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Application of a temperature-dependent liquid-drop model to dynamical Langevin calculations of
fission-fragment distributions of excited nuclei
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A stochastic approach to fission dynamics based on three-dimensional Langevin equations was applied to
calculation of the mass-energy and angular distributions of fission fragments. The dependence of the mass-energy
distribution parameters on the angular momentum and the anisotropy of the fission-fragment angular distribution
on excitation energy have been studied in a wide range of the fissility parameter. A temperature-dependent
finite-range liquid-drop model was used in a consistent way to calculate the functional of the Helmholtz free
energy and level-density parameter. The modified one-body mechanism of nuclear dissipation (the so-called
surface-plus-window dissipation) was used to determine the dissipative forces in Langevin equations. The
evaporation of light prescission particles was taken into account on the basis of a statistical model combined with
Langevin dynamics. The calculated parameters of the mass-energy distribution and their angular dependencies
are in good quantitative agreement with the available experimental data at the value of the reduction coefficient
of the contribution from the wall formula equal to 0.25. Analysis of the anisotropy of the fission-fragment
angular distribution performed with the saddle-point transition state model and scission-point transition state
model indicates that it is necessary to take into account the dynamical aspects of the fission-fragment angular
distribution formation.
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I. INTRODUCTION

Formation of the fission-fragment distributions is a very
complicated process. To describe theoretically this process
one must solve several important problems. For instance,
one has to decide how shell structure is reorganized with
excitation energy and deformation and how to relate collective
and internal degrees of freedom of nucleus. The later relation
is often treated and modeled as a nuclear viscosity. For a
nucleus with a high excitation energy the situation simplifies.
Theoretical investigations [1,2] and experimental analysis
of the fission-fragment mass-energy distribution at low and
medium excitation energies [3] demonstrated that the shell
effects can be neglected for nucleus with excitation energy
above 50 MeV, so the nucleus can be considered as a charged
liquid drop.

The liquid-drop model (LDM) predicts the symmetric
energy and mass distributions of fission fragments for hot
heavy nuclei [4,5]. The theoretical assumption on predomi-
nantly symmetric fission of hot nuclei is confirmed by many
experiments [3,6]. The compound nuclei formed in heavy-ion
fusion reactions can have an angular momentum l in a large
interval from 0 to lmax, where lmax is angular momentum at
which fission barrier of the nucleus is vanished. Therefore,
the question about the influence of angular momentum on
the characteristics of the mass-energy distribution (MED) of
fission fragments is very important for the investigation in
fusion-fission reactions.

The finite-range LDM based on the Yukawa-plus-
exponential potential was formulated and developed at the
end of the 1970s in pioneering works [7–9]. During the last
two decades it has been extensively and rather successfully
employed to calculate various properties of nuclei [10–13].

However, it should be stressed that the most part of applications
of the finite-range LDM is restricted to nuclei at zero
temperature. For this case, a standard set of data consisting
of all empirically known ground-state binding energies and
fission barrier heights (corrected for shell and deformation
effects), some fusion barrier heights, equivalent shape radii,
and the average charge diffuseness are used for fitting the
parameters of the finite-range LDM providing high accuracy
in nuclear structure calculations [10,11,13]. Obviously, such
an experimental information does not exist for hot nuclei.
Therefore, one has to rely on some theoretical approach,
for instance, the extended temperature-dependent Thomas-
Fermi calculations [14]. A few years ago the finite-rage
LDM based on the Yukawa-plus-exponential potential has
been generalized by Krappe [15] to describe the temperature
dependence of the nuclear free energy. This dependence is
obtained by fitting the results of the former temperature-
dependent Thomas-Fermi calculations [16] with a finite-range
mass formula.

Experimental investigations of the MED dependence on l

were carried out more than 10 years ago. Obtained results
are summarized in works of Itkis, Rusanov, Chubaryan, and
coworkers [17–19] for a wide range of fissility parameter.
The analysis of the mass distribution dependence on l has
shown that fissioning nuclei can be divided into two groups.
For the first group (Z2/A � 31) the variance of the mass
distribution σ 2

M increases as the angular momentum of the
compound nucleus becomes larger, i.e., dσ 2

M/dl2 > 0. For
the second group (light fissioning nuclei with Z2/A < 30)
the mass distribution variance decreases as the angular mo-
mentum increases, i.e., dσ 2

M/dl2 < 0. For the nuclei in the
range of fissility between these two cases, for example, Pt and
Os, dσ 2

M/dl2 � 0.
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The mean kinetic energy of fission fragments 〈EK〉 de-
pends slightly on l with maximum value for the dependence
coefficient d〈EK〉/dl2 = 0.3 keV/h̄2 [18,19]. The variance of
the kinetic energy distribution of fission fragments σ 2

EK
is

independent of the angular momentum for the light fissioning
nuclei, whereas for the medium and heavy nuclei the derivative
(dσ 2

EK
/dl2 > 0) is positive but small.

The theoretical aspects of the influence of the angular
momentum on the fission-fragment mass-energy distribution
were considered in many works (see Ref. [18] and references
therein). However, their results are often contradict each other
and investigations are performed for one or two compound
systems only. Nevertheless, we should mention here works of
Gregoire and Scheuter [20], Faber [21], and Glagola et al. [22].
In spite of the fact that the experimental data, sketched above,
were published more than 10 years ago, theoretical works
of Adeev et al. [23,24] are the ones of a few full-scale
investigations of the l dependence of the MED until our
recent and present works. The investigations of the MED
dependence on l made by Adeev with coworkers [23,24]
report qualitative agreement with conclusions of the above
summarized analysis of Itkis et al. [18,19]. Although the values
of the derivative dσ 2

M/dl2 are underestimated in comparison
with the experimental results [18,19], the main features of the
dσ 2

M/dl2 dependence on the fissility Z2/A are reproduced.
Many recent works have demonstrated the successful

application of the multidimensional Langevin equations to the
fission of excited compound nuclei formed in reactions in-
duced by heavy ions [25–31]. From the physical point of view,
the Langevin equations are equivalent to the Fokker-Planck
equation, which was widely used for modeling the fission of
excited nuclei in the framework of the diffusion model [23,24].
Particularly, the calculations of the MED characteristics by
Adeev et al. [23,24] were made by means of the Fokker-Planck
equation. The multidimensional Langevin equations are more
suitable for computer modeling. A very important feature
of our model based on the Langevin equations [25,26] is
the possibility to take into account particles evaporation via
combining the dynamical model with the statistical one, as it
was proposed by Mavlitov, Fröbrich, and Gontchar [32,33].
Thus, our combined dynamical-statistical model allows us
to describe the MED parameters with emission of the light
particles and γ quanta. This model allows one to estimate
temperature at scission more precisely, which, according to our
results, is very important in the case of the MED parameters
investigations.

We investigated in detail the l dependence of the mass
distribution in Ref. [34] and the dependence of dσ 2

M/dl2 on l

was considered in detail. In the present work we generalize
the former results and pay our attention mostly to the l

dependences of the MED parameters. We investigate also the
angular distribution of fission fragments within the standard
transition-state theory [35]. The essence of this model consists
in the assumption that there is a certain chosen (transition)
configuration of a fissioning system that determines the
angular distribution of fission fragments. Usually there are
two limiting assumptions on the position of the transition
state and, correspondingly, two variants of the transition-state
theory: the saddle-point transition-state (SPTS) [35] model

and the scission-point transition-state model (SCTS) [36]. In
addition to the angular distribution, the same assumptions are
often used in theoretical and experimental analysis of the MED
characteristics [19]. So our investigations were dealt with the
similar theoretical ideas about the process of formation of
various fission-fragment distributions.

The article is organized as follows: to make the article
self-contained we describe in Sec. II the model [26–29,34,37]
with some technical aspects and details. Section III is devoted
to the discussion of the calculated results and comparison with
available experimental data. Finally, in Sec. IV, the concluding
remarks are given.

II. THE MODEL

The three-dimensional Langevin model with input param-
eters has been presented and discussed in detail in previous
publications [26–29,34]; therefore, only the key features and
formulas are described here.

A. Dynamical Langevin equations

In the dynamical calculations we applied the {c, h, α}
parametrization [38]. In cylindrical coordinates the surface
of the nucleus is given by:

ρ2
s (z) =

{
(c2 − z2)

(
As + Bz2/c2 + αz

c

)
, B � 0;

(c2 − z2)
(
As + αz

c

)
exp(Bcz2), B < 0,

(1)

where z is the coordinate along the symmetry axis and ρs is
the radial coordinate of the nuclear surface. In Eq. (1) the
quantities B and As are defined by:

B = 2h + c − 1

2
;

(2)

As =
{

c−3 − B
5 , B � 0;

− 4
3

B

exp(Bc3)+
(

1+ 1
2Bc3

)√−πBc3erf(
√−Bc3)

, B < 0.

In Eqs. (1) and (2), c denotes the elongation parameter, the
parameter h describes the variation in the thickness of the
neck for a given elongation of the nucleus, and the parameter
of the mass asymmetry α determines the ratio of the volumes
of the future fission fragments.

The coupled Langevin equations have the form:

dqi

dt
= µijpj ,

(3)
dpi

dt
= −1

2
pjpk

∂µjk

∂qi

+ Qi − γijµjkpk + θij ξj (t) ,

where q is the vector of collective coordinates, p is the vector of
conjugate momenta, Qi is the driving force, mij (q) (‖µij‖ =
‖mij‖−1) is the tensor of inertia, and γij (q) is the friction
tensor. The normalized random variable ξj (t) is assumed
to be white noise. The strength of the random force θij

is given by
∑

θikθkj = T γij . The temperature of the “heat
bath” T is determined by the Fermi-gas model formula
T = [Eint/a(q)]1/2, where Eint is the internal excitation energy
of the nucleus and a(q) is the level-density parameter. It
is calculated in the framework of temperature-dependent
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finite-range liquid-drop model, formulated by Krappe [15].
The repeated indices in the equations above imply summation
over the collective coordinates. The method for calculation of
the level-density parameter a(q), the Helmholtz free energy
F (q), the potential energy of the nucleus V (q), and the driving
force Q(q), entering the Langevin equations (3) is considered
particularly in the next subsection.

In Ref. [27] we introduced a new mass-asymmetry param-
eter scaled with elongation α′ = αc3, which has the same
meaning as α. Hence, we used q = (c, h, α′) as collective
coordinates in our modeling. During a random walk along the
Langevin trajectory in the space of the collective coordinates,
the energy conservation law is used in the form E∗ = Eint +
Ecoll + V + Eevap(t). Here E∗ is the total excitation energy of
the nucleus, Ecoll = 1/2

∑
µijpipj is the kinetic energy of the

collective degrees of freedom, V is the potential energy of the
nucleus, and Eevap(t) is the energy carried away by evaporated
particles by the time t .

The inertia tensor is calculated by means of the Werner-
Wheeler approximation for incompressible irrotational flow
[39]. A modified one-body mechanism of nuclear dissipation
[40,41] is used to determine the dissipative part of the driving
forces. The expression applied to calculate the friction tensor
for the so-called surface-plus-window dissipation can be found
in our previous works [27,28]. We use the reduction coefficient
of the contribution from the wall formula equal to 0.25. This
value is very close to the one extracted from experimental
analysis [40] on the widths of giant resonances (0.27). Our
previous calculations [27,28] showed that the experimental
data on the mean prescission neutron multiplicities and MED
variances can be reproduced with the reduction coefficient in
the range 0.25–0.5.

We start modeling the fission process from the spherical
compound nucleus assuming that the intrinsic degrees of free-
dom are thermalized and the thermal equlibrium momentum
distribution is established. This choice of the initial conditions
means that we restrict ourselves to a situation where an
equilibrated compound nucleus has been formed in a heavy-ion
fusion reaction before the fission process starts. The most part
of the calculations were done for the fixed initial angular
momentum l. The fission fragment angular distribution was
investigated with the spin distribution dσ (l)/dl for heavy-ion
complete fusion. We have parameterized the compound nuclei
spin distribution dσ (l)/dl according to the scaled prescription
[42,43], which reproduces to a certain extent the dynamical
results of the surface friction model [44] for fusion of two
heavy ions.

Evaporation of the prescission light particles (j =
n, p, α, γ ) along the Langevin fission trajectories is taken into
account using a Monte Carlo simulation technique [32,42]. All
dimensional factors were recalculated when a light prescission
particle was evaporated; only dimensionless functionals of
the rotational, Coulomb, and nuclear energies were not
recalculated. This procedure provides a good accuracy in
calculating the potential and the Helmholtz free energies.
The loss of the angular momentum was taken into account
by assuming that the light particles carry away lj = 1, 1, 2, 1
[42]. In other words, we recalculate the potential energy, the
level-density parameter (see our previous work, Ref. [29], for

details) and the factors for the inertia and viscosity tensors after
each evaporation event. These computations are obligatory,
because the evaporation of light particles results in a change
of the nucleonic composition of the initial nucleus.

In the present work we studied few compound nuclei with
a rather low fissility (especially for the 162Yb nucleus). This
was possible only by switching over to a statistical model
description with a Kramers-type fission decay width after delay
time, when stationary flux over the saddle point is reached. This
procedure was first proposed in Ref. [32] and successfully used
in our previous works. Main features and formula can be found
in Ref. [34].

B. Generalized temperature-dependent finite-range
liquid-drop model

In the dynamical description of fission within Langevin
dynamics one of the important question is to determine the
driving force Qi , which governs the collective motion of
the nuclear system. As it was stressed by Fröbrich [45] and
McCalla and Lestone [46] the driving force of a hot system
is not a simply the negative gradient of the conservative
potential but should contain a thermodynamical correction.
This statement was proved clearly in Ref. [45]. Nevertheless,
there are several recent works that use bare potential energy
instead of some thermodynamic potential to calculate the
driving force of a hot nuclear system [31,47].

We employed a Helmholtz free energy calculated within
generalized temperature-dependent LDM with the finite range
of nuclear forces, formulated by Krappe [15] to get the
driving force for the hot nuclei. Here we introduce the no-
tion temperature-dependent finite-range LDM (temperature-
dependent FRLDM) in contrast to LDM [1,48].

The free Helmholtz energy in the temperature-dependent
FRLDM based on the Yukawa-plus-exponential mass formula
as a function of the mass number A = N + Z, relative
neutron excess I = (N − Z)/A, the temperature, the angular
momentum, and a set of collective coordinates q has been
suggested [15] in the following form:

F (A,Z, q, T , l)

= −av(1 − kvI
2)A + as(1 − ksI

2)Bn(q)A2/3 + c0A
0

+ ac

Z2

A1/3
Bc(q) − ac

5

4

(
3

2π

)2/3
Z4/3

A1/3
+ h̄2l(l + 1)

2J (q)
, (4)

where av, as , and ac are the usual volume, surface, and
Coulomb energy parameters of the temperature-dependent
FRLDM at zero temperature and kv and ks are the correspond-
ing volume and surface asymmetry parameters. The shape
functions in Eq. (4): Bn(q), Bc(q), and J (q) are the functionals
of the generalized nuclear energy, the Coulomb energy, and
the rigid-body moment of inertia, which takes into account the
diffuseness of a realistic nuclear density [49]. The last term
in Eq. (4) represents the rotational energy of the nucleus. The
functionals Bn(q), Bc(q), and J (q) take into account the finite
range of the nuclear forces and the diffusiness of nuclear matter
and charge distributions using the parameters a, aM , and ad ,
respectively.
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Equations for Bn(q), Bc(q) can be found in Ref. [34]. The
rigid-body moment of inertia J (q) is defined as follows [10]:

J (q) = J0

[
Jmax + 10

(
aM

R0

)2
]

, (5)

where J0 = 2
5M0R

2
0 is the rigid-body moment of inertia for

the spherical nucleus with the mass M0 = m0A and R0 =
r0A

1/3 is the radius of the spherical nucleus. The diffuseness
parameter for matter distribution aM is assumed to be equal
to the diffuseness parameter of the charge distribution, i.e.,
aM = ad [10].

Jmax =
{

J⊥, if J⊥ > J‖,

J‖, if J⊥ < J‖,
(6)

where J‖ = 15
16

∫ zmax

zmin
dz ρ4

s , J⊥ = 15
32

∫ zmax

zmin
dz ρ2

s (4z2 + ρ2
s )

are the rigid body moments of inertia at deformation q in
units of J0 with respect to the symmetry axis and to the axis
perpendicular to the symmetry axis, respectively; zmin and zmax

are the left and right ends of the nuclear surface.
The temperature dependence of the seven coefficients en-

tering equation (4) av, as, kv, ks, r0, a, and ad is parameterized
in the form

aj (T ) = aj (T = 0)(1 − xjT
2), (7)

that is expected [16] to be valid for T � 4 MeV. The most
complete information about the thermal coefficients xj has
been obtained through the self-consistent extended Thomas-
Fermi calculations with SkM∗ interaction [14,16]. A liquid-
drop expansion of these results for the Gibbs free energy was
converted to the structure of Eq. (4) in Ref. [15]. The values
of 14 parameters recommended in Ref. [15] and used in the
present work can be found in Table I.

If the Helmholtz free energy is available, the entropy and the
level-density parameter can be obtained from thermodynamic
relation and well-known formula of the Fermi-gas model

S(q, T ) = −
[
∂F (q, T )

∂T

]
V

, a(q, T ) = S(q, T )

2T
. (8)

A valuable conclusion was made in Ref. [29]: a(q, T )
is weakly dependent on the nuclear temperature T . Thus,
we suppose a(q, T ) in the temperature-dependent FRLDM
being independent of the T and calculation of a(q, T ) has
been performed at T = 1.5 MeV. It appreciably simplifies
application of the temperature-dependent FRLDM, especially,
in the multidimensional Langevin simulations.

TABLE I. The temperature-dependent FRLDM coefficients. Val-
ues at zero temperature (the first row) and temperature coefficients
xj in MeV−2 (the second row).

r0

(fm)
a

(fm)
ad

(fm)
av

(MeV)
kv as

(MeV)
ks

aj (0) 1.16 0.68 0.7 16.0 1.911 21.13 2.3
103xj 0.736 7.37 7.37 3.22 5.61 4.81 14.79

Deformation dependence of the level-density parameter is
often approximated by

a(q) = a1A + a2A
2/3Bs(q), (9)

where Bs(q) is the dimensionless functional of the surface
energy in the LDM with a sharp surface [38] and a1

and a2 are the volume and surface coefficients of the
level-density parameter. In dynamical modeling the
two sets of the coefficients a1 and a2 are frequently
used [50,51]. Ignatyuk and coworkers proposed
a1 = 0.073 MeV−1 and a2 = 0.095 MeV−1, whereas the
coefficients of Töke and Swiatecki are a1 = 0.0685 MeV−1

and a2 = 0.274 MeV−1. It was shown in our works [29,34],
that the level-density parameter from the temperature-
dependent FRLDM [15] is close to the values of a(q) in
the Ignatyuk parametrization, regardless of the dependence
one examines: deformation dependence of a(q) for a given
nucleus or a fissility parameter dependence of a(q) for the
spherical nuclei. This fact can be explained by the results
of our approximation, made in Ref. [29]. We carried out an
approximation procedure of the a(q) deformation dependence
by expression (9) to estimate the values of the coefficients
a1 and a2. The estimated values are a1 = 0.0598 MeV−1 and
a2 = 0.1218 MeV−1. The coefficient a1 has close values in all
mentioned approximations of a(q), whereas the value of a2

estimated in Ref. [29] is quite close to the Ignatyuk coefficient
and differs more than twice from the value of Töke and
Swiatecki. In the Langevin calculations we used the exactly
calculated level-density parameter, obtained from Eqs. (8).

From the Fermi-gas model one has

Eint(q, T ) = a(q)T 2, (10)

and

F (q, T ) = V (q) − a(q)T 2, (11)

where V (q) is the zero-temperature potential energy
[F (q, T = 0) ≡ V (q)]. The microscopic self-consistent
Thomas-Fermi calculations with SkM∗ interaction [14] have
shown that equation (11) can be a reasonable approximation
for T � 4 MeV.

The expressions for the driving force Q read as follows [45]:

Qi(q) =
(

T
dS

dqi

)
E∗=const

or

Qi(q) = − [dF (q)/dqi]T =const . (12)

It should be noted that both definitions of Qi(q) are equivalent
in the case of the strong nuclear viscosity [52]. It is evident
from Eqs. (11) and (12) that the driving force in the Langevin
equations can be evaluated easily within the temperature-
dependent FRLDM:

Qi(q) = −
[

dV

dqi

− da(q)

dqi

T 2

]
T =const

.

As a result, in the framework of the temperature-dependent
FRLDM one can calculate consistently the two main input
parameters of the Langevin simulations combined with the
statistical model: the driving force and the level-density
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(a)

(b)

FIG. 1. The potential energy surface (a) and the free energy
surface (b) for the compound nucleus 244Cm at α′ = 0 and zero
angular momentum. The thin solid curves are the mean dynamical
trajectories. The thick lines are the scission line determined from the
intersection of the scission surface (see text for explanation) and the
plane α′ = 0. The dotted line is the ridge line. The mean dynamical
trajectories were calculated with the reduction coefficient value 0.25.

parameter. The zero-temperature potential energy V (q), which
enters Eq. (11), can be calculated also within the finite-range
model with the Sierk coefficients [10], as the values of
coefficients aj at zero temperature, presented in the first row
of Table I, are equal to the coefficients obtained by Sierk in
Ref. [10].

Figure 1 illustrates explicitly the difference between the
potential energy map (free energy at zero temperature) and
free energy at temperature T = 2 MeV for the compound
nucleus 244Cm. Fission barriers for these two cases are 3.35 and
2.21 MeV, correspondingly. The mean Langevin trajectory
[27] and the scission line are also presented in Fig. 1 to

illustrate the physics of fission process within the Langevin
dynamics.

Concluding the description of the temperature-dependent
FRLDM we would like to recall that suggestion to take into
account temperature effects in the LDM of nuclear fission was
done by Hasse and Stocker [53,54] three and a half decades
ago. Their temperature-dependent LDM with a sharp surface
was based on a Thomas-Fermi description of the excited
nucleus and contained two temperature-dependent parameters:
the surface tension and the nuclear density. The temperature
dependence of the both parameters was assumed similar to
Eq. (7). In the well-known calculations [25,55] the temperature
dependence of the generalized surface energy was included in
the form Es(q, T ) = Es(q, T = 0)(1 − ξT 2). The parameter
ξ was calculated with the extended Thomas-Fermi model
[56]. Dynamical Langevin calculations in Ref. [55] were
carried out with two values of ξ (ξ = 0.014 MeV−2 and ξ =
0.009 MeV−2) and with the Töke and Swiatecki level-density
parameter. The conservative force in Ref. [55] was calculated
as the derivative of the temperature-dependent potential en-
ergy. It is easy to see that using such a temperature-dependent
potential is equivalent to using the Helmgoltz free energy for
calculating of the driving force of a thermodynamical system.
Use of the temperature-dependent term in surface energy is
not fully satisfactory from the point of view of consistency of
model, in spite of a good agreement between calculated results
and experimental data in Refs. [25,55].

To calculate observables we should introduce a notion for
the nucleus scission configuration. It is determined by the
intersection point of the stochastic Langevin trajectory of the
fissioning system with the scission surface in the coordinate
subspace. It has been supposed that the scission occurred when
the neck radius of the fissioning nucleus RN was equal to 0.3R0

[38,57]. This scission condition determines the scission surface
in the space of the collective coordinates. The value RN =
0.3R0 for scission configuration was defined on the basis of
the criterion of instability of a nucleus against variations in
the thickness of its neck [38]. It was shown in Ref. [58] that
a choice of the scission criterion is a more crucial only in
the case of studying the energy distribution characteristics,
but, nevertheless, there is no certain answer for which scission
criterion should be used [58]. It is assumed that the distribution
of collective variables and momenta are formed during the
descent from the saddle to the scission configuration, where the
neck nucleus ruptures immediately without extra elongation.
The influence of further evolution of the collective variables on
the fission-fragment distributions is neglected. Previously, this
assumption was also used in the MED investigations within
the diffusion model with the Fokker-Plank equation.

It was assumed in calculations of the energy distribution
parameters that the total kinetic energy EK of fission fragments
is the sum of the Coulomb repulsion energy Vc, the nuclear
attraction energy Vn of the nascent fragments, the kinetic
energy of their relative motion (prescission kinetic energy Eps),
and fission-fragment relative rotational energy Vrot. All parts
of this sum are calculated at the moment of scission. The mean
value of the total kinetic energy 〈EK〉 is found as

〈EK〉 = 〈Vc〉 + 〈Vn〉 + 〈Eps〉 + 〈Vrot〉, (13)
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and its variance was found according to

σ 2
EK

= 〈
E2

K

〉 − 〈EK〉2 . (14)

Here and further in this article the angular brackets denote
averaging over an ensemble of the stochastic Langevin
trajectories. We have calculated Vc and Vn within temperature-
dependent FRLDM. Explicit formulas can be found in
Refs. [15,29,34,37].

The relative rotational energy of fragments Vrot is calculated
by the expression, suggested by Carjan and Kaplan [59]

Vrot =
[

µD2

(J1 + J2 + µD2)

] [
h̄2l(l + 1)

2(J1 + J2 + µD2)

]
, (15)

where J1 and J2 are the moments of inertia calculated for
spherical fission fragments, µ is the reduced mass, D is the
distance between centers-of-mass of fission fragments, and l

is the angular momentum for the compound nuclei. Here we
neglect the spins of projectile and target nucleus and assume
that the full moment of the system I � l. It should be noted
that an equation similar to Eq. (15) was used in Ref. [60] to
take into account energy of the relative rotation of the fission
fragments to calculate the total kinetic energy of the fission
fragments for binary fission of the light nuclei.

The mass of fission fragments was calculated according to:

MR = A
∫ zmax

zN
ρ2

s (z, qsc)dz∫ zmax

zmin
ρ2

s (z, qsc)dz
, ML = A

∫ zN

zmin
ρ2

s (z, qsc)dz∫ zmax

zmin
ρ2

s (z, qsc)dz
,

(16)

where A is the mass of the nucleus, corrected for the particles
evaporation prior scission; MR and ML are the mass of the
right and left fission fragment; qsc is the scission configuration
of the nucleus; zmin and zmax are the left and right ends of the
nuclear surface; and zN is the position of the neck plane that
divides the nucleus into two parts. We have chosen the position
of the zN at the minimum of ρ2

s (z).

III. RESULTS AND DISCUSSION

In our previous [34] and present works we have inves-
tigated the influence of l on the MED characteristics for
five reactions that result in the following compound nuclei:
244Cm (E∗ = 77 MeV, T = 1.9 MeV; and T = 2 MeV, T =
3.1 MeV—see explanations further in this paragraph), 224Th
(E∗ = 184 MeV, T = 3.1 MeV), 195Hg (E∗ = 75.7 MeV,
T = 2 MeV), 184Pt (E∗ = 117.3 MeV, T = 2.65 MeV; and
T = 2 MeV, T = 3.1 MeV), and 162Yb (E∗ = 117.5 MeV,
T = 2.67 MeV; and T = 2 MeV, T = 3.1 MeV). The initial
excitation energies and the temperatures for the respective
nuclei are presented in the brackets above. The first two com-
pound systems represent the region of heavy fissioning nuclei,
195Hg and 184Pt are the medium fissioning nuclei, and the last
one (162Yb) is an example of the light fissioning nucleus. The
obtained results for these three regions of the mass number
A are presented in this section. To estimate the influence of
l and T of compound nucleus on the MED characteristics
we have carried out additional calculations for three nuclei
(244Cm, 184Pt, and 162Yb). To investigate the influence of the
angular momentum on the MED parameters we performed

Langevin calculations for these three nuclei with initial
temperatures T = 2 and 3.1 MeV. The angular momentum
was varied in the range 0 ÷ 70. Results of these calculations
have shown that the coefficients d〈EK〉/dl2, dσ 2

EK
/dl2, and

dσ 2
M/dl2 slightly depend on initial temperature.

A. Two-dimensional mass-energy distributions

It is known from the base of statistical theory that the
variances of the mass and energy distributions increase when
the temperature grows. This can be illustrated by the typical
result of our calculations shown in Fig. 2.

Figure 2 contains the mass-energy distributions for 184Pt
and 244Cm compound nuclei obtained with the fixed initial
temperature Tinit and angular momentum l. It is obvious
from the two maps obtained for 244Cm nucleus at different
temperatures and l = 70 [Figs. 2(e) and 2(f)] that the increase
of the temperature makes the MED wider both along the mass
and energy axes. The influence of angular momentum on the
MED for the 184Pt compound is demonstrated on three upper
parts of Figs. 2(a), 2(b), and 2(c). The MED changes slightly
while l grows from 0 to 30. Further growth of l from 30
to 70 makes the MED much wider. We observed the same
behavior for the 244Cm [Figs. 2(d) and 2(e)], except for the
fact that there is no angular momentum range, where the MED
is practically independent of l. To make a quantitative compar-
ison, one should analyze the one-dimensional mass and energy
distributions of fission fragments. This can be done integrating
the two-dimensional MED Y (M,EK ) over the corresponding
parameter (the kinetic energy EK for the mass distribution or
the fragment mass M for the energy distribution).

B. Angular momentum dependence of the first and the second
moments of fission-fragment mass-energy distribution

The first moment of the mass distribution is the average
fission-fragment mass. Prescission particle evaporation deter-
mines the mass number of the nucleus just before the split and
the mass-asymmetry parameter of the nucleus at the scission
point αsc specifies the mass numbers for the fission fragments.
As already mentioned, for the case of hot nuclei the symmetric
fission channel prevails, i.e., compound nuclei predominantly
split into two equal fission fragments. This physical picture is
independent of l.

A constancy of the fission-fragment mean kinetic energy
〈EK〉 at different l and initial excitation energy was pointed
out in experimental works [17,19]. The 〈EK〉 independence
of l and E∗ was clarified in Refs. [17,19] with the help
of experimental data on the mean γ quanta emitted from
the fission fragments themselves in the reactions induced
by the light charged particles and heavy ions (see the
references in Ref. [19]). These investigations showed that
the mean γ -quanta multiplicity Mγ and the mean γ -quanta
energy increase, with the increase of E∗ and l. This increase
compensates the growth of rotational energy for the light
fissioning nuclei at the saddle point and for the heavy ones
at the scission point. Hence, authors of Refs. [17,19] drew
a conclusion that the most part of the rotational energy of
the fissioning nucleus transfers to the angular momenta of
the fission fragments (spin) and releases further through the
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FIG. 2. Theoretical MED of fission fragments for 184Pt at Tinit = 2.65 MeV and l = 0, 30, and 70 [(a), (b), (c)] and for 244Cm [(d), (e), and
(f)] at Tinit = 1.9 and 3.1 MeV and l = 0 and 70. The numbers at the contour lines indicate the yield in percentages, which is normalized to
200%.

γ -quanta emission from the fission fragments. They estimated
the upper limit of the dependence d〈EK〉/dl2 � 0.3 keV.

Our results of the 〈EK〉 calculations for the compound
nuclei 244Cm, 184Pt, and 162Yb at two different values of
the initial temperature are presented in Fig. 3. It is evident

(a)

(b)

(c)

〉

〉

FIG. 3. (Color online) The mean total kinetic energy 〈EK〉 as a
function of l2 for the compound nuclei 244Cm (a), 184Pt (b), and 162Yb
(c). The crosses are the 〈EK〉 values at Tinit = 2 MeV and squares at
Tinit = 3.1 MeV.

that the dependence of 〈EK〉 on the initial excitation energy
and angular momentum is weak. Our upper estimation is
d〈EK〉/dl2 � 0.5 keV for the heavy and medium fissioning
nuclei, which is in a good agreement with the experimental
one [17,19]: d〈EK〉/dl2 � 0.3 keV. For the 162Yb com-
pound nucleus our estimation is much higher (d〈EK〉/dl2 �
13.8 keV), but there are no experimental data on d〈EK〉/dl2

for this compound nucleus.
In our calculations the absolute value |d〈EK〉/dE∗| does

not exceed the value of 0.024, which is the maximum value for
the nucleus 162Yb at l = 0. The absolute value |d〈EK〉/dE∗|
is lower than 0.017 if one will analyze only medium and
heavy fissioning nuclei. This value is very close to the
upper estimation of the d〈EK〉/dE∗ = 0.01 ÷ 0.02 found in
experimental works [17,18].

The results of our calculations for variances of the mass and
energy distributions are presented in Fig. 4. The top (a) and the
bottom (b) graphs on this figure can be treated as the resulting
graphs, where the coefficients dσ 2

M/dl2 and dσ 2
EK

/dl2 are
shown together with the results of the experimental analysis
[18,61] and previous theoretical results obtained within the
Fokker-Planck equation. For the 184Pt and 162Yb nuclei the
coefficients dσ 2

M/dl2 and dσ 2
EK

/dl2 change quite a bit with
l. Therefore, we estimated the values of the dσ 2

M/dl2 and
dσ 2

EK
/dl2 for the ranges where σ 2

M and σ 2
EK

monotonously
depend on l for each nucleus. That is why there are three

044614-7



RYABOV, KARPOV, NADTOCHY, AND ADEEV PHYSICAL REVIEW C 78, 044614 (2008)
[(

u)
  ]2

[(
M

eV
) 

 ]2
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FIG. 4. The dependencies of the variance of the mass (a) and
energy (b) distributions on l2 for 244Cm, 224Th, 184Pt, 195Pt, and
162Yb nuclei. The linear approximations of dσ 2

M/dl2 and dσ 2
EK

/dl2

coefficients for the investigated nuclei are plotted against Z2/A. The
solid curve and the dash-dotted curves are the results and error
boundaries for the dσ 2

M/dl2 and dσ 2
EK

/dl2 coefficients from the
analysis based on the experimental data [18]. The dash curve are the
results of the theoretical calculations by means of the Fokker-Planck
equation [23]. Solid squares are our calculated results. Two values
for the 184Pt, 195Hg and three values for the 162Yb nuclei represent the
change in dependences of σ 2

M and σ 2
EK

on l. See text for details.

points for 162Yb and two points for 184Pt and 195Hg in
Fig. 4.

The coefficients dσ 2
M/dl2 and d〈EK〉/dl2 depend slightly

on the initial temperature (initial excitation energy) of the
nucleus and the variation of the dσ 2

M/dl2 and d〈EK〉/dl2 do
not exceed 1% for the Tinit = 2 ÷ 3 MeV. The dσ 2

EK
/dl2 more

noticeably depends on the initial temperature and varies in the
range 20–30% for the Tinit = 2 ÷ 3 MeV.

One cannot explain the dependence of σ 2
M on l2 considering

the stiffness of the nucleus with respect to the mass asymmetry
at the saddle or scision point (d2V/dα2) as a function of
angular momentum [34], as it was proposed on the basis of
the experimental results in [17–19]. It was shown [34] that
in the case of the Langevin simulations the stiffness of the
nucleus along the mean Langevin trajectory is independent of
l, i.e., for any given l we get the same values of the stiffness at

saddle, scission, or any other point along the mean trajectory.
Therefore we cannot explain obtained dependencies in the
same way as the authors of Refs. [17–19], because the stiffness
along the mean fission trajectory is weakly dependent on the
angular momentum in the case of our dynamical modeling.
The value of the “averaged” or “effective” stiffness along the
descent is also independent of l. Thus, we should include
additional factors into our analysis to understand the angular
momentum dependence of the mass and energy variances.

The variance of the mass distribution can be estimated in
the framework of the statistical approach using the following
relation [61]:

σ 2
Mst = A2 〈Tsc〉 /16(d2V/dη2)|qsc , (17)

where η = 2(MR − ML)/(MR + ML). As long as we consider
the heated nucleus, which is the thermodynamic system we
should use some thermodynamic potential instead of the
potential energy V . In other words, one can calculate the
stiffness values as d2F/dη2, and Eq. (17) will be

σ 2
Mst = A2 〈Tsc〉 /16(d2F/dη2)|(qsc,Tsc). (18)

It is evident from this relation that the temperature can
also be an important factor. We should note here that the ratio
σ 2

M dyn/σ
2
M st is weakly dependent on l. This ratio is shown in

Fig. 5 for different nuclei. One can see that in the case of heavy
nuclei this ratio is large (about 2.8 for the 244Cm nucleus). This
fact demonstrates that the nucleus effectively “remembers” the
descent from the saddle to the scission and “remembers” lower
values of d2F/dη2 near the saddle point at the moment of
scission. As stated above, values of d2F/dη2 are independent
of l. Therefore, the ratio σ 2

M dyn/σ
2
M st is independent of l for

heavy and medium nuclei. One should not be confused by
the evident decrease of the σ 2

M dyn/σ
2
M st ratio for the 162Yb

nucleus with the increase of l. This is not caused by the angular
momentum dependence of the stiffness value. As it was stated
above and shown in Ref. [34] the stiffness is independent of l.

FIG. 5. (Color online) The angular momentum dependence of the
ratio σ 2

M dyn/σ
2
M stat, where σ 2

M dyn is the variance of mass distribution
obtained from dynamical calculations, whereas σ 2

M stat is the “statisti-
cal limit” of the variances calculated using Eq. (18) and the values of
the stiffness and the temperature at the scission point.
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FIG. 6. (Color online) The variance of the mass [(a), (b), and (c)] and energy [(d), (e), and (f)] distributions (open squares) and the mean
temperatures at the scission point (circles) for the 244Cm, 184Pt, and 162Yb nuclei as functions of the angular momentum.

The strong decrease of σ 2
M dyn/σ

2
M st is caused by the decrease

of 〈Tsc〉. Thus, from the results presented in Fig. 5 we can
conclude that the “remembering effect” takes place especially
for the heavy and the medium nuclei, but it does not cause the
angular momentum dependence of σ 2

M .
Thus, other factors are coming foreground. The evaporation

of the light particles changes the internal energy (or the
temperature) of the nucleus. One can see from relation (18) that
〈Tsc〉 and its dependence on l is very important for our analysis.
It was explicitly demonstrated in our previous work [34] that
the dependence of 〈Tsc〉 on l follows the dependence of the σ 2

M

on l. This is also well demonstrated in Fig. 6. The temperature
and the variance decrease in the same range of the angular
momentum values. If the temperature at the scission point is
practically constant and independent of l, then the variance is
weakly dependent on l. On the contrary, if the 〈Tsc〉 depends
on l, then σ 2

M will also strongly depends on l, as it could be
seen Fig. 6. This figure represents also three graphs [Figs. 6(d),

6(e), and 6(f)] in the right column with the similar correlation
between σ 2

EK
and l.

We can generalize our conclusion that the dependences
of the variances of the mass and energy distributions on l

follow the dependence of 〈Tsc〉 on the angular momentum. As
a result the dependence of 〈Tsc〉 on l cause the dependence
of the variances of the mass and energy distributions on
the angular momentum. The so-called remembering effect
determines the “magnitude” of the variances and does not
explain the dependences of σ 2

M and σ 2
EK

on l.
The temperature at scission, in turn, is determined by the

mean prescission neutron multiplicity 〈n〉. The more neutrons
are evaporated, the colder the nucleus will be at the scission
point. The detailed analysis of the dependence of 〈Tsc〉 on the
angular momentum was done in Ref. [34]. It was shown that
the observed dependence of the mean scission temperature on l

can be described in terms of competition between the neutron
emission and fission channels of decay. It was also shown
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FIG. 7. (Color online) The fission barriers Bf (the solid lines)
and neutron binding energies Bn (the dash lines) as functions of the
angular momentum for the Yb isotopes: the lines with the squares
correspond to the 162Yb nucleus, the lines with the circles to 159Yb,
and with the triangles to 156Yb.

that the obtained dependence of the mean prescission neutron
multiplicity on l can be explained if one considers the ratio of
the fission and neutron emission decay widths as a function of
l [34].

The dependence of the neutron multiplicity on the angular
momentum can be clarified using the dependences of the
fission barriers (Bf ) and the neutron binding energies (Bn)
on l. The neutron binding energy is independent of the angular
momentum value. In contrast, the value of the fission barrier
is very sensitive to l. One can see from Fig. 7 that the
whole investigated scope of l can be divided into the three
intervals: first, where Bn > Bf ; second, with Bn � Bf ; and,
third, where Bn < Bf . As a result the neutron (
n) and the
fission (
f ) widths will follow to the dependences of Bn

and Bf on l. For 
n and 
f we can also divide the scope
of l into the three ranges, with the same bounds as it was
observed for the fission barriers and the neutron binding
energies.

To illustrate this the 
n and 
f are presented in Fig. 8
for the nuclei 156,159,162Yb in the neutron evaporation cascade
of 162Yb at Tinit = 2.67 MeV. The fission width 
f 
 
n

and the decay time is mainly determined by the neutron
width for l < 45. The fission probability is determined by the
ratio 
f /
n at each step of the evaporation cascade. This
ratio increases as the angular momentum increases for all
compound nuclei investigated in the present work. As a result,
the fission probability increases steadily in comparison with
the nonrotating nucleus. Another effect, which influence the
ratio 
f /
n (or fission probability) is the neutron evaporation
cascade, which increases the fission probability for the system
with low l and internal energy. In contrast, for l > 55 Bf < Bn

(see Fig. 7) and decay time is determined mainly by the fission
width. The higher the angular momentum is, the lower Bf will
be. Hence, the probability for the nucleus to evaporate many
neutrons before scission becomes smaller and smaller. As a
result, the number of the evaporated neutrons decreases with

   10
-3

   10
-3

   10
-3

   10
-4

   10
-5

   10
-6

(c)

(a)

(b)

FIG. 8. (Color online) The neutron 
n (squares) and the fission

f (circles) widths as functions of the angular momentum in the
neutron evaporation cascade of the initial 162Yb compound nucleus.

the increase of angular momentum. The nucleus undergoes
fission more and more quickly without evaporation of large
number of neutrons.

The values of Bn and Bf get closer for the intermediate
values of angular momentum 45 < l < 55. The neutron and
fission widths are also close to each other. Dependence of the
〈Tsc〉 on the angular momentum changes in this range of l. The
〈Tsc〉 decreases, due to neutron evaporation increase for l <

45. In contrast, for l > 50 Bf < Bn and the nuclei undergoes
fission more quickly with evaporation of small number of
neutrons. As a result 〈Tsc〉 increases.

C. Anisotropy of the fission-fragment angular distribution

In the present article the standard transitional state model
[35,62,63] was used to analyze the fission-fragment angular
distribution. The essence of this model consists in the assump-
tion that there is a certain chosen (transition) configuration of
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a fissile system that determines the angular distribution of the
fission fragments. Thus, there are two limiting assumptions
on the position of the transition state and, correspondingly,
two variants of the transition-state model: the SPTS model
[35,62,63] and the SCTS model [36,64,65]. It is assumed
that the equilibrium distribution on the K degree of freedom
(K is the projection of the compound nucleus spin I onto
the symmetry axis) is established at the transition state that
is usually assumed to be the saddle point. In the case of
the multidimensional model, a set of the relevant conditional
saddle points play the role of the transition states.

The classical SPTS model uses the following assumptions:
(i) The mean time of stay of a nucleus in the saddle-point region
is sufficiently larger than a characteristic time of equilibration
of K mode. In other words, the time τgs of the motion of
the system from the ground state to the saddle point is much
longer than the relaxation time of the K degree of freedom
(τgs � τK ). (ii) The mean time τss of descent of a nucleus
from the saddle to scission is short in comparison with τK .
In this case, the K distribution is formed at the saddle point
and stays approximately the same. (iii) The K distribution is
determined by the factor exp(−Erot/T ) [63].

A frequently used approximation of the fission-fragment
angular distribution reads as follows:

W (θ, I ) = (2I + 1) exp(−p sin2 θ )J0(−p sin2 θ )

erf (
√

2p)
, (19)

where J0 is the zeroth-order Bessel function, p = (I +
1/2)2/(4K2

0 ), and the variance of the equilibrium K distri-
bution K0 is

K2
0 = T

h̄2 Jeff, Jeff = J‖J⊥
J⊥ − J‖

. (20)

Here T , J||, and J⊥ are the nuclear temperature and the parallel
and perpendicular moments of inertia taken at the transition
state. Equation (19) is known as the Halpern-Strutinsky
formula [35,63], if one will consider the saddle point as a
transition state.

An average angular distribution is obtained by averaging the
expression (19) over the ensemble of stochastic trajectories.
The anisotropy of the fission fragment angular distribution is
given by

A = 〈W (00)〉
〈W (900)〉 . (21)

There are three factors that determine the angular distribution:
the initial spin distribution of compound nuclei, the effective
inertia moments, and the nuclear temperatures at the transition
states.

In the case p � 1 the anisotropy of the angular distribution
is given by the approximate relation

〈W (00)〉
〈W (900)〉 � 1 + 〈I 2〉

4K2
0

. (22)

Equation (22) could be used for qualitative analysis of the
anisotropy of angular distribution. Equation (19) is used for
quantitative analysis in the present article.

The expression similar to Eq. (19) could be applied in the
SCTS model, but factors determined by Eq. (20) should be
calculated at the scission point, i.e., it is assumed that τK is
much shorter than the descent time from the saddle to the
scission point. In this case the equilibration of the K degree of
freedom supposed to be at the scission point.

D. The effect of model dimension on the angular distribution

The set of all the accessible transition states is determined
by the potential energy landscape and, hence, by the number
of collective coordinates. At the same time, the particular
ensemble of transition points strongly depends on the fission
dynamics and, consequently, is sensitive to all the components
of the model used: the conservative force, the friction and
mass tensors, and so on. For instance, in the case of the
SPTS model in the one-dimensional case there is only one
transition state, the saddle point, for each angular momentum,
whereas in the multidimensional case the entire ensemble of
conditional saddle points forms the set of transition states. The
multidimensional dynamic models, in comparison with the
one-dimensional ones, take into account the multidimensional
nature of the fission barrier. This circumstance can strongly
influence the anisotropy of angular distribution predicted by
models with a different number of collective coordinates
involved.

In Ref. [28], we assumed that the model dimension
influences the calculated angular distribution anisotropy. In
addition, this influence should be stronger with increase of
the nuclear fissility and excitation energy. In fact, under these
conditions, the fission barrier becomes lower and a number of
transition states accessible for a fissile nucleus becomes larger.
An increase of the nuclear excitation energy also results in an
increase of the accessible phase space to a nucleus at the ridge.

The one-dimensional Langevin equations was applied to
explore the main features of angular distribution [66,67].
Recently Jia and Bao [30] published the results of the angular
distribution calculations within two-dimensional Langevin
dynamics. Their results are in good agreement with the ex-
perimental data. The results of the one-dimensional Langevin
model are in agreement only at low excitation energies [30].

To investigate the dependence of the calculated angular dis-
tribution of fission fragments on the number of collective co-
ordinates involved in dynamical consideration in more detail,
we calculated the angular distribution anisotropy in the one-
dimensional and three-dimensional Langevin models for two
reactions: 16O + 208Pb → 224Th and 16O + 232Th → 248Cf.
We disregarded particle evaporation to study only dependence
of the anisotropy of the angular distribution on dimensionality.
Figure 9 shows that although the anisotropy of the angular
distribution almost coincides in the one-dimensional and
three-dimensional calculations at low excitation energies,
the three-dimensional model predicts considerably higher
values than the one-dimensional model at high excitation
energy. It can be seen that the anisotropy of the angular
distribution obtained in the three-dimensional calculations
for the 224Th nucleus at E∗ � 150 MeV is 30% higher
than that obtained in the one-dimensional calculations. For
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FIG. 9. (Color online) The anisotropy of the angular distribution
obtained in one-dimensional (open squares) and three-dimensional
(squares) Langevin calculations for the one-body mechanism of
nuclear viscosity with the reduction coefficient equal to 0.25 for
224Th (a) and 248Cf (b) nuclei.

the nucleus 248Cf this difference reaches almost 40%. Such
dependence agrees with the assumption that the influence of
model dimensionality should be stronger for heavier nuclei.

One should consider Jeff at the saddle point and its depen-
dence on c, h, and α coordinates to explain the dependence of
A on dimensionality. The saddle point is located at h � 0 and
α = 0. A weak dependence of the effective moment of inertia
on the mass-asymmetry parameter and a stronger dependence
on the parameter h takes place. In this case, the values of
Jeff decrease if the parameter h deviates from zero either on
the positive or the negative sides. In the multidimensional
model the anisotropy of angular distribution is calculated by
averaging over the ensemble of transition points, whereas
in the one-dimensional model, only one transition state (the
saddle point) is realized. Therefore, the values of K0 obtained
in the three-dimensional calculations are lower on average
than in the one-dimensional case due to both an increase
in the effective moment of inertia and a decrease in the
transition-state temperature. Lower values of the parameter
K0 correspond to a narrower angular distribution.

E. Energy dependence of the anisotropy of the angular
distribution

In Fig. 10 the calculated results for the anisotropy of
the angular distribution are presented for the reactions
16O + 208Pb → 224Th, 16O + 232Th → 248Cf, 16O + 238U →
254Fm, and 16O + 248Cf → 264Rf. The solid and dashed
curves show the results predicted by the SPTS and SCTS
models, respectively. The experimental data (open squares)
are taken from Ref. [68]. It is known [35,69,70] that the SPTS
model provides good reproduction of the experimental data
on the anisotropy of the angular distributions for reactions
where 3He, α particles are used as projectiles. The compound
nuclei formed in such reactions have a temperature of about
1 MeV and low angular momenta. It was found that the
standard SPTS model regularly predicted low values of the
angular distribution anisotropy for reaction with massive ions
of carbon, oxygen, and heavy ions [69], in comparison with
the experimental data, and the values obtained according to
the SCTS model.

It is seen from the figure that the experimental data on
the anisotropy of the fission fragment angular distribution

(a) (b)

(c) (d)

〉

〉

〉

〉

FIG. 10. (Color online) The anisotropy of the angular distribution
for the compound systems 224Th (a), 248Cf (b), 254Fm (c), and 264Rf
(d). The solid and dashed curves present the results predicted by the
SPTS and SCTS models, respectively. The experimental data (open
squares) are taken from Ref. [68].

cannot be reproduced neither of the SPTS or SCTS models
especially for compound nuclei heavier than 224Th and for
high excitation energies. Experimental data are between the
predictions of the both transition-state models [69,70]. For
the case of the light compound nuclei (see results for 224Th),
experimental data are reproduced rather well by the SPTS
model.

It was assumed [69,70] that the transition state determining
the angular distribution of fission fragments could be located
somewhere between the saddle point and the scission point.
The existent uncertainty with the position of the transition
state indicates that it is necessary to take into account the
dynamical features of the angular distribution formation.
In this case, the tilting mode could be considered as an
independent collective coordinate in the multidimensional
Langevin approach. Such completely dynamical approach
makes it possible to determine, in the most general form, the
nonequilibrium K-mode distribution P (K, t). However, in this
case, the problem of calculating the conservative force and the
transport parameters (inertial and friction) for the tilting mode
arises. At the same time there is no theoretical approach for
calculating the transport coefficients for the tilting mode. The
calculation of the transport coefficients is one of the involved
problems in nuclear dynamics. Therefore, a fully dynamical
consideration of the evolution of the K degree of freedom is
still difficult.

The dynamical aspects of the angular distribution formation
can be evaluated using the relaxation time τK for the tilting
mode. In Refs. [71–73], it was proposed that the evolution
of the tilting mode can be considered using the Monte Carlo
method. In Refs. [71,72] the dynamical treatment of the tilting
mode was joined with one-dimensional Langevin dynamics for
shape degree of freedom, whereas three-dimensional Langevin
equations for shape degree of freedom were employed in
Refs. [73,74]. The K equilibration time is deduced to be
(20–30) × 10−21 s in Refs. [71,72] and (2–4) × 10−21 s in
Refs. [73,74] from fits of the calculated values to experimental
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data on the anisotropy of the angular distribution for heavy
fissioning compound systems.

Theoretical estimates of the relaxation time for the K

mode and for other rotational modes in deep-inelastic-transfer
reactions were obtained in Refs. [75,76], where use of the
ideas of nucleon-transport theory in nuclear collisions with
allowance for quantum effects [77] was made. In Refs. [75,76],
the relaxation time τK for the tilting mode was estimated in the
limits at (2–20) × 10−21 s, the specific value being dependent
on the total angular momentum of the system.

The energy dependence of the anisotropy revealed from
the developed approach [73,74] was found to be closer to the
experimental data than the predictions of the statistical models
SPTS and SCTS. Such phenomenologically estimated values
for τK are comparable with the mean time of the descent from
the saddle point to scission [73]. This fact points out that
K-distribution changes during the descent from the saddle
point to scission. These first attempts of using the Langevin
dynamics joined with the Monte Carlo algorithm that considers
the tilting mode as an independent collective degree of freedom
seem to be promising.

IV. SUMMARY AND CONCLUSION

A stochastic approach to fission dynamics based on three-
dimensional Langevin equation was applied to calculate the
mass-energy and angular distributions of fission fragments
formed in fission of excited compound nuclei. The angular
dependence of the mass-energy distribution parameters and
energy dependence of the anisotropy of the angular distribution
were investigated for a wide range of fissility parameter. Anal-
ysis of the l dependence of the mass and energy distributions
and anisotropy of the angular distribution performed with
the statistical model indicates that it is necessary to take
into account the dynamical features of the fission-fragment
distributions formation. This can be done within the stochastic
approach based on the Langevin equations.

The temperature-dependent FRLDM, which takes into
account a diffuse nuclear surface is used in consistent way
to calculate the functional of the Helmholtz free energy and
level-density parameter. This model allows us to calculate
consistently the fission barriers, the conservative part of
the driving force, and the nuclear temperature. Thus, the
temperature-dependent FRLDM allows one to determine
within the same model assumptions a set of parameters,
which are of special importance in statistical and dynamical
simulations.

It should be stressed that the present results are the first
three-dimensional full-scale work in the framework of the
Langevin dynamics that aims at the question of the angular
momentum and excitation energy dependence of the fission-
fragment MED and 〈EK〉, σ 2

EK
, and σ 2

M . We have found the
following sensetivity of 〈EK〉 on l and E∗: |〈EK〉/dl| �
0.5 keV and |d〈EK〉/dE∗| � 0.017. Both estimations are in
a good agreement with experimental data [17,18].

For the coefficients dσ 2
M/dl2 and dσ 2

EK
/dl2 it was found

that they are the functions of the angular momentum. Results
can be summarized as follows:

(i) for the heavy fissioning nuclei (244Cm and 224Th)
dσ 2

M/dl2(dσ 2
EK

/dl2) > 0;
(ii) for the medium fissioning nuclei (184Pt and 195Hg)

dσ 2
M/dl2(dσ 2

EK
/dl2) � 0 at the angular momentum

l = 0 ÷ 35 and l = 0 ÷ 40, respectively, and
dσ 2

M/dl2(dσ 2
EK

/dl2) > 0 for l > 35 and l > 40,
respectively;

(iii) for the light fissioning nucleus (162Yb) dσ 2
M/dl2

(dσ 2
EK

/dl2) < 0 at l = 0 ÷ 45, dσ 2
M/dl2(dσ 2

EK
/dl2) �

0 at l = 45 ÷ 50 and dσ 2
M/dl2(dσ 2

EK
/dl2) > 0 for l >

50.

The coefficient dσ 2
M/dl2 is weakly dependent on the initial

temperature 2 MeV < Tinit < 3 MeV (or initial excitation
energy) of the nucleus. The coefficient dσ 2

EK
/dl2 varies in

the range of 20–30% in the investigated excitation energy
range.

Our analysis shows that the obtained angular momentum
dependence of σ 2

M and σ 2
EK

can be clarified using the depen-
dence of 〈Tsc〉 on l. The l dependence of the variances is caused
by the dependence of 〈Tsc〉 on the angular momentum, whereas
the so-called remembering effect determines the “magnitude”
of the variance [34]. The temperature at scission, in turn, is
determined by the mean prescission neutron multiplicity. It
was shown that the observed dependence of the mean scission
temperature on l can be clarified in terms of competition
between neutron and fission channels of decay. The obtained
dependence of the mean prescission neutron multiplicity on
l can be explained if one considers the ratio of the fission
and neutron decay widths as a function of l for the nuclei
in the evaporation decay chain. The appropriate account for
all these factors (the temperature at scission and the ratio of
the fission and neutron decay widths for the fissioning nuclei
in the decay chain of the initial nucleus) can be done in the
dynamical model with the appropriate account of the particle
evaporation.

One can conclude that the experimental data on the
anisotropy of the angular distribution cannot be reproduced
for the nuclei heavier than 224Th and relatively high excitation
energies neither within the saddle-point transition state model,
nor the scission-point transition state model. The experimental
data are between theoretical predictions obtained in the frame-
work of these two models. Hence, one can suppose that for
heavy nuclei at high excitation energy the so-called transition
point is placed somewhere between the saddle and scission
points and one should take into account the dynamical features
of formation of the fission-fragment angular distribution.
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[13] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[14] M. Brack, C. Guet, and H. B. Håkansson, Phys. Rep. 123, 275
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