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Thickness of the strangelet-crystal crust of a strange star
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It has recently been pointed out that if the surface tension of quark matter is low enough, the surface of a
strange star will be a crust consisting of a crystal of charged strangelets in a neutralizing background of electrons.
This affects the behavior of the surface and must be taken into account in efforts to observationally rule out
strange stars. We calculate the thickness of this “mixed phase” crust, taking into account the effects of surface
tension and Debye screening of electric charge. Our calculation uses a generic parametrization of the equation
of state of quark matter. For a reasonable range of quark matter equations of state, and surface tension of order a
few MeV/fm?, we find that the preferred crystal structure always involves spherical strangelets, not rods or slabs
of quark matter. We find that for a star of radius 10 km and mass 1.5M, the strangelet-crystal crust can be from
zero to hundreds of meters thick, the thickness being greater when the strange quark is heavier and the surface
tension is smaller. For smaller quark stars the crust will be even thicker.
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I. INTRODUCTION

Quarks in their most familiar form are confined in protons
and neutrons that make up standard nuclear matter. However,
according to the “strange matter hypothesis” [1,2] this form of
matter might be metastable and the fully stable state would then
be “strange matter,” which contains roughly equal numbers
of up, down, and strange quarks. Large (kilometer-sized)
pieces of strange matter are “strange stars” (for a review see
Ref. [3]); small nuggets of strange matter are “strangelets”
[4]. The strange matter hypothesis remains fascinating but
unproven. In this article we will assume that it is correct and
investigate the structure of the crust of a strange star.

The traditional picture of the surface of a strange star is
a sharp interface of thickness ~1 fermi. Below the interface
lies quark matter, the top layer of which is positively charged.
Above the interface is a cloud of electrons, sustained by an
electric field that could also support a thin nuclear matter crust
in suspension above the quark matter [5,6], as long as the
strange star is not too hot [7].

However, if the surface tension o of the interface between
quark matter and the vacuum is small enough, the surface
will take on a much more complicated structure. If o is
less than a critical value o then large lumps of strange
matter are unstable against fission into smaller pieces [8,9].
As a result, the simple surface described in the previous
paragraph is unstable and is replaced by a mixed phase
involving nuggets of positively charged strange matter in a
neutralizing background of electrons. It is reasonable to guess
that the ground state is a regular lattice, leading to a crust with
a crystalline structure. (Note that this crystal is completely
different from the Larkin-Ovchinnikov-Fulde-Ferrell phase
of quark matter [10,11], where the quark matter density is
uniform, but the pairing gap varies in space.) The conjecture
of Jaikumar, Reddy, and Steiner [8] is that the strangelet crystal
crust will actually be a multilayer structure of mixed phases,
analogous to the “nuclear pasta” phases that occur in models
of the inner crust of a conventional neutron star [12]. At the
outer edge of the crust, we expect a dilute low-pressure lattice
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of small strangelets in a degenerate gas of electrons. As we
descend in to the star, the pressure rises, and the structure
is modified (becoming denser and perhaps changing to rods,
slabs, cavities, etc). At a critical pressure p.; the mixed phase
is no longer stable, and there is a transition to uniform neutral
quark matter. As one burrows deeper into the star the pressure
continues to rise, and there may be other phase transitions
between different phases of quark matter [13], but those will
not concern us here. Note that in this scenario the strange star
depends on gravity for its existence. In the absence of gravity,
it would undergo fission into strangelets.

Jaikumar, Reddy, and Steiner [8], assuming zero surface
tension and neglecting Debye screening, estimated that the
mixed phase crust might be 40-100 m thick, with pg; =
1000 MeV*. This is an interesting result because if a strange
star has a sufficiently thick crystalline crust, it might be hard
to distinguish from the crust of a neutron star. Astrophysical
properties that are sensitive to the crust include cooling
behavior, neutrino and photon opacity during a supernova, the
photon emission spectrum, glitches, and frequencies of seismic
vibrations that are observed after giant flares in magnetars. For
further discussion and references see Sec. VI. This article will
make a more careful calculation of the properties of a strangelet
crystal crust, including the effects of Debye screening [14] and
surface tension.

We expect that the properties of the crust will emerge from
a competition between various different contributions to the
energy. Charge separation is often favored by the internal en-
ergy of the phases involved, because a neutral phase is always
a maximum of the free energy with respect to the electrostatic
potential (see Ref. [12,15]; for a pedagogical discussion see
Ref. [16]). The domain structure is determined by surface
tension (which favors large domains) and electric field energy
(which favors small domains). Debye screening is important
because it redistributes the electric charge, concentrating it in
the outer part of the quark matter domains and the inner part
of the surrounding vacuum, and thereby modifies the internal
energy and electrostatic energy contributions.
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To make an estimate of the thickness of the crust we need
to calculate the equation of state of the mixed phase, i.e., the
energy density &y, as a function of the pressure ppp. The
thickness of the crust for a star of mass M is then

AR = Ry B /pm Ly (1)
= IKgtar GM A Emp Pmp>

inh = ¢ = 1 units. This expression follows from the Tolman
Oppenheimer Volkoff equation [17,18], assuming that AR <
Ry and that everywhere in the crust the pressure is much
smaller than both the local energy density and the average
energy density of the whole star. These are very good
approximations for the cases that we study.

We obtain &, as a function of py,, by dividing the strangelet
lattice into unit cells (“Wigner-Seitz cells”) and calculating
the pressure at the edge of a cell as a function of its energy
density. We study cells that are three dimensional (a lattice of
strangelets in a degenerate gas of electrons), two dimensional
(rods of strange matter in a degenerate gas of electrons),
and one dimensional (slabs of strange matter interleaved with
regions of degenerate electron gas). Our approach is similar to
that used in studying mixed phases of quark matter and nuclear
matter in the interior of neutron stars [19].

We build on the formalism for a generic quark matter
equation of state and infinitely large Wigner-Seitz cells that
was developed in Refs. [8,9]. The main assumptions that we
make are:

(i) Within each Wigner-Seitz cell we use a Thomas-Fermi
approach, solving the Poisson equation to obtain the
charge distribution, energy density, and pressure. This
is incorrect for very small strangelets, where the energy
level structure of the quarks becomes important [20,
21]; such corrections may be relevant for the very low
pressure (outer crust) part of our results (see Sec. VI).

(ii)) We assume our D-dimensional Wigner-Seitz cells to
be D-spheres. In reality the cells will be unit cells of
some regular lattice (cubic, hexagonal close packed,
etc). However, as long as the cell is much bigger than
the strangelet inside it, we expect this approximation
to be reasonably accurate. We will report results only
for cases where Ry > 2R (R being the radius of the
quark matter in the center of the cell, which we expect
will have a rotationally symmetric shape because of
the surface tension). In some cases this assumption is
violated, and we will then only be able to obtain a lower
limit on the crust thickness (see Sec. V B2).

(iii)) We treat the interface between quark matter and the
vacuum as a sharp interface, with no charge localized
on it, which is characterized by a surface tension. We
neglect any surface charge that might arise from the
reduction of the density of states of strange quarks at the
surface [22-25]. We also neglect the curvature energy
of a quark matter surface [26,27], so we do not allow
for “Swiss cheese” mixed phases, in which the outer
part of the Wigner-Seitz cell is filled with quark matter,
with a cylindrical or spherical cavity in the center, for
which the curvature energy is crucial. Note that these
phases would be expected to occur at higher pressure
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than the ones we study, so including them is likely to
make the crust even thicker than we predict.

(iv) We assume that the chemical potential for negative
electric charge w, is much less than the chemical
potential for quark number p. This allows us to expand
the quark matter equation of state in powers of ., and
means that within the quark matter we can ignore the
contribution of electrons to the charge and pressure.
This is a very good approximation for small strange
quark mass, which corresponds to small ny in our
parametrization. For the largest value of no that we
study, 1, in neutral quark matter is close to 100 MeV,
and the assumption is still reasonable.

(v) We assume that only electrons are present, with no
muons. This is valid as long as f, is less than the muon
mass m,,, which is true for all the cases that we study.

(vi) We assume that u, is always much greater than the
electron mass. Thus in the degenerate electron gas,
we can take the electrons to be massless, which
simplifies the Thomas-Fermi calculation of their charge
distribution. Because (i, drops monotonically from the
center of the cell to its edge, this condition will only be
violated for very large cells (very low pressures).

(vii) We always work at zero temperature. The temperature
of the surface of a compact star, even during a flare [28],
is expected to be less than 100 keV, so we expect this
to be a reasonable approximation.

II. CHARACTERIZATION OF QUARK MATTER

A. Generic parametrization

We use the generic parametrization of the quark matter
equation of state suggested in Ref. [9],

Pom(is tre) = po(i) — no(wpte + 5 xo(Wny + -+, (2)

which expresses the pressure as a function of the chemical
potential for quark number (1) and for negative electric charge
(i), expanded to second order in .. In addition, we assume
that there is a surface tension o associated with the interface
between quark matter and vacuum. In this article we do not
include curvature energy.

This parametrization is model independent. Any specific
model of quark matter can be represented by appropriate
choices of o, pg, the charge density ng, and charge suscep-
tibility .

The quark density n and the electric charge density gq); (in
units of the positron charge) are

Pom IPom
"E T T T T
w e
So in uniform neutral quark matter the electron chemical
potential is ugeml =ny/Xo- Equation (2) is a generic
parametrization if p™"" « n, which is typically the case
in three-flavor quark matter.

The bag constant enters in po(u), and we will fix it by
requiring that the first-order transition between neutral quark
matter and the vacuum occur at quark chemical potential

ng = XoMe- 3
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Uerits 1.6, p(Merit uge”‘“"l) = 0. Because we are assuming
that the strange matter hypothesis is valid, we must have
Uerie < 310 MeV, because at u =~ 310 MeV there is a transition
from vacuum to neutral nuclear matter. In this article we will
typically use ey = 300 MeV. The value of u inside our quark
matter lumps will always be very close to e, SO We can
evaluate ng and x¢ at ferit, and not be concerned about their
w dependence.

We will restrict ourselves to values of the surface tension
that are below the critical value [9]

2 2
anD ny

=0.1325 ———, @)
Xo \/47105)(;/2

where @ = 1/137 and A p, is the Debye length

Oerit = 0.1325

1
,/47TO£)(Q'

For typical models of quark matter, o is of order 1 to
10MeV/fm? (see Table of results in Sec. V). If the surface
tension is larger than o then the energetically favored
structure for the crust will not be a strangelet crystal but
the simple sharp surface that has has been assumed in the
past [5,7].

Ap = &)

B. Specific equations of state

When we show numerical results we will need to vary ng
and xo over a range of physically reasonable values. To give
a rough idea of what values are appropriate, we consider the
example of noninteracting three-flavor quark matter, for which
ngo and x o become functions of x and the strange quark mass
my, whereas py is in addition a function of the bag constant B.
Expanding to lowest nontrivial order in m,

out
- - B
po(ie) 22 )
2
ny(u, mg) = ’;5[; 6)
T
2u?

SMmg) = ——.
XQ(M s) 712

We emphasize that these expressions are simply meant to give
arough idea of reasonable physical values for n and xo. Our
treatment does not depend on an expansion in powers of m.
To tune the transition between neutral quark matter and the
vacuum so it occurs at ;L = [ (See previous subsection), we
set B so that po(ieric) = %an(,U«crit)/XQ(chrit)-

In the regions between lumps of strange matter, we will
assume that there is a degenerate electron gas, which we treat
in the Thomas-Fermi approximation. As long as p, is much
greater than the electron mass, we can treat the electrons as
massless particles, whose pressure and charge density (in units
of e) is
1
3n2’

"
Pe(fhe) = ﬁ7 qe (o) = — @)
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III. ANALYSIS OF A WIGNER-SEITZ CELL

We will study one-, two-, and three-dimensional Wigner-
Seitz cells. In the center there is a slab, rod, or sphere of
quark matter, with radius R. The cell itself has radius R.
We want to calculate the equation of state of a mixed phase
made of Wigner-Seitz cells, so we solve for the charge density,
energy density, and pressure throughout the cell, using the
Thomas-Fermi approximation for the contributions of quarks
and electrons. This corresponds to solving the the Poisson
equation, which reads (in Heaviside-Lorentz units with /1 =
c=1)

V2io(r) = —4maq(r), ®)

where ¢(r) is the electric charge density in units of the positron
charge e and 14, is the electrostatic potential divided by e. The
equation is not trivial to solve because the charge density is
itself a function of u, [see Eq. (3)]. The boundary conditions
are that there is no electric field in the center of the cell (no
8-function charge there), and no electric field at the edge of
the cell (the cell is electrically neutral),

dpte
dr

We also need a matching condition at the edge of the quark
matter, i.e., at r = R. As discussed in Sec. I, we assume that
no charge localized on the surface, so we require continuity of
the potential and electric field at r = R,

dite
0) =0, d—’j(Rcdl):o. ©)

dut, .
Pe(R+6)= LR - 9).

He(R+8) = pe(R—0).,  —~ I
10)

In two- or three-dimensional cells, the value of u in-
side the strange matter will be slightly different from pec
because the surface tension compresses the droplet. To
determine the value of 1, we require the pressure discontinuity
across the surface of the strangelet to be balanced by the surface
tension:

(D — Do

Poulit: 1te(R)] = pe-[1te(R)] = ———. )

Once these equations are solved, we can obtain the relevant
properties of the cell. The total energy of a D-dimensional
Wigner-Seitz cell is

k 1
E = /0 Qp(rydr [un(ue) — SHedomie) = Pou (K. Me)}

Reen 1
+ / QD(r)dr |:_§/~'Leqe'(/~1’e) - Pe-(,U«e):|
R
+ Qp(R)o, (12)

where i, is a function of r, and 2 (r) is the surface area of a
(D — 1) sphere, i.e.,

Qi =2, r)=27r, @) =4t (13)

The —% Ueq terms in Eq. (12) come from combining —p.q
(from the relationship between energy density and pressure)
with the electric field energy density +% eq. The external
pressure of the cell is simply the pressure of the electrons at
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the edge of the cell,

Pext = Pe [/fLe(Rcell)]- (14)

The total number of quarks is

R
N = /0 Qo (r)dr (. 1), (15)

The volume of the cell is V = 2R, aneH, or (4/ 3)nR2€H
for D =1, 2, 3, respectively, because we are assuming rota-
tionally symmetric cells.

By varying R and R, we generate a two-parameter
family of strangelets. However, there is really only a single-
parameter family of physical configurations, parameterized by
the external pressure pex. On each line of constant pey, in the
(R, Rcen) parameter space, we must minimize the enthalpy per
quark,

_ E + pextV

h b
N

(16)

to find the favored configuration. We are at zero temperature
so h is also the Gibbs free energy per quark. This is done
separately for D =1, 2,3 cells, and the structure with the
lowest 4 is the favored one.

We now have a well-defined way to obtain the equation of
state of the mixed phase of quark matter, namely the energy
density emp = E/V as a function of the pressure pmp = pex.
This, via Eq. (1), determines the thickness of the strangelet
crust.

IV. SOLUTIONS FOR THE WIGNER-SEITZ CELL

A. Quark matter

Inside the quark matter, we can solve the Poisson
equation (8) analytically. We can rewrite it using Eqs. (2) and
(3) as

V21 (r) = —4malng — xome(r)]. a7

In D =1, 2, or 3, the solutions obeying the first boundary
condition in Eq. (9) are

Me1p(r) = 20 | Acosh (L) ,
X0 A
n ir

Meop(r) = <2 1AL (—) , (18)
X0
n

Me3p(r) = <
X

The function Jj is the zeroth order Bessel function of the first
kind, and it is a function of the square of its argument, so
the result is always real. The integration constant A will be
determined by matching to the solution outside the strange
matter.
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B. Electron gas

In the degenerate electron gas region outside the strange
matter, from Eqgs. (7) and (8), the Poisson equation becomes

2 4o 3
Voe(r) = 2~ e(r)”. 19)
3

There are three ways in which we were able to solve this
equation. In D = 1, there is an exact analytic solution, which
we present below. In any number of dimensions there is
an approximate analytic solution, obtained by perturbing in
powers of o, which works as long as the cell is not too
large. Finally, one can use brute-force numerical methods to
solve the differential equations with the appropriate bound-
ary conditions. We used all three methods, checking their
agreement with each other in situations where more than
one of them was applicable. In our numerical results we
give the values obtained by numerical solution of the Poisson
equation.

1. Analytic solution for slabs

In one dimension, the Poisson equation is
d*u, 4o 3
arr " 3gle

By a change of variable to ¢ = i/2a/37 ., this becomes

(20)

5 =2, @n
which belongs to a class of differential equations whose
solutions are Jacobi elliptic functions sn(r|m), where m is the
“parameter” [29]. [Some authors write this as sn(r, k) where
m =k? and k is the elliptic modulus.] The Jacobi elliptic
function obeys

d2
% — —(1 + m)sn(r|m) + 2m sn(rlm)>,  (22)
’
which reduces to Eq. (21) for m = —1, so the closed form

solution is

o(r) = ~sn| T Reell gy,
X X

- 1}, (23)

where X is an integration constant, to be fixed by matching to
the quark matter solution at » = R. The argument is shifted by
i K(—1) to ensure that ¢/(Rc) = 0 [the boundary condition
(9) at r = Reenn]. K(m) is the complete elliptic integral of the
first kind, so K(—1) ~ 1.3110288. Then ¢ is purely imagi-
nary, and undoing the change of variables, the solution for
He is

. |37 1 7 — Reent .
Heap(r) = —i s aad +iK(—1)

For one-dimensional slabs of quark matter we now have a
complete analytic solution, combining Eq. (18) at r < R with
(24) atr > R, with X and A fixed by Eq. (10).

- 1} . (24
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TABLE I. Crust thickness AR (in meters) for a strange star of radius 10 km and mass 1.5 M; for more general
stars see Table II. We calculate the crust for seven different quark matter equations of state and four values of the
surface tension. The first two columns, A and n, specify the quark matter equation of state (2) [via Eq. (5)]. The
third column gives the maximum surface tension for which a strangelet crust will occur (4). The fourth column
gives a rough upper limit on AR using an estimate from Ref. [8]. The last four columns give our results for the
crust thickness in meters for different values of the surface tension o (given in MeV fm™2) of the interface between
quark matter and vacuum. The crust thickness is very sensitive to the equation of state and the surface tension. It

ranges from zero up to several hundred meters.

Ap (fm) ng (fm™3)  0ei(3D) MeV fm™2)  ARpax (M) AR (m) at
0=0.3 o=1.0 0=3.0 o0=10.0

4.82 0.0445 0.533 36 9 - - -
4.82 0.0791 1.69 120 67 25 - -
4.82 0.124 4.12 280 220 160 39 -
6.82 0.0445 1.51 72 40 13 - -
6.82 0.0791 4.8 230 >170 120 45 -
6.82 0.124 11.6 550 >460 >390 280 39
9.65 0.0445 4.27 140 110 75 22 -

2. Perturbative solution for cylinders and spheres
Another approach to solving Eq. (19), which works in
any number of dimensions, is to expand in powers of the
electromagnetic coupling strength «. We write
pe(r) = po(r) +opi () + pa(r) +---. (25
Substituting in to Eq. (19) and identifying powers of «, we
find that to order «,

4
V2 (r) = =—po(r)’.

V2 110(r) = 0,
37

(26)
Solving these equations in D = 2, 3, we find
Me2p(r)
ar® s 2 2 3
= B+ Clog(r/ p) + 6—[23 —6B°C+9BC” —-6C")
b4

+3(2B* — 4BC +3C%) log(r/Ap)
+6(B — C)C%log(r/Ap)* + 2C3 log(r/Ap)’],

He,3p(r)

C 200 5 5
=B——+ —[Br’(9C + Br)
r  9mr

—6C>%(C — Br)log(r/Ap)]. (27)
In each equation, the first two terms on the right-hand side are
the vacuum solution ¢, and the remainder are the first-order
correction. The integration constants B and C, along with A
from Eq. (18), are determined by the boundary condition (9)
atr = R and the matching condition (10).

The perturbative solution works when screening is a
small correction to the unscreened (zeroth-order) electrostatic
potential. It is most reliable in three dimensions, where the
zeroth-order electrostatic potential becomes small at large r.
We used it to check our numerical results.

V. NUMERICAL RESULTS

To get a good estimate of how thick strange star crusts might
be, we vary e, 1 0’ and xo in the quark matter equation
of state (6), and the surface tension o, over a physically
reasonable range, calculating the crust thickness in each case.
The results of our calculations are displayed in Tables I and II.
Before discussing them, we describe how they were obtained.

A. Geometry of the mixed phase

For a given quark matter equation of state, we need to
find the maximum pressure up to which a stable mixed phase
exists. At each lower value of the pressure we must establish
the geometric configuration of the mixed phase. We can then
calculate the energy density as a function of the pressure and
obtain the crust thickness using Eq. (1).

We follow the procedure described at the end of Sec. III,
varying the radius of the cell R and the radius R of the quark
matter region at its center, to find the cell configuration with
the lowest enthalpy per quark at each value of the pressure. In
Fig. 1 we show some examples of the search for the favored
cell configuration at a given pressure. We plot the “excess
enthalpy per quark”

Ah=h — h, (28)

TABLE II. Correction factors to be applied to crust thickness
values in Table I, for quark stars of various radii and masses. These
follow from the factor multiplying the integral in Eq. (1). Note that
smaller stars have thicker crusts.

R (km) M (M) AR/(AR inTablel)
4 0.05 8.3
6 0.2 4.4
8 0.5 2.8
10 1.0 2.0
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Enthalpy per quark, Droplets (3D)
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Enthalpy per quark, Rods (2D)

s o

—_ N
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1

p=1370 MeV*

_O 5 E 1 1
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rod radius (fm)

Enthalpy per quark, Slabs (1D)

p=10* MeV*
0.1F \
7

-0.1

p<1370 MeV*
-0.2F

Ah (MeV)
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-0.4

-0.5

20
slab radius (fm)

30

FIG. 1. (Color online) Search for a stable mixed phase at different pressures. We show the excess enthalpy per quark Ah [Eq. (28)] as
a function of the radius R of the quark matter region in the center of the cell. At each value of R, the cell radius has been chosen to give
the desired pressure. The favored configuration is the one with the smallest Ak, where Ah = 0 for uniform neutral quark matter of the same
pressure. For 3D cells, we find stable mixed phases (minima with negative Ah) for pressures below a critical value, p.; = 1370 MeV*. 2D
cells always had a higher Ah; 1D cells were never stable. These plots are for a quark matter equation of state with pq; = 300 MeV, Ap =
4.82fm, n 0= 0.0791 fm~3, corresponding to free quarks with a moderately heavy strange quark [m, = 200 MeV in Eq. (6)]. The surface

tension was o = 0.3 MeVfm™2.

as a function of R, for each of the three geometries, and
for various different pressures. Here % is the enthalpy per
quark [Eq. (16)] in a given cell and /A is its value in uniform
neutral quark matter of the same pressure. Configurations with
negative Ah therefore correspond to stable mixed phases at the
given pressure.

The results in Fig. 1 are for quark matter with pei =
300MeV, ng = 0.0791 [corresponding to m; = 200 MeV in
Eq. (6)], and Ap = 4.82fm (again, a value appropriate to
free quark matter with u = 300 MeV). The surface tension
is 0.3 MeV /fm?. The first panel of Fig. 1 shows Ah(R) for 3D
cells. The upper (red) curve is Ah(R) at the critical pressure
Perit = 1370 MeV*, which is defined by the presence of a
minimum with Az = 0 (at R &~ 10fm in this case). We also
show AA(R) at a lower pressure, p = 10MeV*; now there
is a clearly favored mixed phase, with strange droplets of
radius R &~ 4 fm. If we push the pressure down to zero then
the cell size goes to infinity, and the minimum in the AA(R)
curve moves further down to around —0.75 MeV. In the second
panel we show AA(R) for 2D cells at the same two pressures.
It is clear that the 2D structure has a lower critical pressure,
and at these two pressures it is energetically unfavored relative
to the 3D structure. In the third panel we show Ah(R) for 1D
cells. These appear to be even less favored. At p = 1370 MeV*

the Ah(R) curve is already almost at its zero-pressure limit,
which is never negative and therefore allows no mixed phase.
We had to show AA(R) for a higher pressure, p = 10* MeV*,
to see any change in the curve. We conclude that for this
quark matter equation of state and surface tension, and at the
pressures studied in Fig. 1, the only mixed phase that occurs
is the 3D (droplet) one.

We note the following features of the favored configuration
of the Wigner-Seitz cell:

(1) Increasing the pressure disfavors mixed phases: the
Ah(R) curve rises and minima are smoothed out.
We hypothesize that this is because the pressure is
determined by the value of p, at the edge of the cell
[Eq. (14)]; if pe(Reen) is increased then, because (. (r)
is monotonic, @, in the quark matter is also larger
(closer to ,u?e”"“l). But this decreases the energy benefit
of making a mixed phase, which arises from the
departure from neutrality.

(i) As the dimensionality of the mixing geometry de-
creases from 3 to 1, mixed phases become less favored
(at least in this range of pressures). We hypothesize
that this is because in lower-dimensional structures,
a smaller proportion of the quark matter is near the
surface, where . is different from ,u’;e““al.
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Excess enthalpy per quark
=300 MeV, Ap=4.82 fin, 5=0.0791 fm3, 6=0.3 MeV fm2
T T LR | T T AT

3D (droplets)

10 100 1000
pressure (MeV#)

FIG. 2. (Color online) Minimum value of Ak as a function of
pressure, for quark matter with the same characteristics as in Fig. 1.
Dashed lines mark the pressures (10 and 1370 MeV4) that were used
in Fig. 1. We see that for this type of quark matter the 3D (droplet)
structure is always energetically favored over rods. The slab structure
is never stable.

Because it is only the minima of AZ(R) that are physically
important, we focus on them, and in Fig. 2 we plot the
value of Ak at the minimum as a function of pressure. The
vertical dashed lines mark the pressures p = 10 MeV* and
p = 1370 MeV* used in Fig. 1. We see that, for the values
of the quark matter parameters studied in these figures, only
droplet (3D) mixed phases will occur: slabs are never stable,
and rods are never favored over droplets.

B. Crust thickness calculation

In Table I we show the results obtained by repeating the
calculations described above for seven different quark matter
equations of state and four values of the surface tension. In
each case, once we have established the energetically favored
configuration of the mixed phase at each pressure, we obtain
the crust thickness using (1). To present numbers whose
physical interpretation is clear, we assume that the quark star
has radius 10 km and mass 1.5 M, so we can give an explicit
crust thickness in meters. From the prefactor in Eq. (1) it is
easy to find the multiplicative factors that convert our values
into thicknesses of crusts on stars with different masses and
radii (Table II).

The first two columns of Table I specify the quark matter
equation of state (2), by giving the value of n¢ and the value
of Ap [which fixes xo via Eq. (5)]. We fix peic = 300 MeV.
The third column gives the maximum surface tension o for
which a crust of droplets of strange matter could occur, the
fourth column gives an estimated upper limit on the thickness,
and the last four columns give the thickness of the crust for
various values of the surface tension o.

1. Range of parameters studied

Our assumption that the strange matter hypothesis is valid
requires that p.j must be less than the quark chemical
potential of nuclear matter, about 310 MeV, so we fix feie =
300 MeV. The value of u inside our strange matter lumps
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will always be within a few MeV of w4, because to get any
crust at all the surface tension cannot be large enough to cause
significant compression.

Typical values of xo will be around 0.2 u?,; (6), corre-
sponding to Ap = 4.82fm. Alford et al. [9] found that in the
2SC phase x is smaller by a factor of 2. In Table I we explore
this range, using three values, xo = 0.2 u2,, xo = 0.1 42,
and xo = 0.05u?2,,, corresponding to Ap = 4.82fm, Ap =
6.82fm, and and Ap = 9.65 fm [via Eq. (5)].

Typical values of ny will be around 0.05 /Lcmmi (6), and
a reasonable range would correspond to varying m; over
its physically plausible range, from about 100 to 300 MeV.
(To have strange matter in the star, m, must be less than
MUerie-) In Table I we use n , = 0.0445, 0.0791, and 0.124 fm =3,
which would correspond to m; = 150, 200, and 250 MeV in
Eq. (6). For Ap =9.65fm we only show results for n, =

0.00445 fm™3. We do not show results for ng = 0.0791 fm™3

orng = 0.124 fm™3, because in those cases the value of u‘;e‘“m'
would be 133 and 208 MeV, respectively, which violates our
assumption that u, < u, and is also above the muon mass
m, = 105.66 MeV, so we would have to take into account
muons as well as electrons.

The value of the maximum surface tension o for which a
crust of droplets of strange matter could occur (third column
of Table I) follows from Eq. (4). It is the maximum surface
tension at which an isolated (zero-pressure) droplet would have
lower enthalpy per quark than neutral quark matter at zero
pressure, i.e., at the onset phase transition at © = ft¢r. The
last four columns of Table I give our results for the thickness
of the crust at a range of values of the surface tension o. For
values of o above o there is no crust. The values of o that
we use are physically reasonable, given that rough estimates
of surface tension from the bag model are in the range 4 to
10 MeV /fm? [30,31].

2. Crust thickness results

In Table I, we present the results of our calculation of the
crust thickness as a function of the quark matter parameters.
Clearly the thickness is very sensitive to the values of these
parameters.

In Table II we give the correction factors for some typical
masses and radii that are expected for quark stars (see, for
example, Ref. [3], Fig. 28). We see that smaller and lighter
quark stars have thicker crusts. In fact, for a star of radius
4 km [32] the crust thickness could easily be of order 1000 m,
at which point the assumption A R/ Ry, used in Eq. (1) begins
to become questionable. If the crust is thick enough then one
must keep higher powers of AR/ Ry, in calculating it, and it
may even be necessary to solve the full Tolman Oppenheimer
Volkoff equation [17,18].

Some of the crust thicknesses in Table I are given as lower
limits. This is because for large Ap and n, and low surface
tension, mixed phases are highly favored and persist up to
extremely high pressures (of order 10° MeV*). To achieve such
a high pressure requires a very “cramped” cell geometry, in
which R is only alittle larger than the quark droplet radius R.
In such a geometry we can no longer trust our approximation
of treating the cell as spherical rather than a unit cell of a crystal
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Droplet and cell size in crust
=300 MeV, Ap=4.82 fm, ng=0.0791 fm3, 6=0.3 MeV fm
1000 F——T——T—— T 1T T3

Cell radius (fm)
100

size (fm)

10 _E

Droplet radius (fm)

1 1 1 1 1 1 1
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FIG. 3. (Color online) Size of the quark matter droplets and the
Wigner-Seitz cell (in fm) as a function of position in the the 120-m-
thick crust that we predict for quark matter with the stated parameter
values, which correspond to free quark matter with a moderately
heavy strange quark [m, = 200 MeV in Eq. (6)].

lattice (e.g., cubic). We therefore use an alternative upper limit
Pmax ON the pressure: pnax is the pressure below which the
favored cell configuration always has R..; > 2R. We can then
calculate a lower limit on the crust thickness by integrating
Eq. (1) up t0 pmax.

In the limit of low surface tension, our results are compatible
with the upper limit AR,x (fourth column in Table I) that
follows from taking the estimate obtained by ignoring surface
tension and Debye screening in Ref. [8] their Eq. (13)] and
applying the TOV correction factor (1 —2GM/Rg.). We
find that even a relatively moderate surface tension, around
1to 10 MeV fm_z, reduces the thickness of the crust or even
eliminates it completely. The mechanism is clear: larger values
of the surface tension disfavor the mixed phase by increasing
surface energy costs, leading to a lower p,; and thinner crusts.
However, it remains possible that a quark star could have a
crust hundreds of meters thick.

We find that the crust is thickest for large values of ny and
Ap,asone would expect from the estimate A Rpy,x X n2Q /X0 X

nZQ)% [8]. This is consistent with the observation from Fig. 1
that we can measure how favored a mixed phase is by the
depth Ahy, of the minimum in AA(R). Because the Ah(R)
curve moves up as the pressure increases (see Sec. V A), we
can guess that the deeper the minimum at zero pressure, the
thicker the crust. From Ref. [9] Fig. 2 and Eq. (26)], we find that
ata given o, the depth of the minimum is Ahpin & —n% /X0,

i.e., Ahpin 0¢ —ngA7,. Hence the mixed phase is more favored,
and the crust is thicker, for larger values of np and Ap.

All the crusts in Table I consist entirely of 3D structures,
i.e., spherical droplets of quark matter in a neutralizing
background of electrons. We never found any pressure for
any quark matter parameters where 2D (rod) or 1D (slab)
structures were energetically preferred. It would be interesting
to see whether this remains true when the cell is allowed to
be a different shape from the strangelet (e.g., square or cubic
cells).
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3. Internal structure of the crust

In Fig. 3 we select one of our quark matter equations of
state and show how the properties of the strangelet crystal
lattice vary with position in the crust. The horizontal axis is
Ar =r — Rgar, SO more negative values correspond to deeper
parts of the crust. The plot should end at Ar = 0, but we were
not able to push our numerical calculations to that value, so
the curves end at Ar ~ —10 m.

As one approaches the surface, the size R of the Wigner-
Seitz cell grows very large (note that Fig. 3 uses a logarithmic
scale for the vertical axis). This means that the strangelet
density becomes very low. We expect that as Ar — 0, Reep
will diverge, because the pressure must go to zero, so [, at the
edge of a cell must go to zero, so the cell size must become
infinite. In this limit the droplets in the crust effectively become
isolated strangelets, and we expect their size to settle down
to that of the most stable isolated strangelet for this form
of quark matter. We can predict this value from Ref. [9],
Eq. (24): by minimizing the free energy per quark Ag/n
(which is equivalent to Ak in this article) for the values of
Merits M gs X Q> and o used in Fig. 3, we find that the most
stable strangelet has a radius of 3.0 fm, which is exactly the
asymptotic value emerging in Fig. 3. For such small strangelets
we expect that our Thomas-Fermi approach is not accurate,
and shell-model corrections will become important: including
such corrections is a topic for future research.

As one goes deeper into the star (Ar becoming more
negative), the pressure rises, so the cell size decreases, and
the droplet size slowly increases, until we reach the critical
pressure at which uniform neutral quark matter becomes
favored over the strangelet lattice. This is a first-order phase
transition, as is clear from Fig. 1, so the curves in Fig. 3 end
suddenly, without any singular behavior. In this article we do
not take in to account the possibility of a metastable lattice
that might persist to higher pressures.

Figure 3 shows that the strangelet crystal crust of a quark
star tends to be fairly dilute: over most of the crust the quark
matter droplet size is small, of order the Debye length in quark
matter Ap, whereas the cell size is larger, by a factor of 10 or
more.

VI. DISCUSSION

The calculations described in this article give us a more
precise picture of the strangelet-crystal crust of a quark star.
The results presented in Table I show that the thickness of
the strangelet-crystal crust of a strange star is very sensitive
to the surface tension o of the interface between quark matter
and the vacuum and to the quark matter parameters np and
Xo (2), which determine the response of the quark matter
to deviations of the electrostatic potential from its neutrality
value. Our results are compatible with those of Ref. [8], where
an upper limit on the crust thickness was obtained by ignoring
surface tension and Debye screening. The crust is thickest for
large n and small o (large Ap). As discussed in Sec. V B2,
we find that values of surface tension in the physically expected
range, around 1 to 10 MeVfm~2, reduce the thickness of the
crust and may even eliminate it completely, but it remains

045802-8



THICKNESS OF THE STRANGELET-CRYSTAL CRUST OF ...

possible that a quark star of radius 10 km could have a crust
several hundred meters thick. From Table II we see that for a
smaller star the crust could be even thicker.

The geometry of the mixed phase in our crusts, however,
shows no variation at all. It is always three-dimensional,
containing spherical droplets of quark matter. We never find
any case where a two-dimensional (rod) or one-dimensional
(slab) geometry is favored.

Our calculations and results suggest two directions for
future work: first, one could study phenomenological con-
sequences of our understanding of the strangelet-crystal crust
of a quark star. Second, one could improve on our treatment
of the strangelet crystal by relaxing some of the assumptions
listed in Sec. I.

The most obvious phenomenological task is to revisit
computations of the frequencies of seismic vibrations that
are observed after giant flares in magnetars [33,34]. Watts
and Reddy [33] found that the strangelet crystal crust did not
have the right spectrum of toroidal shear modes to account for
current observations: it would be interesting to see whether
taking into account the surface tension and Debye screening
affects that conclusion. Other aspects of the phenomenology
of the crust could also be studied, for example, (a) the thermal
response of the crust to accretion [35]; (b) the role of the crust
in the trapping of neutrinos and photons just after a type-II
supernova [36]; (c) the spectrum of photons radiated from the
surface of a quark star [37-39]; (d) the contribution of the crust
to the moment of inertia and glitches [40]; (e) the damping of
r-modes in by shear viscosity in the crust [41,42] (for quark
stars, the contribution from the interior has been calculated
[43,44]); and (f) the thermal relaxation time of the crust and
its response to the postsupernova “cooling wave” [45]. The
thermal relaxation time of the crust depends on the thermal
conductivity, for which we can make a very rough estimate
using Appendix A of Ref. [45]. We find values of order a
few hundred MeV? at T ~ 0.1 MeV, which is comparable to
the range 10'8 erg cm~'s~! K~! for low-density nuclear matter
(Ref. [45], Fig. 4). We defer a more accurate calculation to
future work.

To improve on our treatment, the most pressing issues are to
use a realistic shape for the Wigner-Seitz cells (which should
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be unit cells of some regular lattice, rather than spheres), to
include shell-model corrections for the smallest strangelets,
and to allow for “Swiss cheese” phases where most of the
unit cell consists of quark matter, with a hole at the center
containing electrons.

As discussed in Sec. V B2, the shape of the cell becomes
important at very high pressures, and our use of the spherical
approximation meant that in some cases we could only obtain
lower limits on the crust thickness. Studying more realistic
shapes is straightforward in principle, but would require a
more demanding multidimensional numerical solution of the
Poisson equation.

Shell-model corrections can be of order 1 MeV per quark for
strangelets of size R < 5fm [20,21], which is not negligible
relative to our typical enthalpy per quark (Fig. 1) and may
therefore affect our results for the outer part of the crust, where
we predict strangelets as small as 3 fm (Fig. 3).

Treating Swiss cheese phases would require us to include
curvature energy as well as surface tension. This highlights
the fact that we treated the interface between quark matter and
vacuum in a very simplified way, as a zero-width interface with
a surface tension. However, because the quark confinement
distance is about 1 fm, the interface might well have structure
on this distance scale. Like the shell-model effects described
above, this could be relevant to the low-pressure regime, where
the strangelets can be as small as a few fm. There are even
indications that when such physics is taken into account, the
CFL phase may undergo some degree of charge separation
[23,25], raising the possibility that there might be some sort
of crystalline crust on quark stars made of CFL quark matter.
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