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Azimuthal anisotropy: Ridges, recombination, and breaking of quark number scaling
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Azimuthal anisotropy is studied by taking into account the ridges created by semihard scattering, which is
sensitive to the initial spatial configuration in noncentral heavy-ion collisions. No rapid thermalization is required.
Although hydrodynamics is not used in this study, the validity of hydrodynamical expansion is not excluded at
later time after equilibration is achieved. Phenomenological properties of the bulk and ridge behaviors are used
as inputs to determine the elliptic flow of pion and proton at low pT . At intermediate pT the recombination of
shower partons with thermal partons becomes more important. The φ dependence arises from the variation of
the in-medium path length of the hard parton that generates the shower. The pT dependence of v2 is therefore
very different at intermediate pT compared to that at low pT . Quark number scaling of v2 is shown to be only
approximately valid at low pT , but is broken at intermediate pT , even though recombination is the mechanism
of hadronization in all pT regions considered.
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I. INTRODUCTION

In relativistic heavy-ion collisions the subjects of transverse
momentum (pT ) distribution and azimuthal anisotropy have
been given prominent attention both experimentally and
theoretically from the very beginning [1–6]. In the second half
of this decade details of the properties of elliptic flow have
continued to be studied experimentally with greater accuracy
[7–13], but there is a waning of further theoretical develop-
ment, at least in the light quark sector. The hydrodynamical
model at low pT [14–17] and the recombination-coalescence
model at intermediate pT [18–21] have described the data on
elliptic flow so well that little room seems to exist for further
improvement. In particular, quark number scaling (QNS) is a
property that has been scrutinized to the point where it has
been regarded as a strong evidence for the partonic degree of
freedom before hadronization and for recombination at low pT .
In this paper we study the problem of azimuthal anisotropy in
the framework of our version of the recombination model [22]
in which we consider thermal and shower partons. We take into
account the ridges at low pT generated by semihard scattering
near the surface and the shower partons at higher pT . We
calculate the second harmonic v2 for pion and proton, as well
as for a light quark, and show that, when pT is extended to
the intermediate region, there is significant departure from
the QNS result suggested by simple consideration of quark
recombination [20,21].

We state at the outset that we do not have a dynamical
description of the time evolution of the expanding system.
We do not use hydrodynamics explicitly, but by considering
thermal distribution of parton just before hadronization we
imply the validity of hydrodynamical expansion at some point
in the evolutionary history. However, we do not subscribe
to the applicability of hydrodynamics at early time, such as
at τ0 = 0.6 fm/c [16,17]. Rapid thermalization has not been
shown to be the consequence of any dynamical process that is
firmly grounded and commonly accepted.

It has been pointed out in Ref. [23] that there exists an
alternative mechanism to relate the spatial asymmetry at early
time to the momentum anisotropy at late time, without relying
on the assumption of fast equilibration. That mechanism is
semihard scattering, soft enough to have high probability of
occurrence, but hard enough to take place at τ < 0.2 fm/c. The
phenomenology associated with such processes may be termed
“ridgeology,” which is the study of the properties of ridges that
have been found to accompany jets, even when the initiating
jets are weak and the peak-to-ridge ratio is small [24,25]. In
this paper we develop further the study of elliptic flow based
on ridges at low pT and shower partons at intermediate pT .

The shower partons used in our model are defined at the
hadronization scale so that the recombination of two types of
shower partons in the same jet reproduces the fragmentation
functions (FF) of a hard parton to a specific meson [26].
Similarly, three quarks in the shower can recombine to form
a baryon in agreement with the baryon FF without adjusting
any free parameters [27]. A shower parton can also recombine
with a thermal parton in the immediate vicinity of the jet (but
not belonging to a part of the jet), both being soft enough to
undergo hadronization. It has been shown in [22] that such
thermal-shower (TS) recombination predominate in the region
3 < pT < 6 GeV/c. Our concern for v2(pT ) in this paper will
be for 0 < pT < 6 GeV/c.

Above pT = 6 GeV/c, SS (or SSS) recombination becomes
important; that process is equivalent to fragmentation, since
that is how the shower parton distributions are determined in
the first place [26]. With that duality of fragmentation and
recombination in mind, it is easy to see that QNS cannot be
valid at high pT , since jet quenching responsible for v2(pT )
involves only one hard parton, not two (or three) semihard par-
tons. Although we do not consider the region pT > 6 GeV/c,
there is still the question: at what point does QNS begin
to break down. Our study here shows that the breaking
of QNS begins at the transition point between TT and TS
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recombination for pion and between TTT and TTS+TSS
for proton. The reason is in the nature of TS and TTS
recombination, a bad approximation of which can lead to a
simplistic formula that falsely suggests QNS. Data that seem
to support QNS are all for minimum bias, and do not reach the
upper region of intermediate pT .

In Sec. II we give the general formulation of how azimuthal
anisotropy can arise from ridges without any details on the pT

dependence. Elliptic flow is then calculated for pion and proton
production at low pT in Sec. III, where only thermal partons
are considered. In Sec. IV the study is extended to intermediate
pT , where the contribution from shower partons is included.
The breaking of quark number scaling is investigated in
Sec. V. The final section contains the conclusion of this work.

II. AZIMUTHAL ANISOTROPY ARISING FROM RIDGES

Let us first review our approach to elliptic flow at low pT

without rapid thermalization [23]. Instead of assuming the
meaningfulness of thermodynamical quantities, like pressure
and temperature, at early time, we recognize that hard
scattering of partons can occur at all virtuality Q2, with
increasing probability at lower and lower Q2, and that when
the parton transverse-momentum, kT , is around 2–3 GeV/c,
the rate of such semihard scattering can be high, while the time
scale involved is low enough (∼0.1 fm/c) to be sensitive to the
initial spatial configuration of the collision system. When such
scattering occurs near the surface of the overlap region in the
transverse plane, each semihard parton creates a ridge in �η

and �φ [29]. When triggers are used, ridges have been found
in the associated-particle distribution on the near side with
trigger momentum p

trig
T > 4 GeV/c [29]. More recently, p

trig
T

has been reduced to as low as 2.2 GeV/c and passoc
T as low as

1.5 GeV/c, where the ridge yield significantly dominates over
the yield of the peak that sits above the ridge [25]. It suggests
that ridges due to the scattering of low-x partons (<0.03) are
abundantly produced even if triggers are not used to select
events to examine their properties. The effect of such ridges
on both the pT and φ dependences of the produced particles
should not be ignored.

If the semihard scattering occurs in the interior of the dense
medium, the energy of the scattered partons is dissipated in
the medium and contributes to the thermalization of the bulk.
That process may take some time to complete, a likelihood
that is acceptable in the approach adopted here, since we have
no need to require thermalization to be fast. If the semihard
scattering occurs near the surface of the medium, one of the
scattered partons may be directed outward and lose energy to
the medium on its way out. The enhanced thermal partons near
the jet trajectory can recombine and form hadrons in the ridge.
This interpretation of the ridge has been applied successfully
to triggered events [30], and provides a resolution to the �

puzzle [31,32]. The same mechanism of ridge formation is,
however, also valid, if no trigger is used. Although the variables
�η and �φ, usually defined relative to the trigger momentum,
would be meaningless without a trigger, the existence of ridge
in the difference variables η� and φ� in autocorrelation that
used no triggers has been well established [29,33].

The direction of a scattered parton is random, but after it is
averaged over all events, the average direction of all outward
partons near the surface is normal to the surface. Since low-x
partons are copious and the rate of semihard scattering with
kT < 3 GeV/c is not significantly suppressed, the semihard
emitters can form a layer along the surface of the overlap region
prescribed by the geometry at the initial time of collision.
The formation of the ridge of hadrons takes some time
for the transverse expansion to complete, but the directions
in which the ridge partons flow are determined by spatial
configuration at early time. We do not rule out the applicability
of hydrodynamics at some point of the expansion process when
equilibration is established. However, fast thermalization is
not needed if semihard scattering can initiate the anisotropic
expansion.

Details about ridge formation are rather complicated,
especially if a model is to be successful in reproducing the
very recent data on the ridge yield as a function of the trigger
azimuthal angle relative to the reaction plane [34]. A full
treatment of that problem is a separate subject of its own [35],
and is unsuitable for inclusion here; furthermore, we do not
use triggers in the study of inclusive distributions from which
v2 is to be determined. However, aspects of that problem are
needed to demonstrate the process of averaging over the jet
direction of the semihard parton. We describe in the Appendix
our model calculation of the ridge distribution in the azimuthal
angle φ, and show how the result can be represented by a simple
box approximation. We take that approximation as the starting
point here and proceed to the calculation of v2(pT ).

The overlap region in the transverse plane for two nuclei of
radius RA at impact-parameter b apart is, assuming simple
geometry with sharp boundaries, the almond-shaped area
bounded by two circular arcs whose maximum angle is �,
where

cos � = b̂ ≡ b/2RA, (1)

and the angle φ within the arcs satisfies φ ∈ R, which is a set
of angles defined by

|φ| < � and |π − φ| < �. (2)

It should be emphasized that the almond-shaped region is
relevant for the consideration of the initial problem of semihard
scattering whose time scale is short, although hadrons in
the ridge are formed later when the elliptic geometry is
more pertinent. In the Appendix we show that the ridge (R)
distribution in φ can be represented by the box approximation

R(pT , φ) = R(pT )�(φ), (3)

where

�(φ) = θ (� − |φ|) + θ (� − |π − φ|). (4)

The bulk (B) medium has no φ dependence and will be denoted
by B(pT ). The single-particle distribution at low pT is then

dN

pT dpT dφ
= B(pT ) + R(pT )�(φ). (5)

This is a simple expression in closed form that enables us to
calculate v2(pT ) analytically.
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The second harmonic in the φ distribution is

v2(pT ) = 〈cos 2φ〉 =
∫ 2π

0 dφ cos 2φ dN/pT dpT dφ∫ 2π

0 dφ dN/pT dpT dφ
. (6)

When Eq. (5) is used in the above, we obtain

v2(pT , b) = sin 2�(b)

πB(pT )/R(pT ) + 2�(b)
. (7)

If the first term in the denominator is much larger than the
second, as we shall show below for low pT , then we have the
even simpler formula

v2(pT , b) � R(pT )

πB(pT )
sin 2�(b), (8)

where the pT and b dependences are factorized. Thus the
centrality dependence at fixed pT is essentially specified by
sin 2�(b), and is in accord with the data at low pT [23].
We shall show more detailed properties of the centrality
dependence below. Equation (8) is the analytic result that
represents in a simple approximation the consequence of
considering the effects of semihard scattering instead of fast
thermalization.

III. ELLIPTIC FLOW AT LOW pT

Let us now consider the low-pT behaviors of B(pT ) and
R(pT ). The parton distribution in transverse momentum qT of
the bulk medium has the thermal behavior [22]

q0
dNB

q

dqT dφ
= CqT e−qT /T (9)

at low qT . This distribution includes the effect of semihard
partons created in the interior of the medium; they lack
the energy to reach the surface to get out. The energy lost
to the medium is thermalized and contributes to the value of
the effective temperature T . The time it takes for the weak
jets to thermalize need not be short; it can take a significant
part of the expansion phase of the whole system, if necessary.
If the semihard scattering occurs near the surface, one of the
scattered partons may emerge, while the recoil parton directed
inward gets thermalized. The emerging semihard partons along
the surface lose extra energy to the medium in addition to those
others that cannot escape. Thus there is an enhancement over
the bulk, for which the thermal distribution has the same form
but with a higher inverse slope T ′

q0
dNB+R

q

dqT dφ
= CqT e−qT /T ′

, φ ∈ R. (10)

The difference between Eqs. (9) and (10) is the ridge effect.
Note that the normalization factor C is the same in Eqs. (9)
and (10) because there is no difference between the weak jets
that fail to emerge from the surface and those that barely
emerge with negligible energy to develop any additional
enhancement at qT = 0. It is only when the semihard scattering
occurs sufficiently near the surface that a substantial ridge
can be formed with nonvanishing qT . The two equations
above are not derived from any dynamical equation of time

evolution, but are to be inferred from the data on particle
distribution in pT after the quarks hadronize by recombination.
Clearly, the use of thermal distributions implies equilibration
before hadronization, but it need not be accomplished at early
time. It is not necessary for us to specified how long the
equilibration time is, since Eqs. (9) and (10) may be regarded
as phenomenological input with T and T ′ to be determined
from data.

To derive the pion and proton distributions from Eqs. (9)
and (10) the formalism in [22] is to be used. However, in
[22] only central collision is considered, for which the quark
distributions are assumed factorizable before recombination.
Here for the study of φ anisotropy all centralities must be
considered, and the assumption of factorizability of uud

distribution for the production of proton in peripheral collision
(where thermal parton density is low) is questionable. We
shall treat such complications in a later section. For now, let us
ignore the issue of nonfactorizability and proceed as in [22] for
central and midcentral collisions so as to show the connection
between the ridge effect and elliptic flow.

A. Pion

Starting from Eq. (9), using valon distribution in the
recombination function, and neglecting pion mass, we obtain
in [22] the pion distribution due to T T recombination

Bπ (pT ) = dNB
π

pT dqT dφ
= C2

6
e−pT /T (11)

for the bulk medium at any φ. The normalization factor C2 will
be canceled at low pT , so it need not be specified here. T will
be discussed below. It should be recognized that the form in
Eq. (9) is chosen so as to yield the exponential distribution in
Eq. (11). Starting from Eq. (10) we obtain similarly for φ ∈ R

Bπ (pT ) + Rπ (pT , φ) = dNB+R
π

pT dqT dφ
= C2

6
e−pT /T ′

. (12)

While Eqs. (11) and (12) are consequences of Eqs. (9) and
(10) for any pT , their phenomenological application is useful
only for low pT where recombination with shower partons
is relatively unimportant. However, for pT ≈ 0 the hadronic
mass cannot be ignored, even for pion, let alone proton. The
recombination model we use is based on a formalism for large
momenta [36–38], where momentum fractions are meaningful.
Thus it is an assumption that the model remains quantitatively
valid at low pT , an extrapolation that can be made more
acceptable if the mass effect can be taken into account. To
that end, we adopt the ansatz that pT in Eqs. (11) and (12) are
to be replaced by the transverse kinetic energy ET

ET (pT ) = mT − m0, mT = (
p2

T + m2
0

)1/2
, (13)

where m0 is the hadron rest mass. We then have

Bπ (pT ) = C2

6
e−ET (pT )/T , (14)

Bπ (pT ) + Rπ (pT , φ) = C2

6
e−ET (pT )/T ′

, φ ∈ R, (15)
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where T and T ′ remain to be determined from data. Subtracting
Eq. (14) from Eq. (15) results in Eq. (3), where Rπ (pT ) has
now the concrete form

Rπ (pT ) = C2

6
e−ET (pT )/T ′

(1 − e−ET (pT )/T ′′
), (16)

1

T ′′ = 1

T
− 1

T ′ = �T

T T ′ , �T = T ′ − T . (17)

For the values of T and T ′, we examine the data from STAR
that has focused on ridgeology [24]. It has been found that the
ridge distribution in passoc

T is nearly exponential and remains
essentially the same for a wide range of trigger momentum
p

trig
T > 4 GeV/c. The minimum value of passoc

T measured is,
however, 2.2 GeV/c, too high to exhibit the small ET behavior
in Eq. (16). Furthermore, it is also shown in Ref. [24] that the
pπ ratio in the ridge for 4 < p

trig
T < 5 GeV/c is about 4.5.

It means then that the data on ridge in [24] for unidentified
charged particles cannot be used to determine T ′ in Eq. (16) for
pion. It should also be pointed out that in [24] the ridge slope is
compared to the inclusive slope of charged particle distribution
for the same range of pT as for 2.2 < passoc

T < 4 GeV/c. That is
the region in which the pπ ratio of the inclusive single-particle
distributions is approximately 1. So no information about the
pion T for the bulk can be obtained from Ref. [24] either.

For central collisions we have b � 0 and � � π/2, so
B(pT ) + R(pT , φ) is for all φ without anisotropy. The single-
particle distribution is therefore a measure of B + R, not B

alone. Semihard scattering is present in all events so ridges
contribute to dN/pT dpT whether or not triggers are used to
select jet events. Thus Eq. (15) can be applied to the inclusive
data for identified pions to determine T ′. The data are not
exactly exponential for all low pT . For pT < 1 GeV/c there are
pions from resonance decays. We extract the value of T ′ from
the region pT > 1 GeV/c, in which the ridge particles from
the enhanced thermal source make definitive contribution.
Using the data in Ref. [4] we fit the π+ distribution in ET at
0–5% centrality for 1 < ET < 3 GeV and get T ′ = 0.3 GeV.
If TT recombination were dominant in peripheral collisions,
we need only go to the π+ distribution at 80–92% centrality
and determine T , since the ridge contribution is small when
� is small. But that is not the case. At large b the thermal
source is weak, and SS recombination dominates. It is shown
in Ref. [39] that SS > TT for pT > 2 GeV/c at 80–92%, as in
pp collisions. Without direct experimental guide to determine
T for Bπ (pT ), we proceed by adopting �T = 45 MeV in
common with what we shall be able to obtain in the study of
the proton case to be described below; it is consistent with
the range of values suggested experimentally in [24] and used
in [23]. Using Eq. (17) we then obtain T = 0.255 GeV and

T ′′
π = 1.7 GeV (18)

for the pion.
The ratio Bπ (pT )/Rπ (pT ) has a simple form when Eq. (16)

is rewritten as

Rπ (pT ) = C2

6
e−ET (pT )/T (eET (pT )/T ′′ − 1), (19)

so that the prefactors cancel and we have

Bπ (pT )

Rπ (pT )
= 1

eET (pT )/T ′′ − 1
, (20)

which depends only on T ′′. We assume the validity of this
equation for all pT < 2 GeV/c where TT recombination is
valid. When pT is small, Eq. (20) can be approximated by
T ′′/ET , so Eq. (8) has the simple expression

vπ
2 (pT , b) = ET (pT )

πT ′′ sin 2�(b). (21)

The initial slope is

∂vπ
2

∂ET

∣∣∣∣
ET =0

= 1

πT ′′
π

sin 2�(b), (22)

which is dependent on only T ′′
π apart from the geometrical

factor sin 2�(b). That property is in good agreement with the
data [7], as shown in Fig. 1. Equation (22) is a distinctive
feature of v2 that is driven by ridges. For nonvanishing values of
ET we use the full expression of Eq. (20) in Eq. (7), obtaining
the result shown in Fig. 1 for pT < 1 GeV/c. Deviation from
linearity is perceptible. There is some discrepancy between our
results and the data, the most noticeable region being around
ET ∼ 0.65 GeV, but taken as a whole the overall agreement
with the data is good. That is remarkable, since we have not
adjusted any free parameters in order to fit.

It is worthwhile to digress and explain why our model that
depends on the initial geometry of the medium can produce
satisfactory v2(pT ), whereas earlier model based on surface
emission without hydrodynamical expansion failed [40]. In our
case, although the average direction of the semihard partons
are emitted normal to the surface of the initial configuration,
the hadrons in the ridges are produced after expansion. The
late emission of hadrons introduces a scale in Rπ (pT )/Bπ (pT )
in the form of T ′′, which controls the normalization in Eq.
(22). The early emission of semihard partons determines the φ

dependence through �(b) in agreement with data. In the case
of [40] the only scale is the temperature T = 140 MeV without
expansion, so v2(pT ) saturates at around pT ≈ 0.2 GeV/c
in disagreement with data. Furthermore, it is not detailed

0 0.2 0.4 0.6 0.8 1
0
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0.2

0.3
b (fm)%
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4.25−10
5.910−20
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9.030−40
10.240−50
11.350−60
12.360−70

 pion 

E
T
 (GeV)

v 2π

FIG. 1. (Color online) Comparison of calculated vπ
2 with data for

Au+Au collisions at 200 GeV [7] for eight centrality bins whose
corresponding values of b are shown in the legend.

044903-4



AZIMUTHAL ANISOTROPY: RIDGES, RECOMBINATION, . . . PHYSICAL REVIEW C 78, 044903 (2008)

enough to give centrality dependence. The importance of
hydrodynamical expansion is pointed out in [40], on which
we have no disagreement. In summary, ridge physics is not
a simple surface-emission problem because it comprises both
early-time parton emission and late-time hadron formation,
and therefore has more dynamical content to result in the
proper azimuthal anisotropy.

B. Proton

For proton production in central Au-Au collision we have
obtained for TTT recombinations [22]

dNp

pT dpT

= A
p2

T

p0
e−pT /T , (23)

where

A = C3

6

B(α + 2, γ + 2)B(α + 2, α + γ + 4)

B(α + 1, γ + 1)B(α + 1, α + γ + 2)
, (24)

α = 1.75 and γ = 1.05. These Euler beta functions come from
the recombination function of proton, which depend on valon
distribution characterized by α and γ [41]. The factor p2

T

arises from the integration over the momenta of the quarks that
recombine. The factor p0 comes from the invariant distribution
p0dN/d3p on the left-hand side. When applied to pT >

2 GeV/c at midrapidity, the p2
T /p0 factor was approximated

by pT in [22]. Here we want to extend Eq. (23) to lower pT ,
still at y ≈ 0, so to take the mass effect into account we rewrite
the equation in the form

Bp(pT ) = A
p2

T

mT

e−ET (pT )/T . (25)

Similarly, for bulk + ridge we have

Bp(pT ) + Rp(pT , φ) = A
p2

T

mT

e−ET (pT )/T ′
, φ ∈ R. (26)

The ridge solution is then for φ ∈ R

Rp(pT ) = A
p2

T

mT

e−ET (pT )/T ′
(1 − e−ET (pT )/T ′′

). (27)

When the exponential factor is in terms of pT , as shown
in Eq. (23), the value of T should be the same as that in
Eq. (11) for pions, as well as that in Eq. (9) for the quarks. That
is because of the δ(pT − ∑

i qiT ) function in the recombination
function that preserves the exponential behavior from quarks
to pions to proton. Experimentally, it has been found that the
pT distributions of π+,K+ and p have the same inverse slope
in their exponential behavior for 1.5 < pT < 3 GeV/c (see
Fig. 5. of [4]), thus confirming the result of the recombination
model. However, the same data, when plotted in terms of ET ,
show different slopes (see Fig. 9. of [4]). As stated in the
Sec. III A above, the slopes determined from the ET distribu-
tion for 0–5% centrality is the value of T ′. We obtain from the
proton distribution in [4] T ′ = 0.35 GeV. It is now possible
to extract some information from the ridge distribution in
Ref. [24] which is for 0–10% centrality. The lowest p

trig
T

range is 4 < p
trig
T < 5 GeV/c for which the p/π ratio is 4.5.

Assuming dominance by proton, we use Eq. (27) to fit the

0 1 2 3 4

10

10
2

10
1

10
0

4<p
T
trig<5 GeV/c,   0 10%

R
p
(p

T
)     ∆T=45 MeV

p
T
 (GeV/c)

R
id

ge
 y

ie
ld

FIG. 2. Fit of the pT distribution of charged particles in the ridge
[24] by Eq. (27).

data by varying �T . Since the normalization of the ridge
distribution in [24] is dependent on p

trig
T , whereas Eq. (27)

makes no explicit reference to p
trig
T , we focus only on the

pT dependence of the particles in the ridge and adjust the
normalization to fit. The best fit is for �T = 45 MeV, for
which the result is shown in Fig. 2. The data points are outside
the pT range where the dip occurs at low pT ; nevertheless, a
good fit is achieved in the region where data exist. It should
be recognized that the factor p2

T in front of exp(−ET /T ′) in
Eq. (27), as well as the factor, 1 − exp(−ET /T ′′), after it
together make the effective inverse slope to be greater than T ′,
where the data points are. A measurement of the dip in the
proton distribution in the ridge at small pT in Fig. 2 will serve
to test the validity of our model. With �T = 0.045 GeV we
obtain from Eq. (17) T = 0.305 GeV, and

T ′′
p = 2.37 GeV (28)

for 0–10% centrality.
For centrality dependence we go to Ref. [3] and find that,

whereas the slope for pion is essentially independent of c

(defined as centrality in %), that for proton (and antiproton)
decreases with c. Since the ET distribution of proton has a
break in slope from ET < 1 GeV to > 1 GeV, we choose to
consider the tabulated slope for p̄, which is independent of the
ET regions and in our view should be the same as for p. We
find that (identifying T ′

p = T ′
p̄)

T ′
p = 0.35 (1 − 0.5ĉ) GeV, ĉ = c/100 (29)

gives a good fit of the data as shown in Fig. 3. The reason
for the centrality dependence is that for baryon production
the three quarks (or antiquarks) needed for recombination
become less independent of one another at larger c, where
less thermal partons are generated in the nuclear collision.
We know that in very peripheral collision the system should
approach that of pp collision and few thermal partons are
created for baryon production. When the uud joint distribution
is not factorizable, our model calculation of p production that
is based on factorizable quark distribution cannot be applied
directly. Equation (29) is the simplest way to summarize the c

dependence of the inclusive distribution.
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FIG. 3. Fit of inverse slopes of p̄ production for five centrality
bins [3].

Fixing �T at 45 MeV, we have

Tp = 0.305 − 0.175ĉ GeV. (30)

T ′′
p follows simply from Eq. (17). The result can be well

approximated by a convenient formula

T ′′
p = 2.37 (1 − 1.05ĉ + 0.26ĉ2) GeV. (31)

The consequence on v2 can now be calculated as in the case of
pion, using Eq. (21) for low ET . The initial slope for proton is
then

∂v
p

2

∂ET

∣∣∣∣
ET =0

= 1

πT ′′
p (ĉ)

sin 2�(b). (32)

Since T ′′
p 	= T ′′

π , the initial slopes for proton and pion are not
the same. That seems to violate quark number scaling, since
dividing v2 and ET by the same nq does not change the initial
slopes. However, the empirical evidence for QNS is only for
minimum bias data [8,9,12]. If we evaluate T ′′

p (ĉ) at c = 30%,
we find T ′′

p (0.3) to be very nearly 1.7 GeV in agreement with
Eq. (18). Thus our result is in accord with the experimental
evidence for QNS at low ET , but also indicates violation of
QNS in central and peripheral collisions. At higher ET there
are other reasons for more serious breaking of QNS; that will
be discussed in a later section.

At higher ET , but still <1 GeV, Bπ (pT )/Rπ (pT ) has the
same form as Eq. (20), so v

p

2 (pT , b) can be calculated using
Eq. (7). The result is shown in Fig. 4 in rough agreement with
the data that have large errors [7]. Note that whereas vπ

2 (pT , b)
saturates at around 40–60% centrality, v

p

2 (pT , b) continues
to rise at more peripheral collisions. That is because, as b

increases, T ′′
p (c) monotonically decreases so that sin 2�(b)

is not the only factor that determines the dependence on
centrality, as is the case with pions. The maximum of sin 2�(b)
occurs at � = π/4, corresponding to b̂ = 1/

√
2, or ĉ = 1/2.

Equations (7), (20), and (32) indicate that the decrease of T ′′
p (ĉ)

causes v
p

2 (ET , b) to continue to increase beyond b̂ = 0.7 until
the severe decrease of sin 2�(b) at large b̂ brings it down.
We show in Fig. 5 the b̂ dependence (for 2RA = 14.7 fm)
of vπ

2 (pT , b̂) and v
p

2 (pT , b̂) at fixed pT = 0.52 GeV/c. The

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

b (fm)%
2.3
4.2
5.9
7.6
9.0
10.2
11.3
12.3

 proton 

E
T
 (GeV)

v 2p

FIG. 4. (Color online) Comparison of calculated v
p

2 with data for
Au+Au collisions at 200 GeV [7] for eight centrality bins whose
corresponding values of b are shown in the legend.

characteristics of the data [7] are well captured by the simple
formula, Eq. (7), for both pion and proton.

IV. AZIMUTHAL ANISOTROPY AT INTERMEDIATE pT

As pT is increased to above 2 GeV/c, it is necessary to
consider the role played by the shower partons [22]. Both
the ridge and shower partons are effects of jets, the former
due to semihard partons, and the latter due to harder partons.
The transition from one to another is, of course, a continuous
one. Our recombination model was formulated in [22] at a
time before the ridges were discovered. In that model the three
types of recombination are TT, TS, and SS, where no ridges are
considered in the thermal partons. We now realize, as discussed
in the preceding section, that the thermal distribution is B + R,
since semihard scattering is always present. The only effect of
this realization is just to relabel T in previous work by T ′
now, as its value is determined from data. As we proceed to
consider TS recombination in this section, it is T ′ that we shall
use for the thermal partons. The condition of φ ∈ R in Eq. (10)
for T ′ to be used is for TT recombination. Now for TS
recombination, there is a hard parton to generate the shower
parton. That hard parton may have any φ. Even if φ 	∈ R, the
energy loss of the hard parton can enhance the thermal partons

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08 p
T
=0.52 GeV/c

π
p

b̂

v 2

FIG. 5. Dependence of v2(pT , b) on b̂ = b/2RA at pT =
0.52 GeV/c for pion and proton. Data are from Ref. [7].
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near its trajectory, so the new T ′ can depend on b and φ,
characterizing the new ridge associated with hard parton. The
φ dependence of the thermal partons is different from that of
the shower partons. The latter is due to jet quenching of the
hard parton that depends on path length in the medium. This
change of the origin of the φ anisotropy, when TT dominance
is replaced by TS dominance at higher pT , is the basic cause
for the change of the nature of pT dependence of v2(pT ).

It should be noted that in other recombination models the
azimuthal anisotropy at intermediate and higher pT has been
studied already [18,19]. Our approach here is different in the
use of shower partons and in the inclusion of medium effect by
treating TS recombination, whereas earlier studies considered
fragmentation of hard partons as an additive component. The
effect of jet quenching alone on v2 for pT > 2 GeV/c in a
simple geometrical study of the φ dependence is known to be
too low [42].

A. Hard parton’s φ dependence

The shower parton distribution S
j

i (z) is the invariant
probability of finding a parton of type j with momentum
fraction z in a shower initiated by a hard parton of type i.
Its detail properties are described in Refs. [26,27], and its
application to TS recombination in central collisions averaged
over all φ is discussed in Ref. [22]. We now consider φ

dependence due to energy loss of the hard parton with varying
path length in the dense medium. Let us denote the distribution
of hard parton i emerging from the surface of the medium with
transverse momentum k at angle φ by

dNhard
i

kdk dy dφ

∣∣∣∣
y=0

= Fi(k, φ). (33)

Jet quenching degrades the hard-scattering momentum from
the value k′ at the point of scattering to the emerging
momentum k by an amount �k that depends on the path
length �(φ) in the medium. The maximum length, �max of
a straight line at angle φ that passes through the origin of the
almond-shaped overlap region in the transverse plane satisfies
the equation

(�max cos φ + b)2 + (�max sin φ)2 = 4R2
A. (34)

Thus with the definition �̂ = �max/2RA we have

�̂(b, φ) = −b̂ cos φ + (1 − b̂2 sin2 φ)1/2. (35)

This is a normalized path length that quantifies the dependence
on b and φ. Assuming that the energy loss is proportional to
the square root of the initiating parton momentum [19,43], we
write �k in the form

�k = ε(b)�̂(b, φ)
√

k′, (36)

where ε(b) is the energy-loss coefficient that may be given a
reasonable form [19]

ε(b) = ε0
1 − e−2(1−b̂)

1 − e−2
, (37)

since the density decreases with increasing b. The coefficient
ε0 is to be determined below.

In Ref. [22] we have found that the shower parton
distribution at mid-rapidity in a central heavy-ion collision
is given by

Sj (q) = ξ
∑

i

∫
dkkfi(k)Sj

i (q/k), (38)

where fi(k) is the distribution of hard partons i without nuclear
suppression and ξ = 0.07 is the suppression factor that is
necessary to fit the normalization of the pion spectrum at
intermediate pT by TS recombination and is in accord with
RAA being ∼0.2 at higher pT . We must now generalize Eq. (38)
to noncentral collision. When b > 0, there is φ dependence in
�k, given by Eq. (36). Instead of the suppression factor ξ , we
can describe the energy loss of the hard parton by shifting the
parton momentum and writing Sj (q) as

ξ
∑

i

∫
dk kfi(k)Sj

i

(q

k

)
=

∑
i

∫
dk kfi(k + �k)Sj

i

(q

k

)
(39)

at b = 0, and then generalize the RHS to b > 0 and endowing
it with a φ dependence through Eqs. (35) and (36). We note
that k is the momentum of the hard parton that emerges from
the medium, and q is the momentum of the parton j in the
shower, so k is to be integrated from the lower limit at q. The
momentum k′ = k + �k is that of parton i immediately after
hard scattering and before traversing the medium.

Writing Eq. (36) as k′ = k + ε�̂
√

k′, we can solve for
k′(k, b, φ), which, when substituted into fi(k′), yields a
function of k that is denoted by Fi(k, b, φ) in Eq. (33), i.e.,

fi(k
′(k, b, φ)) = 2πFi(k, b, φ), (40)

where Fi is defined per radian, while fi(k′) is integrated over
all φ. The distribution fi(k′) has a power-law behavior

fi(k
′) = a

(1 + k′/k0)β
, (41)

where the parameter a, k0 and β are given in Ref. [44] for a
variety of parton type i. Thus Fi(k, b, φ) can be written in the
form

Fi(k, b, φ) = 1

2π
fi(k)G(k, b, φ), (42)

where

G(k, b, φ) =
[

1 + �k(k, b, φ)

k + k0

]−β

. (43)

Keeping only the zeroth and second harmonics of the φ

dependence, we have

G(k, b, φ) = g0(k, b) + 2g2(k, b) cos 2φ, (44)

where g0 and g2 can be determined explicitly in terms of ε0

and b̂, beside k, as we shall show in Sec. IV C below.

B. TS+SS recombination

Having obtained the φ dependence of the hard parton
distribution per radian at the medium surface, Fi(k, b, φ), we
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can proceed to the shower partons for recombination with the
thermal partons. We have

Sj (q1, b, φ) =
∑

i

∫
dk kFi(k, b, φ)Sj

i (q1/k), (45)

Tj ′(q2, b, φ) = C(b)q2e
−q2/T̃

′(b,φ), (46)

dNTS
π (b)

pT dpT dφ
= 1

p3
T

∫ pT

0
dq2T (q2, b, φ)S(pT − q2, b, φ),

(47)

where the quark types j and j ′ are paired in appropriate ways
to form a pion of a specific charge; for example for π+, they are
ud̄ and d̄u. The pion recombination function has already been
taken into account in the derivation of Eq. (47) [22]. The values
of C(b) are given in Ref. [39]. The thermal parton distribution
T (q, b, φ) is B + R with a new inverse slope T̃ ′(b, φ) that
depends on b and φ because it is a measure of the enhanced
thermal partons in response to the hard parton with momentum
k and angle φ. Equation (47) should not be considered for pT <

2 GeV/c, since the validity of the formalism is questionable at
low pT and TS is dominated by TT recombination anyway.

Unlike the φ dependence at low pT where semi-hard partons
are restricted to φ ∈ R, now the hard parton can originate from
the interior of the medium and can be directed at any φ. The
thermal partons in the vicinity of the trajectory are enhanced
in proportion to the local medium density which is dependent
on b and φ. Since that density at fixed 0 < b̂ < 1 decreases
with increasing φ, we adopt the reasonable form

T̃ ′(b, φ) = T ′
(

1 + ab̂ cos φ

1 + 2ab̂/π

)
, (48)

whose average over 0 < φ < π/2 is the value T ′ = 0.3 GeV
used in Sec. III A. The size of the parameter a awaits revelation
by data on the ridge dependence on the trigger azimuthal angle,
about which there is preliminary supportive indication from
STAR. We shall use the provisional value a = 0.1 to carry out
the calculation in Sec. IV D.

For SS recombination it is important to recognize that only
one hard parton is involved and that the two shower partons are
from the same jet. Thus the formalism is the same as described
in Ref. [22], the only difference being the replacement of
ξfi(k)/2π by Fi(k, b, φ) for noncentral collision, i.e.,

dNSS
π (b)

pT dpT dφ
= 1

p3
T

∑
i

∫
dk kFi(k, b, φ)

×
∫ pT

0
dq{S, S}(q, k, pT ), (49)

where the curly brackets denote the symmetrization of the
leading parton momentum fractions z1 = q/k and z2 = (pT −
q)/k

{S, S}(q, k, pT ) = 1

2

[
S

j

i (z1) S
j ′
i

(
z2

1 − z1

)

+ S
j

i

(
z1

1 − z2

)
S

j ′
i (z2)

]
. (50)

As explained in Ref. [22], the last integral in Eq. (49)
is essentially the fragmentation function D(pT /k), so the
equation describes both recombination and fragmentation,
neither of which has φ dependence. Clearly, QNS cannot be
valid when the only φ dependence arises from the hard parton
distribution Fi(k, b, φ). Let us write the sum of Eqs. (47) and
(49) symbolically as

dN sh
π (b)

pT dpT dφ
= Fi(k, b, φ) ⊗ (T S + SS), (51)

where the superscript sh denotes distributions involving
shower partons.

C. Momentum shift

Before proceeding to the calculation of vπ
2 (pT , b), let us

first determine the normalization of the inclusive distribution
averaged over all φ. It follows from Eqs. (42), (44), and (51)
that

dN sh
π (b)

pT dpT

= 1

2π

∫ 2π

0
dφ

dN sh
π (b)

pT dpT dφ

= 1

2π
g0(k, b)fi(k) ⊗ (T S + SS), (52)

where the φ dependence in T is neglected, since this equation
will be used only for 0–10% centrality in this subsection. For
the TT component we take the average of B and B + R, and
get

dN th
π (b)

pT dpT

= 2

π

{(π

2
− �

)
Bπ (pT ) + � [Bπ (pT ) + Rπ (pT )]

}

= C2(b)

3π

{[π

2
− �(b)

]
e−ET (pT )/T + �(b)e−ET (pT )/T ′}

.

(53)

The sum of these two equations gives the total inclusive
pion distribution dNπ (b)/pT dpT . It is to be compared with the
data, labeled dN/2πpT dpT , where N refers to the number of
pions per event integrated over all φ. We have one parameter
in Eq. (52), which is ε0 in Eq. (37). It determines the scale
of momentum shift due to energy loss of the hard parton in
the medium, and enters Eq. (52) through g0(k, b). The larger
ε0 is, the smaller is g0(k, b) and the more suppressed is the
shower parton contribution. We determine ε0 by fitting the
normalization of the data for 0–10% centrality. Note that the
pT dependence is not adjustable, but the overall degree of
suppression of the shower component is adjustable, since ε0 is
not determined within our formalism. Fitting the normalization
at just one point (pT = 4.35 GeV/c) we obtain

ε0 = 0.55 GeV1/2. (54)

The rest of the pT distribution is shown by the solid line in
Fig. 6 in excellent agreement with the data [46] for

√
sNN =

200 GeV, the same set as used in [22].
Since we have obtained k′(k, b, φ) in terms of ε�̂ already, we

can determine the fractional shift �k/k, shown in Fig. 7, for
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FIG. 6. Fit of the π 0 distribution at one point, pT = 0.435 GeV/c,
by adjusting the energy loss coefficient ε0. The data are for 0–10%
centrality from Ref. [46].

three values of normalized impact parameter, b̂ = 0, 0.4, and
0.7, and three values of φ at 0, π/4, and π/2. They all decrease
with k roughly as 1/

√
k, as expected. There is, of course, no

dependence on φ when b̂ = 0. As b̂ increases, the nuclear
overlap region gets smaller, and �k/k becomes smaller. At
fixed b̂ > 0,�k/k is smaller at φ = 0 (in solid lines) than
at φ = π/2 (in dashed-dot lines) because the average path
length is shorter. Since β in Eq. (43) is around 8, G(k, b, φ)
can be quite small, if �k/k is not infinitesimal. We show in
Fig. 8 the harmonic components g0(k, b) and g2(k, b) defined
in Eq. (44) for b̂ = 0, 0.4, and 0.7. The φ dependence of
the hard parton is important because it gives the dominant
contribution to the hadronic v2. As b̂ increases g0(k, b)
increases rapidly, indicating less suppression. For the lines
showing g2(k, b), which are amplified by a factor of 10 in
Fig. 8, we see that their values are between 0.03 and 0.04,
relatively insensitive to k, and, of course, g2(k, 0) = 0. It is the
ratio g2(k, b)/g0(k, b) that sets the scale for v2 of hard partons.

D. v2 for pion

We are now ready to calculate vπ
2 (pT , b). For the contribu-

tion from the shower partons at intermediate pT we write out
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FIG. 7. (Color online) Factional momentum shift for various
normalized impact parameter b̂ = b/2RA and φ.
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FIG. 8. (Color online) The functions g0(k, b) and g2(k, b) for
some typical values of b̂.

Eq. (51) fully as

dN sh
π

pT dpT dφ
= 1

p3
T

∑
i

∫ ∞

3
dk kFi(k, b, φ)

×
∫ pT

0
dq

[
C(b)qe−q/T̃ ′(b,φ)S

j

i

(
pT − q

k

)

+
{
S

j

i

(q

k

)
, S

j ′
i

(
pT − q

k − q

)}]
. (55)

Putting this in Eq. (6) and using Eqs. (42), (44), and (48)
for the φ dependences, we perform the integrations over φ

first, and then over q and k. The result is vπ
2 (pT , b) for pT >

3 GeV/c. That is shown in Fig. 9 for the high ET portion in
that figure. We note that the effect of φ dependence of T̃ ′(b, φ)
on the magnitude of v

π,sh
2 (pT , b) in the high ET region is only

about 10%. Thus the main contribution to v
π,sh
2 (pT , b) comes

from the φ dependence of Fi(k, b, φ) for the hard parton in
Eq. (55), not from that of the thermal parton T in Eq. (51).
If we neglected the φ dependence of T̃ ′(b, φ) in Eq. (55), we
would have a simple formula in closed form

v
π,sh
2 (pT , b) = g2(k, b)fi(k) ⊗ (T S + SS)

g0(k, b)fi(k) ⊗ (T S + SS)
, (56)
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E
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FIG. 9. (Color online) vπ
2 for a wide range of ET . The small

symbols are the same as those in Fig. 1; the larger symbols (in green)
are preliminary data from [47].
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which offers a succinct exhibit of all the important factors for
the main contribution to v2 from the hard parton at high ET .

For the low pT part the contribution from thermal partons
is what we obtained in Sec. III A, which we can write out
explicitly from Eqs. (7) and (20)

v
π,th
2 (pT , b) = sin 2�(b)

π/[eET (pT )/T ′′
π −1] + 2�(b)

. (57)

The result has been shown in Fig. 1, and is shown again in
Fig. 9 for ET < 1 GeV.

The high and low ET regions should be connected by an
interpolating function that spans the two regions. That function
should depend on the relative weight of the pT distributions
given in Eqs. (52) and (53). For notational brevity let us
use TT to denote dN th

π (b)/pT dpT , and TS + SS to denote
dN sh

π (b)/pT dpT , which is the average of Eq. (55) over 2π

of φ. During the interpolation procedure that equation should
not be used for pT too small. To ensure that, we cut it off by
hand by inserting a cut-off function, 1 − exp(−0.1p3

T ), which
decreases from ∼1 to ∼0 as pT is decreased from 3 to 1 GeV/c.
This damping factor has been used in Fig. 6. We construct the
weight function

W (pT , b) = TT
TT + TS + SS

, (58)

in terms of which we define the overall vπ
2 by

vπ
2 (pT , b) = v

π,th
2 (pT , b)W (pT , b)

+v
π,sh
2 (pT , b) [1 − W (pT , b)] . (59)

Our calculated results for vπ
2 (pT , b) are shown in Fig. 9 in

terms of ET for 0 < ET < 5 GeV at various values of b in
fm, chosen to correspond to the centralities 0–5%, 5–10%,
10–20%, 20–30%, etc., as in Fig. 1, with ĉ being approximately
b̂2. It is evident that in all cases vπ

2 increases at low ET

and decreases at high ET , reflecting the different mechanisms
responsible for φ anisotropy.

The data for ET < 1 GeV in small symbols are from
Ref. [7] already shown in Fig. 1. For ET > 1 GeV we show
the data from Ref. [47] for three centrality bins: 0–5%, 5–10%,
40–60%; they are indicated by large symbols. The first ones
(0–5%) in large open circles correspond to b = 2.3 fm; the
next (5–10%) in large filled circles correspond to b = 4.2 fm.
The agreement with our results are good. There are no more
centrality bins in Ref. [47] that correspond to what we have
calculated. We show only 40–60% in large triangles, which
correspond to b = 10.2–11.3 fm among our calculated curves.
On the whole our result reproduces the data quite well.

E. v2 for proton

For proton production we consider TTT, TTS, and TSS
recombination, leaving out SSS which is not important unless
pT > 8 GeV/c. The complication of three-quark recombina-
tion has been treated in Ref. [22] already; it does not affect
the calculation of v2, since hadronization occurs after jet
quenching as we have seen in the pion case. Thus we proceed
as before using Eq. (7) for v

π,th
2 (pT , b) for pT < 1 GeV/c with

appropriate Bp(pT , b)/Rp(pT , b) discussed in Sec. III B. At

intermediate pT we generalize Eq. (51) by including one more
thermal parton, i.e.,

dN sh
p (b)

pT dpT dφ
= Fi(k, b, φ) ⊗ (T T S + T SS). (60)

When written out in full, it looks like Eq. (55) but with an
extra factor, T (q1, b, φ), attached to each of the two terms in
Eq. (55). For those thermal partons we use Eqs. (46) and (48),
except that T ′ in Eq. (48) has a b dependence, given in Eq. (29).
The calculation of v

p,sh
2 (pT , b) can then be carried out as

before, but with an extra integration over q1. Although there
is no analytical formula for the result of that calculation, a
simplified form that neglects the φ dependence of T̃ ′(b, φ) is

v
p,sh
2 (pT , b) = g2(k, b)fi(k) ⊗ (T T S + T SS)

g0(k, b)fi(k) ⊗ (T T S + T SS)
, (61)

which is the counter part of Eq. (56). The quantitative results
shown below is, however, from the full calculation.

The overall v
p

2 (pT , b) for all pT region again involves a
weighted average

v
p

2 (pT , b) = v
p,th
2 (pT , b)W (pT , b)

+v
p,sh
2 (pT , b) [1 − W (pT , b)] , (62)

where the corresponding weight function is

W (pT , b) = TTT
TTT + TTS + TSS

. (63)

For TTT we have

dN th
p

pT dpT

= 2Ap2
T

πmT

[(π

2
− �

)
e−ET (pT )/T + �e−ET (pT )/T ′]

,

(64)

while for TTS and TSS we have

dN sh
p

pT dpT

= 1

2π

∑
i

∫
dk kfi(k)g0(k)

×
∫

dq1dq2 (T T S + T SS) , (65)

where the average T over φ is used, which means setting
T̃ ′(b, φ) = T ′(b).

The result on v
p

2 (ET , b) is shown in Fig. 10. The curves
exhibit similar patterns as those for vπ

2 (ET , b), but are gener-
ally higher, and persist to rise at high b when ET < 1.5 GeV.
Although the φ dependence of the hard parton is the same for
π or p, the thermal partons are not the same for the two cases.
Since two thermal partons can participate in the formation of
proton, the φ dependence of T̃ ′(b, φ) plays a larger role in
v

p,sh
2 (pT , b) than in v

π,sh
2 (pT , b). The data in the higher ET

region are shown by the same symbols as in Fig. 9. For 0–5 %
and 5–10% centralities the data are from Ref. [47] for p + p̄.
However, for 40–60% centrality the data in [47] for p + p̄

differ significantly from the data in [48] for p alone. It is the
latter in large triangles that we show in Fig. 10. We include
in that figure also the STAR data [8] at 62.4 GeV for p + p̄

at 10–40% centrality that agree well with our dotted line for
20–30%. For all the centralities shown the data are in general
accord with our results.
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FIG. 10. (Color online) v
p

2 for a wide range of ET . The small
symbols are the same as those in Fig. 4. The larger symbols (in green)
are preliminary PHENIX data [47] for centralities 0–5% (open circle),
5–10% (full circle), and 40–60% (triangle). The STAR data are for
10–40% (blue square) at

√
sNN = 62.4 GeV [8].

To summarize this long section we point out first that there
is only one free parameter ε0 used to determine the medium
suppression of hard parton by fitting the pion distribution at one
point, pT = 4.35 GeV/c in Fig. 6. The parameter ε0 replaces
the suppression factor ξ used earlier [22] for central collision
only without considering explicitly the issue of energy loss.
The shape of the pT distribution in Fig. 6 is calculated. The
path length dependence of jet quenching introduces the φ

dependence at high pT that is the main source of elliptic flow.
The characteristics of vh

2 (ET , b) for h = π and p in Figs. 9
and 10 are determined without any more adjustable parameter.
Although there are some minor discrepancies between our
results and the v2 data, on the whole we have been able to
reproduce the data very well.

V. BREAKING OF QUARK NUMBER SCALING

In the naive application of the recombination model there
is quark number scaling (QNS) of v2, which may be stated
as the universality of vh

2 (pT /nq)/nq where nq is the number
of constituent quarks in the hadron h [20,45]. The simple
argument used is based on the factorizability of the distribution
of the quarks that recombine, and on the simplification
of the recombination function to the form that contains
δ(qj − pT /nq) for each of those quarks. There are also other
considerations for the origin of QNS [49]. Experimental veri-
fication of QNS has evolved to the replacement of pT by ET

with impressive confirmation of the scaling behavior [8–12],
at least at low ET /nq . Since it is known that fragmentation
is more important than recombination at very high pT (or in
very peripheral collisions), QNS should break down at some
point [18,19]. The question is at what point. We show here
that it occurs rather early, even when TS recombination is
still dominant. In fact, at even lower pT where TT and TTT
recombination are more important, QNS is not valid in general
for specific centralities, as discussed in Sec. III B. However,
averaging over all centralities leads to approximate QNS, in
agreement with minimum bias data [8,9,11,12].

The breaking of QNS is due mainly to the breaking of
factorization of joint parton distribution, which, if true, would
have the form

Fnq

(
q1, φ1; · · · ; qnq

, φnq

)
=

nq∏
i=1

Fi(qi, φi) =
nq∏
i=1

Fi(qi)
(
1 + 2vi

2(qi) cos 2φi

)
. (66)

From this follows

vh
2 (pT ) � nqv

q

2 (pT /nq) (67)

for qi = pT /nq . For pion at low pT the factorization of qq̄

distribution is reasonable, and that is how Eqs. (11) and
(12) are obtained at all centralities. For proton at low pT

the factorization of uud distribution becomes questionable
for noncentral and peripheral collisions, the consequence of
which is that the inverse slope for proton differs from that of
the single inclusive u (or d) quark. Instead of investigating
the nonfactoriable form of Fuud (q1, q2, q3), we have adopted
in Sec. III B phenomenological form for the average of
Bp(pT ) + Rp(pT , φ) over all φ with T ′p given in Eq. (29)
and shown in Fig. 3. That results in the centrality dependence
of T ′′

p given in Eq. (31). Since T ′′
π is constant for all c at the

value specified in Eq. (18), vh
2 (pT , b), as given by Eq. (8), has

initial ET dependences that are different for pion and proton, as
expressed explicitly in Eqs. (22) and (32), except at one point
of cross-over that occurs at a centrality roughly equivalent to
minimum bias.

At intermediate pT where the contribution from shower
partons is important, the φ dependence comes mainly from
Fi(k, b, φ) for the hard parton in Eq. (51) for pion and
Eq. (60) for proton. Thus the corresponding vh

2 (pT , b) for
h = π and p are given primarily by Eqs. (56) and (61) that have
the same structure, the common factors of importance being
g2(k, b) in the numerators and g0(k, b) in the denominators.
The significance of g2(k, b)/g0(k, b) being the major factor for
both vπ

2 and v
p

2 immediately implies that

1

2
vπ

2 (ET /2, b) >
1

3
v

p

2 (ET /3, b) (68)

at intermediate ET for all b. However, when the φ dependence
in T in those two equations is taken into account, the results on
v

h,sh
2 are enhanced more for proton than for pion. That makes

the inequality in Eq. (68) less unbalanced. Nevertheless, QNS
is broken because not all partons contribute equally to the
azimuthal anisotropy, even though both hadrons are formed
by recombination.

Since Figs. 9 and 10 exhibit all properties of vπ
2 (ET , b)

and v
p

2 (ET , b) that we have obtained, we can calculate
vπ

2 (ET /2, b)/2 and v
p

2 (ET /3, b)/3 and show their differences
for four centralities in Fig. 11. Although the pion (dashed) and
proton (dashed-dotted) lines start out with similar slopes at low
ET , they separate at higher ET , the former being consistently
higher than the latter. The data that support QNS are for
minimum bias and at low ET where the theoretical lines are in
agreement with the data at all four centralities. The breaking
of QNS becomes visibly clear at ET /nq > 0.5 GeV, and is
discernible even in the minimum bias data of Ref. [8].
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FIG. 11. Scaled v2 for pion, proton and u quark. For the u quark
the thermal v2 is plotted at low ET , changing to shower v2 at high
ET . The data points are scaled from those in Figs. 1 (open circles)
and 4 (filled circles) from [7]. At higher ET /nq only minimum bias
data are available, not suitable for display here.

The reasons for plotting vh
2 (ET /nq)/nq are not only to

check QNS, but also to give a hint of the elliptic flow of
the recombining quarks, if QNS were valid. We can calculate
v

q

2 (ET , b) for quarks theoretically before recombination. At
low ET Eq. (7) is valid for quarks also, with Bq(q)/Rq(q)
being given by Eq. (20). For ET we use the constituent quark
mass, which we take to be 0.3 GeV. The resulting v

q

2 (ET , b)
may be regarded as reliable for ET <∼ 0.7 GeV. For higher ET

we recall Eqs. (51) and (56) for pions. The structure for quarks
is similar, except that there is no recombination. Thus for a
quark of type j in the shower we have

dN sh
j (b)

qdqdφ
=

∑
i

∫
dk kFi(k, b, φ)Sj

i (q/k), (69)

v
j,sh
2 (q, b) =

∫
dk kg2(k, b)

∑
i fi(k)Sj

i (q/k)∫
dk kg0(k, b)

∑
i fi(k)Sj

i (q/k)
. (70)

These equations are for shower partons with momentum q not
too low. The lower bound for their validity may be set at q ∼
1.5–2.0 GeV/c. For illustrative purpose we consider u quark
for definiteness. For each centrality in Fig. 11 we show vu

2 (q, b)
for the two regions: thermal quark for ET < 0.7 and shower
quark for ET > 1.5 GeV; in between we simply connect the
two by a smooth interpolating curve without mathematical
significance. The physical significance of vu

2 (ET , b) shown is
that it is arising function of ET at low ET and a gently falling
function at higher ET , characterizing the thermal and shower
partons, respectively.

It is now evident from Fig. 11 that the three curves for u, π

and p for each centrality are distinctly different. From central
to midcentral collisions up to 40% centrality the difference
between π and p curves may not be large enough for the
present data on v2 to discriminate. There is some evidence for
QNS breaking at ET /nq > 0.5 GeV in the minimum bias data
for π and p [13]. They are for

√
sNN = 62.4 GeV. Roughly,

the pion data are above the proton data, as in Fig. 11. Current
experimental efforts have largely been to make corrections
due to fluctuations in eccentricity in order to achieve QNS.

Our suggestion is to focus on individual centrality bins and
quantify the breaking of QNS.

The results shown in Fig. 11 are from extensive and detailed
calculation. It would be helpful if the quantitative difference
between the two vh

2 behaviors for pion and proton can be
explained in simple terms, albeit inexact and schematic. To that
end let us assume dominance of TS and TTS recombination
for ET /nq >∼ 1 GeV and write

vπ
2 = 〈cos 2φ〉TS, v

p

2 = 〈cos 2φ〉TTS. (71)

If the contribution to v2 from thermal and shower partons
are expressed as vT

2 and vS
2 , respectively, then we have

approximately

vπ
2 � vT

2 + vS
2 , v

p

2 � 2vT
2 + vS

2 , (72)

where the momenta of the quarks are not shown explicitly
because they are complicated to express. Unlike the naive
description given in Eq. (67), the thermal parton momentum
is smaller compared to the shower parton momentum because
the distribution of the former is damped exponentially while
that of the latter is power suppressed. Furthermore, even if
the quark momentum is q = pT /nq , we have vT

2 (q) < vS
2 (q)

because of the difference in the φ dependence in T and S. That
inequality becomes more unequal when smaller q is used in
vT

2 (q) and larger q in vS
2 (q). Thus roughly we have at some

fixed ET > 2 GeV

vπ
2 (ET )

v
p

2 (3ET /2)
� 2 + δ

3 + δ
>

2

3
, (73)

where

δ = vS
2 (q+)/vT

2 (q−) − 1 > 0, q± >< ET /2. (74)

It is now clear that at the very basic level the breaking of
QNS is due to the nonequivalence of the φ dependences of
thermal and shower partons. Experimental verification of the
QNS breaking can therefore render an indirect support for
the recombination mechanism involving thermal and shower
partons, as we have described.

VI. CONCLUSION

At
√

sNN = 200 GeV the density of partons with mo-
mentum fraction x >∼ 0.03 is high, and their scattering into
kT >∼ 3 GeV/c can readily occur in a heavy-ion collision.
Thus the formation of ridges due to weak jets is an aspect
of the event structure that is pervasive, and should be taken
into account in the study of φ distribution. Hydrodynamical
expansion of the dense medium undoubtedly takes place,
but there is no requirement from any fundamental principle
that the thermodynamical description must be valid within
1 fm/c after collision. With semihard scattering driving the
azimuthal anisotropy, fast equilibration need not take place,
but hydrodynamics can still have its realistic application at
later time. Short time-scale physics implies hard or semihard
processes by uncertainty principle, and it is not the proper
domain of equilibrium physics. We have demonstrated in this
study that the observed features of elliptic flow are on the whole
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reproduced by ridge consideration at low pT and thermal-
shower recombination at intermediate pT . The validity of
hydrodynamics at late time is implicitly incorporated in
our approach when the bulk parton distribution is taken to
be thermal, i.e., exponential before hadronization. How to
combine semihard scattering and hydrodynamical expansion
is a time-evolution problem worthy of careful investigation.

Although we have used recombination in all pT regions, we
have shown that quark number scaling is not generally valid.
At low ET it is approximately valid because the partons that
recombine are mostly multiplicative, each having roughly the
same v2. At intermediate ET the thermal and shower partons
contribute to v2 differently, so the mechanism that gives rise
to QNS is lost.

Since rapid thermalization is not required in this study, the
partons in the dense medium need not interact more strongly
than in the usual formulation of QCD. Viscosity need not be
low, since hydrodynamical calculation should be redone with
different initial conditions. No where in this study suggests
that the medium created in heavy-ion collisions behaves as
perfect fluid.
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APPENDIX: ANGULAR DISTRIBUTION OF RIDGE
PARTICLES

We describe in this appendix the subprocesses involved
that lead to the distribution of particles in the ridges. The
subject of correlation that depends on the trigger direction is
outside the scope of the present problem, and will be described
separately in [35]. Our interest here on the single-particle
inclusive distribution is less complicated; however, it does
require an integration over all angles of the semihard partons
that generate the ridges. Thus some aspect of the correlation
problem will be adopted here from [35]. Since the problem of
angular correlation does not depend critically on the magnitude
of pT , we suppress the pT variable in this appendix until the
very end where contact with the main text is to be made.

It is important to recognize two time scales in this problem:
one is the semihard scattering at early time that is sensitive
to the initial configuration of the system, and the other is
the hadronization process at later time for which the elliptic
geometry is more relevant. For the former the almond-shaped
region is bounded by two circular arcs of radius RA with
centers at x = ±b/2, y = 0, where the (x, y) coordinates are
centered at the origin of the almond with the x-axis on the
short side and in the reaction plane. We refer to it as the A

geometry. In this appendix we normalize all lengths by RA, so
the radii are 1. For the latter the ellipse is defined by( x

w

)2
+

(y

h

)2
= u, (A1)

where w = 1 − b/2, h = [1 − (b/2)2]1/2, and u = 1 at initial
time. We refer to this as the E geometry. We assume that,
as the dense system expands, we need only let u increase in
using (A1) to describe the boundary of the system. The vector
normal to the surface at any point (x, y) is the gradient of u,
whose azimuthal angle is

ψ(x, y) = tan−1

[(w

h

)2 y

x

]
. (A2)

It specifies the direction of local flow.
Semihard scattering can occur at any point inside the

almond. Let it be labeled by P whose coordinates in the
A geometry are (x, y). Limiting ourselves to only the 2D
transverse plane on the basis that all particles detected in the
final state are in a narrow rapidity bin at η = 0, we consider
one of the created semihard partons moving in a direction
at azimuthal angle φs toward the boundary, away from the
interior. Let t be the distance between P and the boundary
measured along the trajectory of the parton. Because of energy
loss to the medium, t cannot be too large if the parton is
to emerge and give rise to a ridge in addition to a trigger
particle. In [35] a distribution in t is considered with parameters
determined by phenomenology. For our purpose here that is
more illustrative than data fitting, we adopt the discrete average
value of t = 0.1. That is, we assume that all semihard partons
are created along the inner circles of radius r0 = 0.9 from
either center in the A geometry. Let us refer to the locus of
those points as the rim. Thus P is a point on the rim, and can
be specified by the angle θ measured from the pertinent center.
For definiteness, we consider the right half of the almond rim,
so θ varies from −�0 to +�0, where �0 = cos−1(b/2r0).
Recoil partons that move toward the interior, as well as those
that are created there, are totally absorbed and contribute to
the bulk. High momentum jets can get out in any direction, but
they are rare and do not contribute to the ridge particles that
can influence the azimuthal anisotropy.

The process of energy loss to the medium by the semihard
parton cannot be calculated reliably. In [35] successive soft
emission with probability proportional to the local density is
modeled with correlation to the jet trajectory. Conversion of
the lost energy to the enhancement of thermal partons, which
subsequently hadronize to form ridge particles, is also hard to
treat rigorously. It is, however, reasonable to assume that for
every semi-hard parton at φs there is a corresponding cluster of
ridge particles in φ that has a Gaussian distribution around φs .
This is essentially a description of what has been observed
in ridge phenomenology [24], where the trigger direction
takes the place of φs here. More specifically, we consider the
correlation function

C(x, y, φ, φs) = D(x, y)G(φ, φs), (A3)

where

G(φ, φs) = exp[−(φ − φs)
2/2λ], (A4)

D(x, y) = TA(s)[1 − e−σTB (|s−b|)]
+ TB (|s − b|)[1 − e−σTA(s)]. (A5)

The last quantity D(x, y) is the local nuclear density at (x, y),
related in the Glauber model to the thickness function TA(s)
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and pp inelastic cross section σ in the conventional way
that will not be detailed here. We are not concerned with
the overall normalization because the aim of this appendix
is to derive the φ dependence of the collected ridge particles
generated by semihard partons at all points along the rim,
and the normalizations of the ridge versus bulk are considered
along with the pT dependence in Sec. III. The parameter λ

in Eq. (A4) is found in [35] to be 0.11, which we use in the
following. It corresponds to a half-width of about 20◦.

The semihard parton is scattered to an angle φs randomly, so
the inclusive distribution of the ridge particles without trigger
must average over all φs . This should be done for each point P
on the rim. A mathematically simple and physically reasonable
approximation of the result of that averaging is that the average
direction of the ridge particle, φ̄, is normal to the surface,
since that is the only direction in the problem. That is the
approximation used in [23], where only the A geometry is
considered. Here we treat the problem more quantitatively by
averaging over φs at each (x, y) point and then integrating
over all points along the rim. Furthermore, we improve the
calculation by using E geometry, since hadrons are formed
later when the system develops elliptical shape and they follow
the direction of the local flow. Although G(φ, φs) in Eq. (A4)
makes no reference to the system shape, the averaging process
is sensitive to it. That is shown explicitly as follows:

dN

dφ
(x, y) = 1

2

∫ ψ(x,y)+1

ψ(x,y)−1
dφsC(x, y, φ, φs), (A6)

where the range of integration is ±1 around the normal to the
elliptic surface ψ(x, y), given in Eq. (A2), which specifies
the direction of flow at (x, y) near that surface. We have
considered wider range, but the difference from the above
is negligible. The averaging in (A6) accounts for the semihard
partons that move toward the surface and emerge from it. The
difference between the surfaces in the A and E geometries
becomes significant, when P is near the tips of the almond
region. However, the density is lower there, so the effect of the
difference on the yield is not prominent.

To see the results at various points on the rim, we show
in Fig. 12(a) the azimuthal distribution of the ridge particles
for b = 0.6 created by semihard partons, originated at three
illustrative points, whose azimuthal angles, measured from
the center of the right half of the rim, are denoted by θ ,
where θ = tan−1[y/(x + b/2)]. The thin solid line exhibits
the shape of G(φ, φs) for φs = 0. The thicker solid line shows
dN(x, y)/dφ for θ = 0. Evidently, the averaging process
widens the φ distribution, since jets at any angle in the range
0 < |φs | < 1 can contribute. The other two curves in that
figure show the contribution from points at θ = 25◦ (dashed)
and 50◦ (dash-dotted). Their peaks are lower because of the
D(x, y) factor in Eq. (A3) and are centered around φ = θ .
The experimental detector cannot distinguish the different
points of semi-hard scattering, so we must integrate over
all θ

dN

dφ
(b) =

∫ �0(b)

−�0(b)
dθ

dN

dφ
(θ (x, y)) . (A7)

FIG. 12. (Color online) (a) Azimuthal distributions of ridge
particles due to semihard partons created at three points on the
rim at θ = 0◦ (solid), θ = 25◦ (dashed), and θ = 50◦ (dash-dotted)
for b = 0.6RA. Thin solid line is the Gaussian correlation function
G(φ, φs) for φs = 0◦. (b) Azimuthal distributions of ridge particles
after integration over all points on the rim. b is labeled in unit of RA.

The result for b = 0.6 is shown in Fig. 12(b). We note that
the long tail on either side extends well beyond φ = ±90◦. It
is a consequence of the E geometry that we have used, since
the normal to the ellipse near the top can be ψ ≈ π/2. Thus
at the tip of the rim hadrons formed from semihard partons
on the two sides of the rim can overlap, resulting in doubling
the value of dN/dφ|φ=π/2 that is calculated from Eq. (A7),
which integrates only the contribution from the right side of the
rim.

In Fig. 13 we show the φ distribution s for four values of b in
the range −π/2 � φ � π/2. In each panel the main contribution
(in dashed line) comes from the right side of the rim where
θ is between −�0(b) and +�0(b) as seen in Eq. (A7).
The dashed-dotted lines show the contributions from the
left side of the rim—from θ > π − �0(b) as well from
θ < π + �0(b) measured from the center of the left half
of the rim. The sum is shown in solid (black) line. We
have checked that at b = 0 the distribution is absolutely
flat, as it should be. The normalization will be discussed
presently.

For the purpose of rendering simple mathematics and
transparent physics for the determination of v2(pT ) in
Secs. II and III, we now approximate dN

dφ
(b) shown in Fig. 13

by step function shown in solid straight (red) line, whose
width is given by Eqs. (1) and (2). The values of �(b) for
b = 0.3, 0.6, 0.9, and 1.2 are 81.4◦, 72.5◦, 63.3◦, and 53.1◦,
respectively. The height of each inverted box is determined
by matching the area under the box with the area under
the calculated ridge curve, which follows from Eqs. (A3)
through (A7). We have given those equations arbitrary overall
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FIG. 13. (Color online) Azimuthal dependences of ridge particles
for b = 0.3, 0.6, 0.9 and 1.2 in units of RA. Solid (black) line is the
sum of the contributions from the right-side rim (dashed line) and
the left-side rim (dash-dotted line). Straight (red) line is the box
approximation with width at |φ| = �(b). Vertical scale is adjusted
such that the box height for b = 0.6 is 1; scales for all other panels
are not readjusted.

normalization because the true normalization of the ridge
distribution, R(pT , φ), involves the consideration of pT

dependence, which is discussed in Sec. III. In Fig. 13 we
have adjusted the vertical scale so that the height of the box
approximation for b = 0.6 is 1. The relative heights among
the different panels of that figure are not adjustable. Thus
Fig. 13 exhibits clearly the comparison between the results
of the calculation of the φ dependence and the box approxi-
mations for various values of b, showing that the heights of
the boxes remain essentially the same and that the widths
specified by �(b) summarize the effective dependence on
centrality. In the lower-right panel of Fig. 13 for b = 1.2 the
two wings of the yield curve extend considerably beyond the
box because of the difference between the A and E geometries
when φ is near π/2. The rapid descends of the wings are
acceptably represented by the narrowing of the width of the
box.

Although details in each subprocess considered in this
appendix can be made more elaborate with more parameters,
the general property of the outcome is clear and cannot
deviate too much from what is shown in Fig. 13. The box
approximation given in Eq. (4) captures the essence of the φ

dependence of the ridge yield, R(pT , φ), and facilitates the
derivation of the very simple, analytic formula, Eq. (18), for
v2(pT , φ).
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