 1

αs

]
+ · · · , (49)

where small 1/α2 terms have been neglected. This yields
rshort
t − rshort

s ∼ 0.1 fm. Thus, while introducing no countert-
erm (trivial boundary condition) does not break the symmetry
and yields identical phase shifts, δs(k) = δt (k), introducing
more than one counterterm (energy-dependent boundary
condition) breaks the symmetry at the ∼10% level. As a
consequence, we stick to the case of just one counterterm
(energy-independent boundary condition).
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B. Symmetry breaking due to tensor force

Of course, an interesting possibility that should be explored
further is that of keeping the energy independence of the
boundary condition and breaking the symmetry by introducing
a long distance component of the potential, such as the tensor
force, which would include the coupling of the 3S1 wave treated
here to the 3D1 channel. Actually, this would correspond
to take into account, as proposed in Ref. [17], the leading
and complete large-Nc NN potential. In other words, while
Wigner symmetry implies a vanishing tensor force, leading
large-Nc does not necessarily require the tensor force to be
small. To analyze this potential source of conflict, we consider
the 3S1 effective range parameter which incorporates a D-wave
contribution stemming from S-D tensor force mixing and is
given by

rt = 2
∫ ∞

0

[(
1 − r

αt

)2

− u0,α(r)2 − w0,α(r)2

]
dr,

(50)

where the zero-energy S-wave function u0,α(r) → u0,3S1 (r)
(discussed above) and the D-wave function w0,α(r) → 0
when the tensor force is switched off, keeping αt fixed.
The corresponding tensor potential would include π and
ρ exchange contributions characterized by the gπNN and
fρNN couplings and diverges as 1/r3 at short distances. This
situation resembles a previous OPE study [47], and a detailed
account will be presented elsewhere [48]. There, it will be
shown how the extension of the superposition principle and
renormalization to the coupled-channel case yields in fact an
identical analytical result as shown in Eq. (32) for the triplet
(uncoupled) channel in the absence of tensor force. We will
just quote here the numerical modification of the correlation
relation coefficients for the triplet channel (the singlet 1S0 is
not modified), Eq. (32). Numerically, we obtain for fρNN = 17
and gωNN = 9.86,

rt = 2.6199 − 5.7843

αt

+ 5.7608

α2
t

, (51)

which corresponds to a ∼10% breaking due to the tensor force.
As we see, the coefficients in Eq. (33) are not modified much
despite the singularity of the tensor force and its dominance
at short distances. Actually, the dependence of the coefficients
on the couplings responsible for the tensor force is moderate
in a wide range. Therefore, while from the large-Nc viewpoint
a large tensor force is not forbidden, we find the effect in the S

wave to be numerically small, as implied by Wigner symmetry.
In this regard, it should be noted that a virtue of the

renormalization approach is that, since the scattering lengths
are always fixed, such a long distance symmetry breaking term
only influences the region where the potential is resolved, and
from this viewpoint the perturbation will be stable, i.e., the
change will be small. Actually, in Ref. [47] a suitable form of
perturbation theory in the tensor force was suggested based on
the known smallness of the mixing angle ε1, which stays below
2◦–3◦, in a wide energy range and is indeed smaller than the
δβ phase. It would be interesting to work out the consequences
of such an approach when also ρ exchange is incorporated.

C. Symmetry breaking in noncentral waves

With the previous appealing interpretation of the Wigner
symmetry as a long distance one for the S waves, we analyze
the consequences for the phase shifts corresponding to partial
waves at angular momentum larger than zero, L > 0. Unlike
the S waves, we expect the dependence on the short distance
behavior to be suppressed due to the centrifugal barrier, and
the symmetry should become more evident. Note also that
while a dissimilarity between phase shifts connected by the
symmetry does not necessarily imply long distance symmetry
breaking, an identity between phase shifts is a clear hint of the
symmetry.

In the two-nucleon system, the Wigner symmetry implies
the following relations for spin-isospin components of the
antisymmetric sextet, 6A, and the symmetric decuplet, 10S ,
respectively (see Appendix A); thus we should have

δ01
LJ = δ10

LJ = δL, even L, (52)

δ00
LJ = δ11

LJ = δL, odd L. (53)

For P waves, for instance, we have the spin-singlet state
1P1 and the spin triplets 3P0,

3 P1, and 3P2 which according
to the symmetry should be degenerate, as they belong to
the 10S supermultiplet. Inspection of the Nijmegen analysis
[33] reveals that 1P1 is very similar to 3P1 at all energies,
|δ1P1 − δ3P1 | ∼ 10, but very different from the 3P0 and 3P2

phases. For D waves, associated to a 6A supermultiplet, we
have a similarity between 1D2 and 3D3 phases |δ1D2 − δ3D3 | ∼
10 but, again, clear differences between the 3D1 and 3D2 ones.
Clearly, the symmetry is broken in higher partial waves. In
what follows, we want to determine whether our interpretation
of a long distance symmetry that worked so successfully for S

waves (see Sec. IV) holds also for noncentral phases.
It is well known that the spin-orbit interaction lifts the

independence on the total angular momentum, via the operator
�L · �S. Moreover, the tensor coupling operator S12 mixes states
with different orbital angular momentum. We proceed in
first-order perturbation theory by using the Wigner symmetric
distorted waves as the unperturbed states. In Appendix D we
show this procedure explicitly. To first order in spin-orbit and
tensor force perturbation, the following sum rule for the center
of the S = 1 multiplet, denoted by δ10

L and δ11
L , and the S = 0

states, denoted as δ01
L and δ00

L , holds:

δ10
L ≡

∑L+1
J=L−1(2J + 1)δ10

LJ

(2L + 1)3
= δ01

LL ≡ δ01
L ,

(54)

δ11
LL ≡

∑L+1
J=L−1(2J + 1)δ11

LJ

(2L + 1)3
= δ00

LL ≡ δ00
L ,

In terms of these mean phases, Wigner symmetry is formulated
for noncentral waves as

δ1P1 = 1
9

(
δ3P0 + 3δ3P1 + 5δ3P2

)
, (55)

δ1D2 = 1
15

(
3δ3D1 + 5δ3D2 + 7δ3D3

)
, (56)

δ1F3 = 1
21

(
5δ3F2 + 7δ3F3 + 9δ3F4

)
, (57)

δ1G4 = 1
27

(
7δ3G3 + 9δ3G4 + 11δ3G5

)
. (58)
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FIG. 6. Average values of the phase shifts [33] (in degrees) as a function of the c.m. momentum (in MeV) based on first-order spin-orbit
coupling for P,D, F, and G waves. According to Wigner symmetry, δ1L = δ3L. Serber symmetry implies δ3L = 0 for odd L. One sees that
L-even waves satisfy Wigner symmetry while L-odd waves satisfy Serber symmetry.

These sum rules are true as long as the short distance
breaking can be considered small, and for this reason we have
not written down the sum rule for S waves. Furthermore, they
hold also when the tensor force is added. In Fig. 6, we show
the left- and right-hand sides of P,D,F , and G waves. As
we see, the D waves fulfill this relation rather accurately up
to p ∼ 250 MeV and the G waves up to p ∼ 400 MeV, while
the P and F waves fail completely. Actually, at threshold,
δL → −αLp2L+1, and using the low energy parameters of the
NijmII and Reid93 potentials [33] determined in Ref. [49], we
get

α1P1 = 1
9

(
α3P0 + 3α3P1 + 5α3P2

)
,

(−2.46 fm3) (0.08 fm3),
(59)

α1D2 = 1
15

(
3α3D1 + 5α3D2 + 7α3D3

)
,

(−1.38 fm5) (−1.23 fm3),

where the numerical values are displayed below the sum rules.
In light of the previous discussions for the S waves, one reason
for the discrepancy should be looked for in the short distance
breaking of the symmetry for the D waves. Actually, the fact
that D waves violate the sum rule at p ∼ 250 MeV while the
G waves show no violation up to p ∼ 400 MeV agrees with
our interpretation in the S waves that the Wigner symmetry
is a long distance one, since higher partial waves are less
sensitive to short distance effects. The case of P waves is

different, since the 1P potential and the 3P potentials are very
different. This pattern of symmetry breaking agrees with the
findings of Ref. [17] based on the large-Nc expansion, where
the central potential preserves the symmetry in L-even partial
waves while it breaks the symmetry in the L-odd partial waves,
since at leading order and neglecting the tensor force

V (r) = VC(r) + στWS(r) + O(1/Nc), (60)

so that for the lower L channels, we have

V1S = V3S = VC(r) − 3WS(r) + O(1/Nc),

V1P = VC(r) + 9WS(r) + O(1/Nc),
(61)

V3P = VC(r) + WS(r) + O(1/Nc),

V1D = V3D = VC(r) − 3WS(r) + O(1/Nc),

so as we see, V3P �= V1P , and thus it is obvious that δ3P �= δ1P .
One might check this further by proceeding as follows. In the
case of odd waves such as the P waves, the proper comparison
might be to take the 3P potential and renormalize with the
3P -mean scattering length, α3P = 0.08 fm3, and compare the
result with the 3P -mean phase shift.

We note that the initial claim of Ref. [16] on the validity
of the Wigner symmetry based on the large-Nc expansion
was restricted to purely center potentials, which do not
faithfully distinguish the two irreducible representations, 10S

and 6A, of the SU(4) group for the NN system. Later on, the
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issue was qualified by a more complete study carried out in
Ref. [17], which in fact could not justify the Wigner symmetry
in odd-L partial waves, even when the tensor force was
neglected. Although this appeared as a puzzling result, it is
amazing to note that our calculations clearly show that the
pattern of SU(4)-symmetry breaking supports a weak violation
in even-L partial waves and a strong violation in the odd-L
partial waves, exactly as the large-Nc expansion suggests.

D. Serber symmetry

On the other hand, from the odd waves, we see from Fig.
6 that the mean triplet phase is close to null, thus one might
attribute this feature to an accidental symmetry in which the
odd-wave potentials are likewise negligible. In the large-Nc

limit, this means VC + WS � VC + 9WS , a fact which is well
verified. For instance, at short distances, the Yukawa OBE
potentials have Coulomb-like behavior V → C/(4πr) with
the dimensionless combinations

CVC+WS
= −g2

σNN + g2
ωNN + f 2

ρNNm2
ρ

6M2
N

,

(62)

CVC+9WS
= −g2

σNN + g2
ωNN + 3f 2

ρNNm2
ρ

2M2
N

,

where the small OPE contribution has been dropped. Numeri-
cally we get CVC+WS

∼ 10 and CVC+9WS
∼ 300 for reasonable

choice of couplings. Although this approximate vanishing of
triplet odd-wave potentials is not a consequence of large Nc, it
is nevertheless reminiscent of the old and well-known Serber
force [50], that is,

VSerber(r) = 1
2 (1 + PM ) 1

2 (1 − Pσ ) Vs(r)

+ 1
2 (1 − PM ) 1

2 (1 + Pσ ) Vt (r), (63)

with PM the Majorana coordinate exchange operator. Because
of the Pauli principle, PMPσPτ = −1 with Pτ = (1 + τ )/2
and Pσ = (1 + σ )/2, the isospin and spin exchange yields
vanishing potentials for spin-triplet and isospin-triplet chan-
nels and generates a scattering amplitude that is even in the
c.m. scattering angle, a property which is approximately well
fulfilled experimentally for proton-proton (pp) scattering. We
call this property Serber symmetry for definiteness. After
introducing spin-orbit coupling, we would get the sum rules
to first order, i.e.,

δ3P ≡ 1
9

(
δ3P0 + 3δ3P1 + 5δ3P2

) = 0, (64)

δ3F ≡ 1
21

(
5δ3F2 + 7δ3F3 + 9δ3F4

) = 0, (65)

which is well fulfilled by the phase shifts [33] as shown in
Fig. 6, where δ3P � δ1P and δ3F � δ1F . In the large-Nc limit,
we may comply with both Wigner symmetry in L-even waves
and Serber symmetry in L-odd waves when WS(r) = −VC(r),
whence generally V (r) = VC(r)(1 − στ ). Even if we neglect
the small OPE effects, this will clearly not be exactly fulfilled
unless one would require mρ = mω = mσ . Although there
are schemes that explicitly verify such an identity between
scalar and vector meson masses [51–53], at present, it is
unclear whether the Serber symmetry which we observe in
the NN system for spin-triplet and odd-L phase shifts could

be formulated as a symmetry from the underlying QCD
Lagrangian.

Our findings suggest that a pure large Nc in the absence of
tensor force not only is compatible with the standard Wigner
symmetry in the case of the dominant S waves and higher
L-even channels, but also might be a competitive alternative
for the L-odd waves where the usual Wigner symmetry is
broken and Serber symmetry holds instead. Of course, it would
be interesting to pursue the more complete situation including
the tensor force from the start, a case which will be presented
elsewhere [48].

E. N N level density in the continuum

Our results have some impact on hot nuclear matter at
low densities. In the continuum, we may think of putting the
two-nucleon system in a box and evaluating the corresponding
level density when the infinite volume limit is taken. This is a
standard problem in statistical mechanics which appears, e.g.,
in the calculation of the second virial coefficient contribution
to the equation of state of a dilute quantum gas [54] (see
Refs. [55,56] for recent applications to hot nuclear matter).
The result is expressed as

ρ(E) = 1

2πi
Tr

[
S(E)†

dS(E)

dE

]
= 1

π

d	NN (E)

dE
, (66)

where S(E) is the S matrix in all coupled channels, and the
total phase 	 is defined by

	NN (E) =
∑
S,T ,J

(2J + 1)(2T + 1)δST
LJ (E). (67)

For coupled channels, one should consider the corresponding
eigenphases.13 Defining the mean phase as

δST
L (E) ≡

∑L+S
J=L−S(2J + 1)δST

LJ (E)

(2S + 1)(2L + 1)
, (68)

corresponding to the phase-shift analog of the center of gravity
of the supermultiplet [see also Eq. (54)], we get

	NN (E) =
∑
S,T ,J

(2S + 1)(2L + 1)(2T + 1)δST
L (E). (69)

Thus, using the above relations, Eq. (58) for L-even waves
and Eq. (65) for L-odd waves, featuring Wigner and Serber
symmetries, respectively, we would get that mixed triplet-
channel contributions either may be eliminated in terms of
singlet ones for even-L or do not contribute for odd-L,

	NN (E) = 3
(
δ1S0 + δ3S1

) + 3δ1P1 + 30δ1D2 + · · · . (70)

For the neutron case, we have

	nn(E) = δ1S0 + 5δ1D2 + 9δ1G4 + · · · , (71)

i.e., odd-L waves do not contribute. The lack of a P -wave
contribution scaling as ∼ − αP p3 is compatible with the

13In the special case of NN scattering, one can also use the nuclear
bar phase shifts due to the identity δ̄3(J−1)J + δ̄3(J+1)J = δ3(J−1)J +
δ3(J+1)J . The concern spelled out in Ref. [55] that neglecting the
mixing was an approximation is unjustified.
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minimum observed in Ref. [55] for 	nn in the subthreshold
region Elab < 50 MeV.

VI. CONCLUSIONS

At low energies, NN interactions are dominated by two
S waves in different channels where spin-isospin (S, T )
are interchanged: (1, 0) ↔ (0, 1). Wigner SU(4) symmetry
implies that the potentials in the 1S0 and 3S1 channels coincide
and the tensor force vanishes, while the corresponding phase
shifts from partial wave analyses are actually very different
at all energies and show no evident trace of the identity
of the potential, besides the qualitative fact that a weakly
bound deuteron 3S1 state and an almost bound virtual 1S0

take place. Given that the nuclear force at short distances is
fairly unknown, the validity of the symmetry to all distances
would be at least questionable and could hardly be tested
quantitatively. On the other hand, our lack of knowledge of the
short distance physics should not be crucial at low energies,
where the phase shifts are indeed quite dissimilar. Therefore,
we propose to regard SU(4) as a medium and long distance
symmetry which might be strongly broken at short distances
and weakly broken at large distances. Using renormalization
ideas in which the desirable short distance insensitivity is
manifestly fulfilled, we have shown how the standard Wigner
correlation between potentials indeed predicts one phase shift
from the other in a nontrivial and successful way. Remarkably,
using a large-Nc motivated one-boson exchange potential, we
have proven that if one channel is described successfully,
the other channel is unavoidably well reproduced within
uncertainties which might be compatible with the disregard of
the tensor force and the 1/N2

c corrections to the potential. This
long distance correlation holds also for the virtual singlet state
and the deuteron bound state. Actually, the effects of symmetry
breaking at long and short distances have been analyzed and
the extension to higher partial waves has also been discussed,
where a relation for phase shifts has been deduced.

Our calculations provide a justification for the use of
Wigner symmetry in light nuclei solely on the basis of the
NN interaction and suggest that a specific interpretation of
the Wigner symmetry as a long distance one in conjunction
with renormalization theory extends beyond the scaling region
to a much wider range than assumed hitherto. It would be
interesting to see how these ideas could be further exploited
beyond the simple two-nucleon system.

However, key questions still remain: What is the origin
of the accidental Wigner symmetry from the underlying
fundamental QCD Lagrangian? And, moreover, under what
conditions is this expected to be a useful symmetry? We find
that not only is the large-Nc expansion in the absence of tensor
force compatible with the standard Wigner symmetry in the
case of the low energy dominant S waves and subdominant
higher L-even partial waves, but it also may become a
competitive alternative for the other L-odd partial waves
where the usual Wigner symmetry is manifestly broken. These
conclusions are remarkable, for they suggest that an unforeseen
handle on the nature, applicability, and interpretation of a
widely used approximate nuclear symmetry may be based on

a QCD distinct pattern such as the large-Nc limit. Obviously,
it would be very interesting to pursue further the study of
the complete large-Nc potential with inclusion of the tensor
force to verify this issue in more detail [48]. In our view,
this would definitely provide useful insight into QCD inspired
approximation schemes in nuclear physics.
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APPENDIX A: WIGNER SYMMETRY FOR N N

Wigner SU(4) spin-isospin symmetry consists of the fol-
lowing 15-generators [1–3]

T a = 1

2

∑
A

τa
A, (A1)

Si = 1

2

∑
A

σ i
A, (A2)

Gia = 1

2

∑
A

σ i
Aτ a

A, (A3)

where τ a
A and σ i

A are isospin and spin Pauli matrices for nucleon
A, respectively, and T a is the total isospin, Si the total spin,
and Gia the Gamow-Teller transition operator. The quadratic
Casimir operator reads

CSU(4) = T aTa + SiSi + GiaGia, (A4)

and a complete set of commuting operators can be taken to
be CSU(4), T3 and Sz,Gz3. The fundamental representation has
CSU(4) = 4 and corresponds to a single-nucleon state with a
quartet of states p ↑, p ↓, n ↑, n ↓, with total spin S = 1/2
and isospin T = 1/2 represented as 4 = (S, T ) = (1/2, 1/2).
For two-nucleon states with good spin S and good isospin
T , the Pauli principle requires (−)S+T +L = −1 with L the
angular momentum, thus

CST
SU(4) = 1

2 (σ + τ + στ ) + 15
2 , (A5)

where τ = τ1 · τ2 = 2T (T + 1) − 3 and σ = σ1 · σ2 =
2S(S + 1) − 3, and the corresponding wave function is of the
form

�(�x) = uLS
L (r)

r
YLML

(x̂)χSMS χT MT . (A6)

One has two supermultiplets, whose Casimir values are

C00
SU(4) = C11

SU(4) = 9, (A7)

C01
SU(4) = C10

SU(4) = 5, (A8)
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corresponding to an antisymmetric sextet 6A = (0, 1) ⊕ (1, 0)
when L = even, and a symmetric decuplet 10S = (0, 0) ⊕
(1, 1) when L =odd. The radial wave functions fulfill u01

L (r) =
u10

L (r) and u00
L (r) = u11

L (r), respectively. This means that we
have the following supermultiplets:

(1S0,
3 S1) , (1P1,

3 P0,1,2) , (1D2,
3 D1,2,3), . . . (A9)

When applied to the NN potential, the requirement of Wigner
symmetry for all states implies

VT = WT = VLS = WLS = 0,
(A10)

WS = VS = WC,

so the potential may be written as

V = VC + (
2CST

SU(4) − 15
)
WS. (A11)

Note that the particular choice WS = 0 corresponds to a spin-
isospin independent potential, but in this case no distinction
between the 6A and 10S supermultiplets arises. It is well
known that the spin-orbit interaction lifts the total angular
momentum independence. The Wigner symmetry does not
distinguish between different total angular momentum values,
so admitting that the potentials are different, we may define a
common potential

VLST(r) ≡
∑L+S

J=L−S(2J + 1)VJST(r)

(2S + 1)(2L + 1)
, (A12)

where similarly to the perturbation theory for energy levels
where the center of a multiplet of states is predicted, the ap-
propriate statistical weights related to the angular momentum
have been used. The previous expression makes sense if the
symmetry is broken linearly by spin-orbit coupling. In terms
of these mean potentials, the symmetry would be

V1L(r) = V3L(r), (A13)

or equivalently

V1JJ
(r) =

∑L+1
J=L−1(2J + 1)V3LJ

(r)

3(2L + 1)
. (A14)

As mentioned in the paper, if the symmetry is taken literally
at all distances, we should have δ1L = δ3L.

APPENDIX B: LONG DISTANCE PERTURBATION
THEORY

We illustrate here a situation in which the potential may be
treated in long distance perturbation theory and renormalized
(for a somewhat similar approach for finite cutoffs, see, e.g.,
Ref. [57]). Unlike the standard perturbative approach, which
usually does not hold in the presence of bound states, this
expansion can deal with weakly bound states, provided this
is the only one. This is in fact the case for the OPE potential
for the parameters we use, applied to the deuteron state, for
which we show the procedure here to first order. To analyze
this situation, we vary the potential V → V + 	V , so that

− 	uk(r)′′ + M	V (r)uk(r) + MV (r)	uk(r) = k2	uk(r),

(B1)

we use the previous wave functions uk(r) as the zeroth-order
approximation, corresponding to taking V (r) = 0, and we
solve for the first-order correction 	uk(r), the equation in
which the asymptotic wave function corresponds to taking
the phase shift δ + 	δ. Multiplying Eq. (5) by 	uk(r) and
Eq. (B1) by uk(r), subtracting both equations, and integrating
from rc to ∞, we get

[−u′
k	uk + uk	uk]|∞rc

=
∫ ∞

rc

dr	U (r)uk(r)2. (B2)

The lower limit term may be related to the variation of the
boundary condition, whereas the upper limit term is related to
the change in the phase shift 	δ. To eliminate the cutoff,
we subtract the zero-energy limit, k → 0, and using the
energy independence of the boundary condition, we get some
cancellation since

	

(
u′

k(rc)

uk(rc)
− u′

0(rc)

u0(rc)

)
= 0. (B3)

Finally, the result may be rewritten as

	 (k cot δ) = −	

(
1

α0

)
+

∫ ∞

rc

	U (r)[uk(r)2 − u0(r)2] dr.

(B4)

If we fix the scattering length independently of the potential,
we have 	α0 = 0, thus eliminating the first term of the right-
hand side; and after taking the limit rc → 0, the result for
the total (and renormalized) phase shift to first order in the
potential reads

k cot δ0(k) = − 1

α0
+

∫ ∞

0
dr MV (r)

×
([

cos(kr) − sin(kr)

α0k

]2

−
[

1 − r

α0

]2
)

+ · · · . (B5)

The renormalized effective range is entirely predicted from the
potential at all distances

r0 = 4
∫ ∞

0
dr r2MV (r)

(
1 − r

α0

)2

+ · · · . (B6)

Note the extra power suppression at the origin when α0 is
fixed independently of the potential, indicating short distances
become less important. The bound state can be obtained in a
similar manner by replacing uk(r) → uγ (r), assuming that the
binding energy is independent of the potential, 	γ = 0, and
using orthogonality Eq. (B3) to the zero-energy state:

1

α0
= γ +

∫ ∞

0
MV (r)[uγ (r)2 − u0(r)2] dr. (B7)

This equation is implicit in both α0 and γ , but we can make
it perturbative explicitly, using that to first order α0 ∼ 1/γ in
the zero-energy wave function u0(r) ∼ 1 − γ r , yielding

1

α0
= γ +

∫ ∞

0
MV (r)[e−2γ r − (1 − γ r)2] dr. (B8)
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APPENDIX C: SCALE INVARIANCE AND
RENORMALIZATION

We have suggested that Wigner symmetry is a long distance
one. From a renormalization group (RG) viewpoint, this has
a simple interpretation (for a discussion in coordinate space,
see, e.g., Refs. [35,45]). It means finding a solution to the RG
equations which break the symmetry of the equations. A very
simple case illustrating this issue is provided by the problem

− u′′(r) + g

r2
u(r) = k2u(r). (C1)

At zero energy, k = 0, the solution is invariant under the
scaling transformation r → λr . This property holds also at
short distances, where the energy term on the right-hand side
can be neglected. If we use the RG equation (35) for this
particular case at short distances,

Rc′
0(R) = c0(R)(1 − c0(R)) + g. (C2)

The scale symmetry becomes now evident: if c0(R) is a
solution, then c0(λR) is also a solution for any value of λ �= 0.
The solution must necessarily specify the value at a given scale
c0(R0), hence breaking explicitly the dilatation symmetry. This
symmetry breaking is unavoidable. In Refs. [35,45] it is shown
how, for g < −1/4, the breaking is lowered to the discrete
subgroup of dilatations, and the connection to Russian doll
renormalization. In the case of the Wigner symmetry for the
1S0 and 3S0 potentials discussed in the paper, the breaking is
not unavoidable, and there exists in fact a very special choice
where the symmetry can be preserved by taking identical
boundary conditions at a given scale. Besides this particular
solution, the identity between solutions c0,s(R) and c0,t (R) will
generally be violated, although the relation from one scale to
a different one c0,s(R0) → c0,s(R) and c0,t (R0) → c0,t (R) is
governed by the same relation, Eq. (35).

It is worth noting the resemblance of the previous quantum-
mechanical discussion with similar and well-known field the-
oretical concepts. The unavoidable breaking of the dilatation
symmetry corresponds to an anomaly of the dilatation current.
The optional choice of boundary conditions corresponds to the
case of finite but ambiguous theories (see, e.g., Ref. [41]).

APPENDIX D: SPLITTING FORMULA FOR PHASE SHIFTS

We want to derive the splitting formula for phase shifts,
Eq. (54) by using distorted wave perturbation theory. The
coupled-channel Schrödinger equation for the relative motion
reads

− u′′(r) +
[

U(r) + L2

r2

]
u(r) = k2u(r), (D1)

where USJ
L,L′(r) = 2µnpVSJ

L,L′(r) is the coupled-channel matrix
potential which for the total angular momentum J > 0 can be

written as

U0J (r) = U 0J
JJ ,

(D2)

U1J (r) =




U 1J
J−1,J−1(r) 0 U 1J

J−1,J+1(r)

0 U 1J
JJ (r) 0

U 1J
J−1,J+1(r) 0 U 1J

J+1,J+1(r)


 .

In Eq. (D1), L2 = diag[L1(L1 + 1), . . . , LN (LN + 1)] is the
angular momentum, u(r) is the reduced matrix wave function,
and k the c.m. momentum. In the case at hand, N = 1 for
the spin-singlet channel with L = J, and N = 3 for the spin-
triplet channel with L1 = J − 1, L2 = J, and L3 = J + 1.
For ease of notation, we will keep the compact matrix notation
of Eq. (D1). At long distances, we assume the asymptotic
normalization condition

u(r) → ĥ(−)(r) − ĥ(+)(r)S, (D3)

with S the standard coupled-channel unitary S matrix. For the
spin-singlet state S = 0, one has L = J and hence the state is
uncoupled, i.e.,

S0J
JJ = e2iδ0J

J , (D4)

whereas for the spin-triplet state S = 1, one has the uncoupled
L = J state

S1J
JJ = e2iδ1J

J , (D5)

and the two channel coupled states L,L′ = j ± 1, which
written in terms of the eigenphases are

S1J =
(

cos εJ − sin εJ

sin εJ cos εJ

)(
e2iδ1J

J−1 0

0 e2iδ1J
J+1

)

×
(

cos εJ sin εJ

− sin εJ cos εJ

)
. (D6)

The corresponding out-going and in-going free spherical
waves are given by

ĥ(±)(r) = diag
(
ĥ±

L1
(kr), . . . , ĥ±

LN
(kr)

)
, (D7)

with ĥ±
L (x) the reduced Hankel functions of order l, ĥ±

L (x) =
xH±

L+1/2(x) (ĥ±
0 = e±ix), and satisfy the free Schrödinger

equation for a free particle.
To determine the infinitesimal change of the S matrix, S →

S + 	S, under a general deformation of the potential U(r) →
U(r) + 	U(r), we use Schrödinger’s equation (D1) and the
standard Lagrange identity adapted to this particular case to
obtain[

u(r)†	u′(r) − u′(r)†	u(r)
]′ = u(r)†	U(r)u(r).

(D8)

The unitarity of the S matrix, S†S = 1, yields the condition
	S†S + S†	S = 0. We assume a mixed boundary condition
at short distances, r = rc, for the unperturbed coupled-channel
potential, U(r),

u′(rc) + Lu(rc) = 0, (D9)

with L a self-adjoint matrix. After integration from the cutoff
radius rc to infinity and using the asymptotic form of the matrix
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wave function [Eq. (D3)], as well as the condition at the origin,
Eq. (D9) yields

2ikS†	S =
∫ ∞

rc

dr u(r)†	U(r)u(r). (D10)

If we take the Wigner symmetric states as the unperturbed
problem, then S, U(r), and u(r) become diagonal matrices, so
that

	δST
JL = − 1

2p

∫ ∞

rc

dr uST
L (r)†	U(r)uST

L (r), (D11)

and the perturbed eigenphases become

δST
JL = δST

L + 	δST
JL . (D12)

Note that to this order the mixing phases vanish, 	εJ = 0.
Identifying further 	U with the spin-orbit and the tensor
potential, in the LS coupling the result may be written as

δST
LJ = δST

L + δS,1C
ST
L

(
SJ

12

)
LL

+AST
L [J (J + 1) − L(L + 1) − S(S + 1)], (D13)

where (SJ
12)J−1,J−1 = −2(J − 1)/(2J + 1), (SJ

12)J,J = 2, and
(SJ

12)J+1,J+1 = −2(J + 2)/(2J + 1). Defining the supermul-

tiplet coefficients AL = A10
L = A01

L and BL = A00
L = A11

L ,

δ10
LJ = δ01

LJ + AL [J (J + 1) − L(L + 1) − 2]

+CL

(
SJ

12

)
LL, (D14)

δ11
LJ = δ00

LJ + BL [J (J + 1) − L(L + 1) − 2]

+DL

(
SJ

12

)
LL, (D15)

we readily get the sum rule for phase shifts, Eq. (54). The above
equations would yield a Lande-like interval rule between spin-
triplet energy levels for the spin-orbit or the tensor potentials
separately. For instance,

δ1P1 = δP ,

δ3P0 = δP − 4D1 − 4B1,
(D16)

δ3P1 = δP + 2D1 − 2B1,

δ3P2 = δP − 2
5D1 + 2B1.

A further remark is in order, since the spin-orbit or tensor
potentials may be singular at the origin. In such a case of
singular perturbations, one computes the sum rule first and
then removes the cutoff, rc → 0.
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