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We present a unified approach to neutrino processes in nucleon matter based on Landau’s theory of Fermi
liquids that includes one and two quasiparticle-quasihole pair states as well as mean-field effects. We show
how rates of neutrino processes involving two nucleons may be calculated in terms of the collision integral in
the Landau transport equation for quasiparticles. Using a relaxation time approximation, we solve the transport
equation for density and spin-density fluctuations and derive a general form for the response functions. We apply
our approach to neutral-current processes in neutron matter, where the spin response function is crucial to the
calculation of neutrino elastic and inelastic scattering and neutrino-pair bremsstrahlung and absorption from
strongly interacting nucleons. We calculate the relaxation rates using modern nuclear interactions and including
many-body contributions, and find that rates of neutrino processes are reduced compared with estimates based
on the one-pion exchange interaction, which is used in current simulations of core-collapse supernovae.
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I. INTRODUCTION

Neutrino emission, absorption, and scattering processes in
nucleon matter play a crucial role in the physics of stellar
collapse, supernova explosions, and neutron stars [1,2]. Since
the leptons in these processes interact weakly, the neutrino
rates can be expressed compactly in terms of the response of
nuclear matter to axial and vector probes. In many situations,
the axial response is the more important, and in this paper we
concentrate on this case, which for a system of nonrelativistic
nucleons amounts to the spin or spin-isospin response. These
responses have been calculated by a number of groups [3–7] al-
lowing for single nucleon quasiparticle-quasihole pair states.1

However, this is insufficient for rates of neutrino processes
involving two nucleons, such as neutrino-pair bremsstrahlung
and absorption, and modified Urca reactions, in which two
particle-hole pair states are necessary. The possible importance
of two particle-hole pair states for neutrino inelastic scattering,
in particular for energy exchange and the formation of the
neutrino spectra, has been emphasized by Raffelt et al. [8–10].
Bounds on the magnitude of the two particle-hole pair weight
have been investigated in Ref. [11], and it has been shown how
the two-pair response is directly related to the collision term
in Landau’s transport equation for quasiparticles [12].

Noncentral contributions to nuclear interactions, such as
tensor forces from pion exchanges and spin-orbit forces, are
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1The basic single-particle-like excitations we work with are quasi-

particles and quasiholes that have properties quantitatively different
from those of free particles or holes. However, for brevity, we shall
refer to these excitations simply as particles and holes.

essential for the two particle-hole pair response, as is clear from
calculations of neutrino-pair bremsstrahlung and the modified
Urca processes [13] and from general considerations based
on conservation laws [11]. Neutrino-pair bremsstrahlung and
absorption change the number of neutrinos and are key
for equilibrating muon and tau neutrino number densities
in supernovae. The standard rates for bremsstrahlung are
based on the one-pion exchange model for nucleon-nucleon
interactions [13] (in the context of supernovae, see, for
example, Ref. [10]). This is a reasonable starting point, since
it represents the long-range part and the leading noncentral
contribution in chiral effective field theory for nuclear forces
[14]. However, the tensor force from pion exchange is singular
at short distances, which in free space requires iteration
in the spin-triplet channels [15]. In addition, subleading
noncentral contributions to nuclear interactions are important
for reproducing nucleon-nucleon scattering for the relevant
channels and energies [16].

The aim of this paper is to give a unified treatment
of neutrino processes that includes one and two particle-
hole pair states as well as mean-field (Fermi liquid) effects
consistently, and to present improved rate calculations of
these processes based on modern nuclear interactions beyond
one-pion exchange and including many-body contributions.
A convenient framework for doing this is Landau’s theory of
normal Fermi liquids. This work represents an extension of
Ref. [12], which included two particle-hole pair states only
in leading order using diagrammatic perturbation theory. Here
we shall use the quasiparticle transport equation. This provides
a useful framework for understanding the basic physics and
for making detailed calculations. In this paper, we focus on
neutral-current processes in normal (nonsuperfluid) neutron
matter. We leave for future work the application to mixtures
of neutron and protons, charged-current reactions, and the
extension to superfluid phases.
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This paper is organized as follows. Section II gives
an introduction to neutrino processes and the dynamical
structure factors. In Sec. III, we discuss Landau Fermi-liquid
theory, show that it represents a useful effective theory
for neutrino processes in nucleon matter, and introduce the
transport equation for quasiparticles. Using a relaxation time
approximation, we solve the transport equation for density
and spin-density fluctuations and derive a general form for the
response functions in Sec. IV. The response function includes
contributions from one particle-hole pair (corresponding to
elastic scattering of neutrinos from nucleons) and two particle-
hole pair states (which enter calculations of inelastic scattering,
and neutrino-pair bremsstrahlung and absorption). In Sec. V,
we calculate the appropriate relaxation times for the one-pion
exchange interaction and for a general operator representation
of the quasiparticle scattering amplitude. We present results
in Sec. VI based on modern nuclear interactions and includ-
ing many-body contributions, and contrast these with rates
obtained using the one-pion exchange interaction, which is
typically used in supernova simulations. Finally, we assess the
significance of the improved treatment of nuclear interactions
for neutrino mean free paths, energy loss, and energy transfer
in supernovae. We summarize the improvements and conclude
in Sec. VII.

II. NEUTRINO PROCESSES AND DYNAMICAL
STRUCTURE FACTORS

For neutral-current processes, the weak interaction
Lagrangian density for low-energy probes is given by

L(x) = GF√
2
lµ(x)jµ(x), (1)

where GF = 1.166 × 10−5GeV−2 is the Fermi coupling con-
stant, and the weak neutral currents are lµ(x) for leptons and
jµ(x) for hadrons. The neutrino contribution to the leptonic
current is

lµ(x) = ψνγµ(1 − γ5)ψν, (2)

and for nonrelativistic nucleons the hadronic current can be
written as

jµ(x) = ψNγµ(CV − CAγ5)ψN

≈ φ
†
N (CV δµ0 − CAδµiσi)φN, (3)

where ψν are neutrino fields, ψN nucleon Dirac fields, φN

nonrelativistic nucleon spinors, and σi Pauli matrices. The
neutral-current vector coupling constant is CV = −1/2 for
neutrons and CV = 1/2 − 2 sin2 θW ≈ 0 for protons; CA is the
axial-vector coupling, CA = −ga/2 = −1.26/2 for neutrons
and CA = ga/2 for protons. While the vector current is
conserved, the axial coupling can be modified in a many-body
system. As a result, one may expect a reduction of ga for a
nucleon quasiparticle by 5–10% in neutron matter and 10–20%
in symmetric nuclear matter [17,18].

Consider neutrinos with incoming energy ω1 and momen-
tum q1 that scatter from nuclear matter to a final state with
energy ω2 and momentum q2. Since neutrinos interact weakly,
the rate for neutrino scattering can be expressed in terms of

the dynamical structure factors for vector and axial responses
of the nuclear medium [1,4]. Because neutron velocities in
neutron matter at the densities of interest are nonrelativistic,
these reduce to the density and spin responses, which are
decoupled if the system is not magnetically polarized.

The dynamical structure factors depend on the energy and
momentum transferred to the system, ω = ω1 − ω2 and q =
q1 − q2, and are defined for the density response by [4,19]

SV (ω, q) = 1

πn

1

1 − e−ω/T
Imχ (ω, q)

= 1

n

∫ ∞

−∞
dteiωt 〈n(t, q)n(0,−q)〉, (4)

and for the spin response by

SA,ij (ω, q) = 1

πn

1

1 − e−ω/T
Imχij (ω, q)

= 1

n

∫ ∞

−∞
dteiωt 〈si(t, q)sj (0,−q)〉, (5)

where n denotes the neutron number density, T is the temper-
ature, s = φ†σφ is the spin density, and χ (ω, q) and χij (ω, q)
are the density-density and spin-density–spin-density response
functions, respectively. We use units with h̄ = c = kB = 1.

In the long-wavelength limit, q → 0, the spin response is in
the direction of the applied magnetic field, hence χij = 0 for
i �= j . This is not the case at nonzero q, and the transverse and
longitudinal spin responses differ [4]. However, for neutrino
processes in supernovae and neutron stars, the momentum
transfers are small compared with typical momenta of the
nucleons, such as the Fermi momentum or the inverse Compton
wavelength, and therefore the spin response is essentially
diagonal,

χij ≈ χσ δij and SA,ij ≈ SAδij . (6)

The transition probability �(Q1,Q2) for a neutrino with
energy and momentum Q1 = (ω1, q1) to scatter to a state
Q2 = (ω2, q2) is fully determined by the density and spin
response functions (see, for example, Refs. [1,4]),

�(Q1,Q2) = 2πnG2
F

[
C2

V (1 + cos θ )SV (ω, q)

+C2
A(3 − cos θ )SA(ω, q)

]
, (7)

where θ = arccos (̂q1 · q̂2) is the scattering angle. The rate
for bremsstrahlung of a neutrino with four-momentum Q2

and an antineutrino with four-momentum Q1 is given by
�(−Q1,Q2), and for absorption of a neutrino with Q1

and antineutrino with Q2 by �(Q1,−Q2). We note that
Eq. (7) neglects corrections of order ω/m from weak mag-
netism and other effects [20]. In terms of the transition
probability, the rate of change of the neutrino occupation
number nq1 due to interaction with the nuclear medium is
given by

dnq1

dt
=

∫
dq2

(2π )3

[
�(Q2,Q1)nq2

(
1 − nq1

)
−�(Q1,Q2)nq1

(
1 − nq2

)
+�(−Q2,Q1)

(
1 − nq1

)(
1 − nq2

)
−�(Q1,−Q2)nq1nq2

]
, (8)
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where nqi
is the antineutrino occupation number. The four

terms correspond to “in-scattering,” “out-scattering,” and
neutrino-pair bremsstrahlung and absorption, respectively.
These differ only by the kinematics in the dynamical structure
factors.

III. LANDAU FERMI-LIQUID THEORY AND
QUASIPARTICLE TRANSPORT EQUATION

In supernovae and neutron stars, the neutrino energies
are typically ω1, ω2 <∼ 30 MeV. The corresponding neutrino
momenta q1, q2 <∼ 0.15 fm−1 are therefore small compared
to the momenta of neutrons, which are of the order of the
Fermi momentum kF ∼ 1.0 fm−1 for densities n ∼ n0/10.
Here, n0 = 0.16 fm−3 or ρ0 = 2.8 × 1014gcm−3 denotes the
saturation density of symmetric nuclear matter. Consequently,
it is a good first approximation to work only to lowest order
in the neutrino momenta. In addition, we focus on situations
when the temperature is small compared to the Fermi energy
of neutrons. This is the regime in which Landau’s theory of
normal Fermi liquids may be used [21,22]. Landau theory
provides a clear separation between long-wavelength, low-
frequency degrees of freedom, which are treated explicitly,
and short-wavelength, high-frequency ones, whose effects are
included in low-energy constants that incorporate the renor-
malization of matrix elements of currents and interparticle
interactions. Another strength of Landau Fermi-liquid theory
is that it brings out clearly the role played by conservation laws.
Low-temperature expansions for Fermi liquids are often useful
for T/εF = 1/η <∼ 1/π . We therefore expect our results to be
reasonable for degeneracy parameters η >∼ 3, which is typically
valid for the relevant densities in supernovae and neutron stars.

Nucleon matter differs from liquid 3He, the prototype Fermi
liquid, in that the interactions between nucleons have signifi-
cant noncentral parts. This fact has several consequences. The
magnetic moment of a quasiparticle is not equal to the free
space value (as discussed above, the same holds for the axial
coupling), and it is a tensor, that depends on the orientation of
the spin with respect to the momentum of the quasiparticle. In
addition, the Landau quasiparticle interaction contains tensor
and other noncentral contributions [23], which couple spin and
orbital degrees of freedom. For the response to a magnetic field,
which is completely equivalent to the case of an axial-vector
probe, these effects have been explored in Ref. [24].

In Landau Fermi-liquid theory, one describes the long-
wavelength, low-frequency response of the system in terms
of quasiparticles. However, if the current of interest is not
a conserved quantity, the corresponding response function
at long wavelengths contains contributions that cannot be
expressed in terms of quasiparticle degrees of freedom. In
addition, there are two-body contributions to the effective
operators. In Ref. [11], it was shown from sum-rule arguments
that the contribution to the response not coming from single
particle-hole pairs could be substantial. One class of processes
that can be calculated within Landau Fermi-liquid theory
corresponds to creating a single particle-hole pair, which
subsequently creates a second pair. This is taken into account

by including a collision term in the transport equation for
quasiparticles, and in Ref. [12] it is described how to do this,
starting from diagrammatic perturbation theory.

The general formalism for calculating the rates of kinetic
processes from microscopic theory is well developed, but to
apply it to specific physical situations is usually complicated.
However, if collisions are sufficiently infrequent, one can
adopt an approach based on a kinetic equation similar to the
Boltzmann equation for dilute gases, in which one introduces
a distribution function for the elementary excitations that
depends on the momentum of the excitation. More generally,
when the width of an excitation becomes comparable to the
real part of the energy of an excitation, it is necessary to work in
terms of the spectral density for adding a single particle to the
system (the imaginary part of the single-particle propagator),
which is a function of energy as well as of momentum [25,26].
In this paper, we assume that the widths are sufficiently small
that a kinetic equation approach can be used.

Next we describe the quasiparticle transport equation for a
single-component Fermi system with spin 1/2. We assume that
the system is not magnetically polarized. The generalization
to isospin is straightforward. The quasiparticle distribution
function is a matrix in spin space and we write it as

[np]αα′ = npδαα′ + sp · σ αα′ . (9)

Likewise, the quasiparticle energy can be written in the form

[εp]αα′ = εp δαα′ + hp · σ αα′ , (10)

where εp and hp are the spin-independent and spin-dependent
contributions to the quasiparticle energy. The linearized
transport equation in momentum space for the spin response
δsp of quasiparticles with momentum p is given by [19,22]

(ω − εp+q/2 + εp−q/2)δsp + (np+q/2 − np−q/2)δhp

= iIσ [sp′], (11)

where the perturbation to the quasiparticle energy is

δhp = Uσ + 2
∫

dp′

(2π )3
gpp′δsp′ , (12)

and the dependence of δsp(ω, q) and δhp(ω, q) on the energy
and momentum transfers is implicit. Here, Iσ [sp′] is the
collision integral, the prime on the momentum argument
indicating that it generally depends on the distribution function
for states other than p, and Uσ is an external field that couples
to the nucleon spin. The spin-dependent Landau quasiparticle
interaction has a central part, gpp′σ 1 · σ 2, as well as symmetric
tensor and antisymmetric terms [23]. Since the latter are
generally weaker [24], we keep only the central term in
Eq. (12). For the density response, Eq. (11) holds with the spin-
dependent contributions replaced by their spin-independent
counterparts, and the equation analogous to Eq. (12) is

δεp = U + 2
∫

dp′

(2π )3
fpp′δnp′ . (13)

In local equilibrium, the net collision rate vanishes, and
the distribution function is given by the equilibrium Fermi
function for quasiparticle energy εp, evaluated at the values
of the local chemical potential, temperature, and flow velocity
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corresponding to the local number, energy, and momentum
densities. The quasiparticle energy that occurs in the local-
equilibrium distribution function includes contributions from
quasiparticle interactions, so the quasiparticle energy is not
the one for the equilibrium state. This choice is physically the
most meaningful, because in the energy conservation condition
the quasiparticle energies that appear must include the effect
of the nonequilibrium quasiparticle distribution. From linear
response theory and for ω = 0, the local-equilibrium response
then follows from Eq. (11) and is given by

δsp
∣∣
le = Rpδhp with Rp = np+q/2 − np−q/2

εp+q/2 − εp−q/2
, (14)

where the subscript “le” denotes the value of the quantity for
local equilibrium.

IV. RELAXATION TIME APPROXIMATION

In general, it is difficult to solve the transport equation
for the full collision integral. We therefore approximate the
collision integral as

Iσ [sp′] = −δsp − δsp
∣∣
le

τσ

, (15)

where τσ is an average relaxation time. In this section, we focus
on the spin response, but analogous expressions hold for the
density and isospin responses. Equation (15) amounts to the
assumption that all angular harmonics of the spin-dependent
part of the quasiparticle distribution function relax at the same
rate, and this form ensures that the collision term vanishes
when δsp = δsp|le. In addition, the relaxation time is assumed
to be independent of the quasiparticle momentum. However,
consideration of the scattering process in detail shows that in
order to obtain agreement with rates in the collisionless limit,
|ω|τσ → ∞, the relaxation time must depend on the energy
transfer (see Ref. [12] and Sec. V). For the spin response, τσ

corresponds to the rate of change of the nucleon spin through
collisions with other nucleons, and by solving the transport
equation, we include multiple-scattering effects.

More generally, one could have allowed for changes in
the temperature of the two different spin components, but
for Fermi systems at low temperatures, this effect, which
corresponds to thermoelectric phenomena for charged sys-
tems, is relatively unimportant. For most condensed matter
systems, Eq. (15) is a rather poor approximation, since the
total spin, which corresponds to the component of the deviation
function having angular symmetry corresponding to l = 0, is
conserved to a good approximation because noncentral forces
generally play little role, while higher-l components of the spin
deviation function can decay on a much shorter timescale.
For example, in liquid 3He, the lack of spin conservation is
due to the interaction between the nuclear magnetic dipole
moments, which is very weak compared to the central parts
of the interatomic interaction. However, in nuclear systems,
noncentral contributions to nuclear interactions, especially
those from tensor forces due to pion exchanges, are strong,
and the single relaxation time approximation is expected to
be better. The approximate form for the collision term in the

transport equation for the density response must have a more
general form, since particle number conservation ensures that
the l = 0 component of the distribution function does not relax,
and for a single-component system, momentum conservation
ensures that the l = 1 component does not relax either (see,
for example, Ref. [27]). For a multicomponent system, such
as a mixture of neutrons and protons, the number of particles
of each component is conserved, and consequently the l = 0
components cannot relax, but the l = 1 components can relax,
because momentum may be transferred from one component
to another.

A. Calculation of the response function

With the approximation Eq. (15), the linearized transport
equation can be rewritten in the form(

ω + i

τσ

− vp · q
)

δsp +
(

vp · q − i

τσ

)
Rpδhp = 0, (16)

with εp+q/2 − εp−q/2 ≈ vp · q. In the expansion of the quasi-
particle interaction in Legendre polynomials, the l = 0 term
g0 is the dominant spin-dependent contribution in neutron
matter [28], and therefore we neglect the higher-l terms. With
this assumption, the perturbation to the quasiparticle energy,
Eq. (12), is given by

δhp = Uσ + g0s with s = 2
∫

dp′

(2π )3
δsp′ . (17)

As in Eq. (5), s is the Fourier transform of the spin deviation.
We then solve the transport equation and find

s = −χσ (ω, q)Uσ , (18)

where the response function χσ is given by

χσ = Xσ

1 + g0Xσ

and

Xσ = 2
∫

dp′

(2π )3

vp · q − i/τσ

ω + i/τσ − vp · q
Rp . (19)

Here Xσ is the response function in the absence of mean-field
effects. Provided the temperature is low relative to the Fermi
energy, the main contributions to the integral in Eq. (19) come
from the vicinity of the Fermi surface, which leads to

Xσ = N (0)

[
1 − ω

2vF q
ln

(
ω + i/τσ + vF q

ω + i/τσ − vF q

)]
, (20)

where N (0) = m∗kF /π2 is the density of states at the Fermi
surface for both spin populations, m∗ being the nucleon
effective mass and vF = kF /m∗ the Fermi velocity. For the
imaginary part of χσ we have

Imχσ = ImXσ

|1 + g0Xσ |2 = N (0)
ImX̃σ

|1 + G0X̃σ |2 , (21)
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with dimensionless Landau parameter G0 = N (0)g0, and
X̃σ = Xσ/N (0), whose imaginary part is

ImX̃σ = ω

2vF q

[
arctan[(ω + vF q)τσ ]

− arctan[(ω − vF q)τσ ]
]
. (22)

The branch of the arctangent to be used is that lying between
−π/2 and +π/2. For τσ → ∞, the form for Imχσ given by
Eqs. (21) and (22) reproduces the results of Ref. [4] for single
particle-hole pair states, with

ImX̃σ → πω

2vF q
�(vF q − |ω|), (23)

where �(x) is the step function. Our results generalize earlier
work by taking into account effects due to nonzero wavelengths
and recoil of the nucleons. A direct inspection shows that the
resulting dynamical structure factor satisfies the detailed bal-
ance condition S(−ω) = S(ω)e−ω/T . In contrast to Ref. [12],
where calculations were made to leading order in the scattering
rate, Eq. (21) contains contributions of higher order and
thereby takes into account the Landau-Pomeranchuk-Migdal
effect [29,30].

In the long-wavelength limit, q → 0, we have

X̃σ (ω, q → 0) = 1

1 − iωτσ

and

χ̃σ (ω, q → 0) = 1

1 + G0 − iωτσ

, (24)

with imaginary part

Imχ̃σ (ω, q → 0) = ωτσ

(1 + G0)2 + (ωτσ )2
. (25)

In the absence of mean-field effects, this has the same form
as the Ansatz used by Raffelt et al. to account for multiple
scattering at low ω [8–10]. Equation (25) shows that the
characteristic frequency for the response is ∼(1 + G0)/τσ . The
factor 1 + G0 indicates that near the transition to a ferromag-
netic state, G0 → −1, the characteristic time becomes long,
corresponding to what is referred to as critical slowing down.
For neutrons, one has G0 > 0 [28], and the spin response is
pushed to higher frequencies.

V. RELAXATION TIMES

To begin, we consider the time for an excess population
of quasiparticles in a particular momentum, energy, and spin
state (denoted by p1, ε1, and σ 1) to relax when the distribution
function for all other states is that for equilibrium. It is
convenient to consider the general case when the quasiparticles
of the excess population are not on the energy shell, since this
is the quantity that naturally enters calculations of the response
functions at high frequency [12]. The relaxation time can be
written in operator form as

1

τ (ε1 + ω, σ 1 · p̂1)
= 1

τ (ε1 + ω)
(1 + α σ 1 · p̂1), (26)

where α is a coefficient that characterizes the strength of
noncentral contributions to the relaxation rate. Unlike in
systems with only central interactions (α = 0), the relaxation
rate depends on the spin orientation of the quasiparticle,
because spin and momentum are coupled.

By generalizing the standard theory of relaxation rates [22]
to the case of noncentral interactions, we have [12]

1

τ (ε1 + ω)
= 3

4
C

[
T 2 + (ε1 + ω)2

π2

]
, (27)

where the factor 3/4 is included so that energy-averaged
relaxation rates have a simple form [see Eqs. (33) and (35)],
and the coefficient C is given by

C = 4π3

3N (0)2

∏
i=2,3,4

(
m∗

kF

∫
dpi

(2π )3
δ(pi − kF )

)
× (2π )3δ(p1 + p2 − p3 − p4)

× 1

4
Tr

[
Aσ 1,σ 2 (k, k′)Aσ 1,σ 2 (−k, k′)

]|p1=kF
. (28)

Here we have taken p1 to lie on the Fermi surface,Aσ 1,σ 2 (k, k′)
denotes the quasiparticle scattering amplitude in units of
the density of states, k = p1 − p3 and k′ = p1 − p4 are the
momentum transfers,2 and we have neglected the neutrino
momenta in the δ function that expresses momentum conser-
vation, since they are small compared to the Fermi momentum.
The factor 1/4 in Eq. (28) is the symmetry factor.3 Since
we work with antisymmetrized amplitudes, one factor of 1/2
is necessary to avoid double counting of final states, and a
second factor of 1/2 comes from taking the average over initial
spin states of particle 1. On the Fermi surface, the momentum
transfers are orthogonal, and we can express Eq. (28) as

C = π3m∗

6k2
F

〈
1

4
Tr

[
Aσ 1,σ 2 (k, k′)Aσ 1,σ 2 (−k, k′)

]〉
, (29)

where the average is over the Fermi surface. In terms of k, k′,
this can be written as [31]

〈F (k, k′)〉

= 1

π

2kF∫
0

dk

kF

2kF∫
0

dk′

kF

kF �
(
4k2

F − k2 − k′ 2
)√

4k2
F − k2 − k′ 2

F (k, k′) . (30)

With this average, the coefficient α can be written as

α = 1

2

〈
Tr

[
σ 1 · p̂1Aσ 1,σ 2 (k, k′)Aσ 1,σ 2 (−k, k′)

]〉〈
Tr

[
Aσ 1,σ 2 (k, k′)Aσ 1,σ 2 (−k, k′)

]〉 . (31)

More general disturbances of the quasiparticle distribution
function will depend both on the direction of the quasiparticle
momentum on the Fermi surface and on the spin of the
quasiparticle, and the relaxation time for the disturbance will

2We use k and k′ for the momentum transfers between nucleons
to distinguish them from the momentum transfer q in the structure
factors. This differs from the notation used in Refs. [23,28,31], and
they should also not be confused with relative momenta.

3We note that Refs. [13,31] use a symmetry factor of 1/2 instead of
1/4 and consequently overestimate rates by a factor of 2.
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depend on an average of the scattering rate over the Fermi
surface and over quasiparticle spins, weighted by functions of
the direction of the quasiparticle momentum and of the spin.
In general, the eigenstates of the collision operator will have a
definite value of the total angular momentum, which is made
up of an orbital component coming from the dependence of
the quasiparticle distribution on the angle on the Fermi surface
and of the spin of the quasiparticle.

The most important case for relaxation of long-wavelength
spin fluctuations is a disturbance of the distribution function
corresponding to a spin polarization that is independent
of direction on the Fermi surface. For long wavelengths
|ω| � vF q and for frequencies large compared to the relax-
ation rate |ω| � 1/τσ , the appropriate average relaxation time
for the transport equation and the spin response is given by [12]

1

τσ

= 1

ωN (0)

∑
ms1

∫
dp1

(2π )3

n(ε1) − n(ε1 + ω)

τσ (ε1 + ω, σ 1 · p̂1)
, (32)

= 1

ω

∫
dε1

n(ε1) − n(ε1 + ω)

τσ (ε1 + ω)
, (33)

where the noncentral term in the spin relaxation rate [ασ in
the operator form analogous to Eq. (26)] averages to zero.
Following Refs. [12,22], one has for the coefficient Cσ for the
spin relaxation rate

Cσ = π3m∗

6k2
F

〈
1

12

∑
j=1,2,3

Tr
{
Aσ 1,σ 2 (k, k′)σ j

1

× [
(σ 1 + σ 2)j ,Aσ 1,σ 2 (−k, k′)

]}〉
. (34)

The commutator with the two-body spin operator demonstrates
that only noncentral terms in the scattering amplitude con-
tribute. The factor 1/12 in Eq. (34) includes the symmetry
factor 1/4 and a factor 1/3, because we have summed over all
possible directions of the spin component j .

Since the dependence on the quasiparticle energy factorizes
from the nuclear interaction part, we can directly calculate the
average relaxation time of Eq. (33) and finally obtain

1

τ
= C[T 2 + (ω/2π )2] and

1

τσ

= Cσ [T 2 + (ω/2π )2] .

(35)

A. One-pion exchange interaction

For the one-pion exchange (OPE) interaction, the direct
and exchange contributions to the scattering amplitude in Born
approximation are given by

AOPE
σ 1,σ 2

(k, k′) = −N (0)

(
ga

2Fπ

)2[
σ 1 · kσ 2 · k
k2 + m2

π

− σ 1 · k′σ 2 · k′ + k′2(1 − σ 1 · σ 2)/2

k′2 + m2
π

]
, (36)

with pion decay constant Fπ = 92.4 MeV and neutral pion
mass mπ = 134.98 MeV. The spin trace in the relaxation time

for the spin response, Eq. (34), leads to

1

12

∑
j=1,2,3

Tr
{
AOPE

σ 1,σ 2
(k, k′)σ j

1

[
(σ 1 + σ 2)j ,AOPE

σ 1,σ 2
(−k, k′)

] }
= 4

3
N (0)2

(
ga

2Fπ

)4[
k4(

k2 + m2
π

)2 + k′4(
k′2 + m2

π

)2

+ k2k′2(
k2 + m2

π

)(
k′2 + m2

π

)]
. (37)

For mπ = 0, each of the three terms in the square bracket of Eq.
(37) yields 1 when averaged over the Fermi surface according
to Eq. (30); for nonzero mπ , this integral can be calculated
analytically, and one finds for the spin relaxation rate from
one-pion exchange [13]

COPE
σ = 2π3m∗

3k2
F

N (0)2

(
ga

2Fπ

)4

G

(
mπ

2kF

)
, (38)

where the factor G(x) takes into account the effects of a
nonzero pion mass,

G(x) = 1 − 5x

3
arctan

(
1

x

)
+ x2

3(1 + x2)

+ x2

3
√

1 + 2x2
arctan

(√
1 + 2x2

x2

)
. (39)

For |ω|τσ � 1, the imaginary part of the spin response function
in the long-wavelength limit is given by N (0)/(ωτσ ) [see
Eq. (25)]. In this limit, when multiple-scattering effects are
small, our result for the dynamical structure factor using the
spin relaxation time of Eq. (38) agrees with the result of Raffelt
et al. [8,9] using f/mπ ≈ ga/2Fπ .

We can compare the spin relaxation time τOPE
σ with the

relaxation time corresponding to decay of an excess of
quasiparticles in a particular momentum state τOPE. For the
latter, the spin trace of Eq. (37) has to be replaced by
the one in the brackets 〈. . .〉 of Eq. (29), which yields exactly
the same result as the right-hand side of Eq. (37) up to the
factor 4/3. As a result, we find that the spin relaxation rate
and thus spin-flipping collisions obtained from the one-pion
exchange interaction are comparable to the relaxation rate for
decay of an excess population in one momentum state, with

1

τOPE
σ

= 4

3

1

τOPE
. (40)

This result highlights the importance of noncentral contribu-
tions to nuclear interactions and encourages us to perform
more systematic calculations of these rates beyond one-pion
exchange. Next, we calculate the contributions to the relaxation
times from a general representation of the quasiparticle
scattering amplitude and present results in Sec. VI.

B. General operator representation

For neutron matter, using the general operator represen-
tation of the scattering amplitude on the Fermi surface in
the notation of Refs. [23,31], we find for the spin trace of
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Eq. (34)4

1

12

∑
j=1,2,3

Tr
{
Aσ 1,σ 2σ

j

1

[
(σ 1 + σ 2)j ,Aσ 1,σ 2

]}
= 4

3

[
Ã 2

tensor + Ã 2
exch. tensor − ÃtensorÃexch. tensor + A 2

spin-orbit

+A 2
diff. vector + A 2

cross vector

]
, (41)

where the amplitudes on the right-hand side are functions
of k and k′. The scattering amplitudes on the Fermi surface
Ãtensor, Ãexch.tensor,Aspin−orbit,Adiff.vector, and Acrossvector are
real and characterize the momentum-dependent strengths (in
units of the density of states) of the tensor operator S12(̂k),
the exchange tensor S12(̂k′), the spin-orbit operator i(σ 1 +
σ 2) · k̂ × k̂′, the spin difference vector i(σ 1 − σ 2) · k̂ × P̂
(or antisymmetric spin-orbit), and the cross vector operator
(σ 1 × σ 2) · (k̂′ × P̂), respectively, with two-body center-of-
mass momentum P = p1 + p2 = p3 + p4 (for details, see
Refs. [23,31]). The latter two operators do not conserve the
spin of the interacting particle pair and are induced in the
medium due to screening by particle-hole excitations [23].
Finally, the tilde on the tensor parts of the scattering amplitude
indicates that they take into account induced center-of-mass
tensor operator contributions, since this is not a linearly
independent operator on the Fermi surface, as discussed in
Refs. [23,31].

For the spin trace of Eq. (29) corresponding to the relaxation
rate for decay of an excess population in one momentum state,
we have

1
4 Tr

[
Aσ 1,σ 2Aσ 1,σ 2

]
= A 2

scalar + 3A 2
spin + 2

3

[
Ã 2

tensor + Ã 2
exch. tensor

− ÃtensorÃexch. tensor
] + 2A 2

spin-orbit + 2A 2
diff. vector

+ 2A 2
cross vector, (42)

where in addition the central parts of the scattering amplitude,
Ascalar and Aspin, contribute. These correspond to the spin-
independent amplitude and the spin-spin operator σ 1 · σ 2,
respectively. We note that all contributions in Eqs. (41) and
(42) are positive. The minus sign of the direct-exchange tensor
interference term is canceled by a relative minus sign in the
exchange tensor amplitude.

VI. RESULTS

We calculate the contributions beyond one-pion exchange
based on low-momentum interactions Vlow k [32,33], which are
obtained by evolving nuclear forces to low momentum using
the renormalization group. The resulting two-nucleon inter-
actions become universal at momentum scales � <∼ 2 fm−1

and provide a basis for model-independent predictions of
low-energy processes. The renormalization-group evolution
preserves the long-range parts from pion exchanges, and

4We note that the factor 3 in front of the cross vector amplitude in
Eq. (7) of Ref. [31] should be 1.

Vlow k includes subleading noncentral contributions, so that
all low-energy nucleon-nucleon scattering observables and
deuteron properties are reproduced. In this first study, we
have not included contributions from low-momentum three-
nucleon interactions [34]. Their effects are generally weaker
in neutron matter, but calculations of the equation of state
show that three-nucleon interactions become important for
kF >∼ 1.5 fm−1 [35]. We will study their contributions to
neutrino processes in future work.

In addition, we include many-body noncentral and central
correlations from second-order particle-particle (plus hole-
hole) and particle-hole contributions using the same Vlow k

interactions. The resulting quasiparticle scattering amplitudes
are discussed in detail in Ref. [23] and have been used to
calculate the neutrino emissivity from pair bremsstrahlung
for neutron star cooling [31]. Based on our results and
general arguments [36], second-order corrections become
reasonable for low-momentum interactions. The intermediate
states include all possible excitations for interacting particles
on the Fermi surface. We use the effective mass obtained
from the lowest-order Vlow k for all results, including for the
estimates based on the one-pion exchange interaction. The
effective mass varies from m∗/m = 0.95 at kF = 1.0 fm−1 to
m∗/m = 0.78 at kF = 2.0 fm−1, and in this range it is well
approximated by a linear dependence on the Fermi momentum.
We note that one expects an increase of the effective mass
due to polarization effects, but this is compensated for by
the reduction of the quasiparticle strength zkF

, as can be seen
from the results of the renormalization-group calculation of
induced interactions in neutron matter [28]. We emphasize
that a second-order calculation cannot give final results, but it
provides a range for the effects due to many-body correlations.

Finally, we note that the effect of particle-particle corre-
lations on neutrino-pair bremsstrahlung and other neutrino
processes has been investigated previously in Refs. [37–40].

A. Relaxation times

Our results for the spin relaxation coefficient Cσ of
Eq. (34) are shown in Fig. 1. For energies ω = 0 and T = 5–
10 MeV, the value of Cσ = 0.1 MeV−1 corresponds to spin
relaxation rates 1/τσ = 2.5–10 MeV. We find that the OPE
model significantly overestimates the strength of noncentral
contributions, compared to low-momentum interactions Vlow k ,
for all considered densities. Beyond the Vlow k results, we find
that second-order many-body contributions reduce the spin
relaxation rate, especially at lower densities (note that Cσ

is proportional to the square of the quasiparticle scattering
amplitude). These effects are due to second-order particle-hole
interference of tensor with strong central interactions, which
are driven by large scattering lengths at very low densities.
The band in Fig. 1 from Vlow k to including second-order
contributions provides a range for the effects due to many-body
correlations. In addition, we observe that the spin relaxation
rate depends only weakly on density, and the rate obtained
from Vlow k plus second-order contributions is dominated by
the tensor terms in Eq. (41).
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FIG. 1. (Color online) Spin relaxation rate given by Cσ of
Eq. (34) as a function of Fermi momentum kF obtained from the OPE
interaction, from low-momentum interactions Vlow k , and including
second-order many-body contributions. In addition, we show that
the result obtained from Vlow k plus second-order contributions is
dominated by tensor interactions (dotted vs solid line).

For the relaxation coefficient C of Eq. (29) corresponding to
decay of an excess of quasiparticles in a particular momentum
state, we obtain rates in Fig. 2 that are of similar magnitude as
the spin relaxation rate. While the OPE rate is approximately
independent of density, the OPE model underestimates the
relaxation rate at low densities. This is because the central
part of the OPE interaction ∼k2 and ∼k′2 does not capture the
central shorter-range physics in nuclear forces. This deficiency
of the OPE model is most prominent at low densities, in
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 + 2nd-order pp

same, only central

FIG. 2. (Color online) Relaxation rate for decay of an excess
of quasiparticles in a particular momentum state given by C of
Eq. (29) as a function of Fermi momentum kF obtained from the OPE
interaction, from low-momentum interactions Vlow k , and including
second-order many-body contributions. In addition, we show that
the result obtained from Vlow k plus second-order contributions is
dominated by central interactions (dotted vs solid line).
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FIG. 3. (Color online) Ratio of the spin relaxation rate to the
relaxation rate for an excess of quasiparticles in a single momentum
state (1/τσ )/(1/τ ) as a function of Fermi momentum kF for purely
tensor scattering amplitudes (in which case the value is 2), for the
OPE interaction (which gives the value 4/3), from low-momentum
interactions Vlow k , and including second-order many-body contribu-
tions.

comparison to the increasing Vlow k rate. Similar to the spin
response, we find a reduction of C due to second-order
many-body contributions, where the band in Fig. 2 again
indicates a range for the effects due to many-body correlations.
Finally, as expected, the relaxation rate obtained from Vlow k

plus second-order contributions is now dominated by the
central terms in Eq. (42).

In Fig. 3 we show the ratio (1/τσ )/(1/τ ) of the spin
relaxation rate to the relaxation rate for an excess of quasi-
particles in a single momentum state as a function of Fermi
momentum kF . This is a very useful measure of the strength
of noncentral interactions relative to central ones. For purely
tensor scattering amplitudes, the ratio of the corresponding
spin traces in Eqs. (41) and (42) gives (1/τσ )/(1/τ ) = 2, while
for the OPE interaction, which has a central part in Eq. (36),
this ratio is (1/τσ )/(1/τ ) = 4/3, see Eq. (40). While the ratio
obtained from Vlow k and including second-order many-body
contributions is considerably smaller at low densities, the
relative strength of noncentral interactions increases with
momentum and thus with density, as can be seen in the results
of Fig. 3 based on modern nuclear forces.

B. Dynamical structure factor

Motivated by the importance for neutrino rates, we focus
on the spin response in this section. The dynamical structure
factor is determined by the imaginary part of the spin response
function Imχσ , which is given by Eq. (21) in the relaxation
time approximation. In units of the density of states, the
imaginary part Imχ̃σ is a function of vF qτσ and ω/(vF q)
or of vF qτσ and ωτσ . In the long-wavelength limit, q → 0,
we have already found that this is proportional to ω times a
Lorentzian function of ω, see Eq. (25). Therefore, we plot in
Fig. 4 the imaginary part of the spin response function versus
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FIG. 4. (Color online) Imaginary part of the spin response
function Imχσ /N (0) of Eq. (21) in units of the density of states vs
ω/(vF q). Results are shown for the noninteracting system, without
and with mean-field effects, G0 = 0 and G0 = 0.8, respectively, and
for different values of the spin relaxation rate 1/τσ = 0, vF qτσ = 2
and vF qτσ = 5.

ω/(vF q). Results are shown for the noninteracting system,
without and with mean-field effects, G0 = 0 and G0 = 0.8,

respectively, and for different values of the spin relaxation
rate 1/τσ = 0, vF q/5, and vF q/2. We have taken the Landau
parameter from renormalization-group calculations of induced
interactions in neutron matter [28], which yield G0 ≈ 0.8 over
the densities considered in Sec. VI A. The values of vF qτσ =
25 correspond to spin relaxation rates based on Fig. 1 for
typical momentum transfers q ∼ ω over the range T = 5–10
MeV and kF = 1.0–1.7 fm−1. With 1/τσ comparable to vF q,
these estimates also show that recoil effects may be important.

In the noninteracting case, G0 = 0 and 1/τσ = 0, the
imaginary part of the spin response function is given by
πω/(2vF q) times a step function, see Eq. (23). With single-
pair mean-field effects, G0 = 0.8, a collective spin-zero-sound
mode appears as a pole contribution at ω/(vF q)|zs > 1, where
the position of the pole is given by [4]

1 + G0X̃σ (ω/(vF q)|zs, 1/τσ = 0) = 0 . (43)

As the spin relaxation rate increases, going from 1/τσ = 0
to vF q/5 and vF q/2, the response is pushed to higher
frequencies, and the spin-zero-sound peak disappears already
for these moderate spin relaxation rates. For comparison, we
also show the effects due to single-pair states at vF qτσ = 5,
where interactions (G0 = 0.8) decrease the response at low
ω/(vF q) and also move the strength to higher frequencies.

C. Neutrino mean free paths, energy loss, and energy transfer

We next assess the significance of the improved rates for
neutrino mean free paths, energy loss, and energy transfer. For
derivations of Eqs. (44)–(47), see Refs. [1,10]. All rates are
for one neutrino flavor. We emphasize that the OPE results are
based on the solution to the transport equation in the relaxation
time approximation, and do not correspond directly to OPE
rates used in supernova simulations. For simple estimates,
we use the dynamical structure factor for spin fluctuations in
the long-wavelength limit, Sσ (ω) = Sσ (ω, q → 0), given by
Eqs. (5) and (25), without further approximations or Ansätze
for the structure factor. Effects due to the finite wavelength
and recoil of the nucleons will be studied in future work.

In Table I, we present results for an average inverse neutrino
mean free path 〈λ−1〉,

〈λ−1〉 = C2
AG2

F

20π

n

T 3

∫ ∞

0
dωω5e−ω/T Sσ (ω), (44)

for characteristic temperatures and Fermi momenta. This result
applies for a Maxwellian initial distribution of neutrinos, and
Pauli blocking in the final state has been ignored. We consider
structure factors without and with mean-field effects, G0 = 0
and G0 = 0.8 respectively, and for different spin relaxation
rates 1/τσ based on Fig. 1. With the spin relaxation rates
obtained from Vlow k and including second-order many-body
contributions, the mean free paths are significantly longer than
in the OPE model. This follows the reduction of Cσ seen in
Fig. 1. For OPE, the effects of interactions (G0 = 0.8
compared with G0 = 0) reduce the neutrino scattering rate,
especially at higher temperature. In contrast, with the rates
based on low-momentum interactions, ωτσ is larger and the
imaginary part of the spin response function approaches
Imχσ (ω, q → 0) → N (0)/(ωτσ ). As a result, mean-field ef-
fects are weak for |ω|τσ � 1 in the long-wavelength limit.

TABLE I. Thermally averaged inverse neutrino mean free path 〈λ−1〉 in km−1 calculated from Eq. (44)
for characteristic temperatures and Fermi momenta. Results are given without and with mean-field effects,
G0 = 0 and G0 = 0.8, respectively, and for different spin relaxation rates 1/τσ based on Fig. 1.

G0 0 0.8 0 0.8 0 0.8

kF (fm−1) T (MeV) Cσ from OPE Vlow k Vlow k+ 2nd order

5 0.0770 0.0697 0.0397 0.0386 0.00754 0.00753
1.0

10 1.08 0.798 0.612 0.554 0.120 0.120

5 0.119 0.107 0.0476 0.0468 0.0296 0.0294
1.7

10 1.66 1.21 0.744 0.700 0.470 0.457
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TABLE II. Energy-loss rate Q of Eq. (45) due to neutrino-pair bremsstrahlung, nn → nnνν, for
characteristic temperatures and Fermi momenta. Results are given without and with mean-field effects,
G0 = 0 and G0 = 0.8, respectively, and for different spin relaxation rates 1/τσ based on Fig. 1. The
energy-loss rates are in units of 1033erg cm−3 s−1 for T = 5 MeV and 1035erg cm−3 s−1 for T = 10 MeV.

G0 0 0.8 0 0.8 0 0.8

kF (fm−1) T (MeV) Cσ from OPE Vlow k Vlow k+ 2nd order

5 1.77 1.62 0.911 0.888 0.173 0.172
1.0

10 4.02 3.00 2.25 2.06 0.441 0.440

5 2.75 2.49 1.09 1.07 0.679 0.675
1.7

10 6.18 4.55 2.73 2.57 1.72 1.68

The energy-loss rate Q due to neutrino-pair
bremsstrahlung, nn → nnνν, of neutron matter transparent to
neutrinos is given by

Q = C2
AG2

F n

20π3

∫ ∞

0
dωω6e−ω/T Sσ (ω) . (45)

Our results for the energy-loss rate Q are listed in Table II
for characteristic temperatures, Fermi momenta, and the
different cases of the structure factor. They follow the same
general pattern as the inverse mean free paths in Table I: a
reduction of the energy loss calculated with modern nuclear
forces compared to that from OPE and consequently weak
mean-field effects.

Finally, we consider the rate of energy transfer �Q/�T

from neutron matter at temperature T to a neutrino fluid
at temperature Tν , with �T = T − Tν and |�T | � T . The
energy transfer due to neutrino-pair bremsstrahlung and

absorption, nn ↔ nnνν, is given by

�Q

�T
= C2

AG2
F

20π3

n

T 2

∫ ∞

0
dωω7e−ω/T Sσ (ω), (46)

and for inelastic scattering, νnn ↔ νnn, one has

�Q

�T
= 30C2

AG2
F nT 3

10π3

∫ ∞

0
dωω2(12 + 6ω/T + (ω/T )2)

× e−ω/T Sσ (ω) . (47)

Our rates for the energy transfer are shown in Table III for
characteristic temperatures, Fermi momenta, and the various
cases for the structure factor. The pattern of these rates is
similar to what we found for other rates in Tables I and II.
In addition, for all cases we find that the energy transfer
due to inelastic scattering is less than a factor of 2 larger
than the contributions from neutrino-pair bremsstrahlung and
absorption. In contrast, Hannestad and Raffelt estimated this

TABLE III. Rate of energy transfer �Q/�T due to neutrino-pair bremsstrahlung and absorption, nn ↔
nnνν, of Eq. (46) and due to inelastic scattering, νnn ↔ νnn, of Eq. (47) for characteristic temperatures and
Fermi momenta. Results are given without and with mean-field effects, G0 = 0 and G0 = 0.8, respectively,
and for different spin relaxation rates 1/τσ based on Fig. 1. The rates are in units of 1033erg cm−3 s−1 MeV−1

for T = 5 MeV and 1035erg cm−3 s−1 MeV−1 for T = 10 MeV.

G0 0 0.8 0 0.8 0 0.8

kF (fm−1) T (MeV) Cσ from OPE Vlow k Vlow k+ 2nd order

2.48 2.26 1.27 1.24 0.241 0.241 nn ↔ nnνν

5
3.46 2.81 1.94 1.76 0.401 0.394 νnn ↔ νnn

1.0
2.81 2.10 1.58 1.44 0.308 0.307 nn ↔ nnνν

10
3.41 2.24 2.20 1.79 0.502 0.485 νnn ↔ νnn

3.85 3.48 1.53 1.50 0.949 0.943 nn ↔ nnνν

5
5.33 4.30 2.38 2.20 1.53 1.46 νnn ↔ νnn

1.7
4.32 3.18 1.91 1.80 1.21 1.18 nn ↔ nnνν

10
5.21 3.37 2.76 2.35 1.84 1.67 νnn ↔ νnn
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ratio to be 10 [10]. However, in making this estimate they used
Eqs. (46) and (47) with Imχσ (ω, q → 0) ∼ 1/ω2, while we
find Imχσ (ω, q → 0) ∼ 1/ω.

VII. CONCLUDING REMARKS

We have developed a unified treatment for neutrino pro-
cesses in nucleon matter based on Landau’s theory of Fermi
liquids that consistently includes one and two particle-hole
pair states. The contributions from two particle-hole pair states
are crucial for neutrino-pair bremsstrahlung and absorption,
for inelastic scattering, modified Urca reactions, and axion
emission. In supernovae, neutrino-pair bremsstrahlung and
absorption dominate the neutrino-number changing reactions
and are key to the production of muon and tau neutrinos.

Neutrino rates involving two nucleons can be calculated in
terms of the collision integral in the Landau transport equation
for quasiparticles. Using a relaxation time approximation, we
have solved the transport equation for density and spin-density
fluctuations and derived a general form for the response
functions. The solution includes multiple-scattering effects
and effects due to nonzero wavelengths and recoil of the
nucleons. We have applied our approach to neutral-current
processes in neutron matter, but the generalization to isospin
is straightforward. Our results for the spin response are
summarized by Eqs. (5), (20), (21), (22), (35) and the values
of Cσ of Fig. 1.

We have calculated the relaxation times based on the OPE
model and for a general representation of the quasiparticle
scattering amplitude. For OPE, the spin relaxation rate is
comparable to the quasiparticle relaxation rate, τ/τσ = 4/3.
This highlights the importance of noncentral contributions to
nuclear interactions. We therefore performed more systematic
calculations of these rates. In addition, for |ω|τσ � 1 and in the
long-wavelength limit, our result for the dynamical structure
factor agrees with Raffelt et al. [8,9].

Beyond OPE, we have calculated the relaxation times based
on low-momentum interactions Vlow k and including second-
order many-body contributions. The effects of three-nucleon
interactions are generally weaker in neutron matter [35], but
need to be included in future work. The OPE model signifi-
cantly overestimates the strength of noncentral contributions,
compared to results for low-momentum interactions Vlow k , for
all considered densities. Beyond the Vlow k results, we have
found that second-order many-body contributions reduce the
spin relaxation rate, especially at lower densities. This provides
a range in Figs. 1 and 2 for the effects due to many-body
correlations. By using spin relaxation times that incorporate
both “in-scattering” and “out-scattering” terms in the transport
equation, effects corresponding to vertex corrections in the
microscopic theory are automatically taken into account.

Using the spin response in the long-wavelength limit, but
without further approximations or Ansätze for the structure
factor, we have estimated the significance of the improved rates
for neutrino mean free paths, energy loss, and energy transfer.
We have found a reduction of these rates using modern nuclear
forces compared to OPE and consequently weak mean-field
effects. In addition, for all cases we find that the energy transfer

due to inelastic scattering is not significantly larger than that
due to neutrino-pair bremsstrahlung and absorption.

One may ask how good the relaxation time approximation
is. Our choice of spin relaxation time is designed to agree with
microscopic theory in the collisionless limit, |ω|τσ � 1, and
at long wavelengths. For the hydrodynamic limit, |ω|τσ � 1,
and long wavelengths, exact solutions of the transport equation
have been obtained, and one finds [22,41,42]

τσ |hydro

τ
= 4

3

∑
ν=1,3,5,...

2ν + 1

ν(ν + 1)[ν(ν + 1) − 2 + 2 τ/τσ ]
.

(48)

The relaxation time for the hydrodynamic limit is always
greater than or equal to that for the collisionless limit.
For τσ /τ � 1, τσ |hydro = τσ , while for τσ /τ = 1, τσ |hydro =
(π2/9) τσ . Since for realistic nuclear interactions, τσ is signif-
icantly larger than τ , this indicates that differences between
spin relaxation times in the collisionless and hydrodynamic
limits are expected to be on the order of a few percent. Con-
sequently, uncertainties due to the use of the relaxation time
approximation are small compared with other uncertainties in
the calculation.

The use of the quasiparticle transport equation with a
collision term allows us to include some two particle-hole
pair states, but not all. Among contributions not included are
terms that correspond to the incoherent parts of the propagator
for a particle-hole pair, that is, to contributions that do not
correspond to an intermediate state containing a well-defined
quasiparticle together with a well-defined quasihole. More-
over, there are intrinsic two-body contributions to hadronic
weak currents. Further work is needed to determine how
important these additional contributions are.

There are numerous directions for future work. One is to
explore mixtures of neutrons and protons. A second is to extend
the calculations to situations when matter is less degenerate. As
one sees from our results, there is significant uncertainty in the
effects of the medium on quasiparticle scattering amplitudes,
since there are sizable differences between rates obtained
with Vlow k and those that include many-body contributions
to second order, and an important task is to reduce these
uncertainties.
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