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Experimental values of the astrophysical S factor for the 15N(p, α0)12C reaction are available both from direct
measurements and from the Trojan horse method. We here use R-matrix formulas to fit these values and to
extrapolate to zero energy to obtain values of S(0).
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I. INTRODUCTION

La Cognata et al. [1] have recently measured the astro-
physical S(E) factor for the 15N(p, α0)12C reaction using the
Trojan horse method (THM) and extrapolated to zero energy
using the half-off-energy-shell (HOES) R-matrix approach.
They obtain S(0) = 63–68 MeV b, with uncertainties of order
10 MeV b, in agreement with previous values obtained from
direct measurements of the 15N(p, α0)12C cross section [2–4].

Schardt, Fowler, and Lauritsen [2] fitted their data for proton
energies Ep = 0.2–0.4 MeV using a one-level approximation
representing the 12.44 MeV 1− level of 16O. They obtained
S(0) = 103 MeV b, but noted that destructive interference with
the contribution from the 13.09 MeV 1− level could reduce this
by a factor of 2. Hebbard [5] fitted the data of Schardt, Fowler,
and Lauritsen [2] using an R-matrix two-level approximation,
obtaining S(Ep = 25 keV) = 72 MeV b. From this, Zyskind
and Parker [3] deduced S(0) ≈ 64 MeV b.

Zyskind and Parker [3] fitted their own data, normalized
to the Schardt, Fowler, and Lauritsen 12.44 MeV peak [2],
for Ep = 93–418 keV using a two-level approximation of the
form given by Rolfs and Rodney [6] and obtained S(0) =
78(6) MeV b. The same form was used by Redder et al.
[4] to fit their data for Ep = 78–810 keV, giving S(0) =
65(4) MeV b. This last value was adopted by Angulo et al. [7]
in the NACRE compilation.

La Cognata et al. [1] fit their THM S factor for Ec.m. =
19–516 keV in two ways, one using the HOES R-matrix
approach and the other assuming a functional form of a
second-order polynomial plus a Breit-Wigner function, as
given in their Eq. (32). There seems to be little justification
for such a form, which has energy-independent W and �,
resulting in the polynomial being negative for all E < ER;
nevertheless the data extend to such low energies that the
uncertainty in the extrapolated value S(0) = 62 MeV b due to
the extrapolation should be small. La Cognata et al. [1] also
use the two-level HOES R-matrix expression given in their
Eq. (33). In principle, the S factor measured in the THM can
be different from that obtained in direct measurements. This is
shown, for example, by Eqs. (33) and (34) in Ref. [1] [Eq. (34),
which is applicable to direct measurements, is essentially the
Rolfs and Rodney [6] formula]. The S factors are equal only
if M0

21, the ratio of the transfer reaction amplitudes to the
two levels, is equal to γAx(21), the ratio of their reduced-width
amplitudes. In the present case, this seems to be satisfied, as
La Cognata et al. [1] find M0

21 ≈ 1.13 and γAx(21) = 1.1 ± 0.1.

This agreement in the values of M0
21 and γAx(21) appears to

be accidental. For example, Rolfs and Rodney [6] give θ2 =
0.20 and 0.14 for the 12.44 and 13.09 MeV levels, respectively,
leading to γAx(21) = 0.84. Also the departure of M0

21 from
unity, as calculated by La Cognata et al. [1], is due only to
the different energies of the two levels, while the value of
γAx(21) depends on the structure of the levels (including isospin
mixing).

Rolfs and Rodney [6] do not describe their two-level
expression as an R-matrix formula. Why do La Cognata
et al. [1] describe theirs as “R-matrix”? The form of
Eq. (33) in La Cognata et al. comes from their Eq. (9),
which is taken from Eq. (13) in Ref. [8] (this is essentially
La Cognata et al.’s Ref. [53]). Reference [8] says that their
Eq. (13) is “for a simple case when the distances between the
two resonances are significantly larger than their total widths”
and justifies it by analogy with an R-matrix formula given by
Lane and Thomas [9] in their Eq. (XII.5.15). Lane and Thomas
give this formula with an apparently stronger condition on
its validity—�/D � 1. La Cognata et al., however, do not
mention such restrictions on the validity of their Eqs. (9) and
(33); they merely say that their Eq. (9) “is like the two-level,
two-channel R-matrix amplitude when the distance between
the interfering resonances is significantly larger than the widths
of the resonances.” The importance of interference between
the 12.44 and 13.09 MeV levels has been recognized since
early measurements [2], so it seems desirable not to make
approximations that assume the interference is small.

There is also a significant difference between the Lane and
Thomas [9]R-matrix formula (XII.5.15) and the Eqs. (13) of
Ref. [8] and Eqs. (33) and (34) of Ref. [1]. The R-matrix
formula contains level-shift terms �λ = ∑

c γ 2
λc(Bc − Sc(E)).

They have been omitted in Refs. [1] and [8], without com-
ment in the two-level approximation. Reference [8] justifies
omission of �λ in the one-level approximation by saying that
the formula involves “observable” widths �c(E), related to
“formal” widths �̃c(E) by �c(E) = �̃c(E)/(1 − d�/dE)Er

,
with Er being the resonance energy. This assumes that
Bc = Sc(Er ). This justification cannot be used in the two-level
approximation, as R-matrix theory [9] requires Bc to be the
same for all levels.

There seems to be little reason for Ref. [1] describing their
Eqs. (33) and (34) as “R-matrix”, while they describe the Rolfs
and Rodney [6] two-level expression as “Breit-Wigner.” There
have been two applications of genuine R-matrix formulas to
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the direct 15N(p, α0)12C reaction, by Hebbard [5] (details
of calculation not given) and by Bray et al. [10] (for
higher energies). R-matrix formulas that could be used for
the 15N(p, α0)12C reaction for either the direct or THM
measurements have been given in Ref. [11] [Eq. (1) for the
direct case and Eq. (4) for the THM case]. These equations
are not restricted to well-separated levels and include the level
shift through the quantity L0

c . We now use these equations,
with N = 2, l = 0, s = 1, to fit the direct data [3,4] and the
THM data [1], which are all tabulated; the S factor in Ref. [2]
is given only graphically. Equation (4) in Ref. [11] can be used
for the 15N(d, α12C)n reaction and must be multiplied by a
15N + p penetration factor [as well as the usual E exp(2πη)]
before comparison with the THM S factor given in Ref. [1].
We neglect any effects of electron screening in the direct
measurements, as they are expected to be small [1].

II. R-MATRIX FITS

Because of the small partial widths of the two 1− levels
for the 12C(4.44) + α and the γ channels [12], we neglect
all contributions from these channels. We therefore use the
two-level, two-channel approximation of the formulas in
Ref. [11]. Then, for given values of the channel radii
ac(c = p, α) and boundary condition parameters Bc, there are
six adjustable parameters in the fit to the direct data—the
eigenenergies Eλ(λ = 1, 2) and the reduced-width amplitudes
γλc. For fits to the THM data, there are in addition two feeding
amplitudes G

1/2
λx = gλ, say (taken as energy independent).

Because the data do not extend to the energy of the
upper level, we have to obtain the value of E2, and per-
haps of the γ2c, from other sources. Most work, includ-
ing Refs. [1,3,4,12], has used the resonance energy E2r =
0.9624 MeV, corresponding to an excitation energy of
13.090 MeV. For convenience, we take Bc = Sc(E2r ), so that
E2 = E2r . There is considerable uncertainty in the values
of the partial widths �2p and �2α , and the total width
�2 = �2p + �2α . The latest A = 16 compilation [12] gives in
Table 16.15 (from 12C + α reactions)�2p = 100 keV, �2α =
45(18) keV, but �2 = 130(5) keV. This value for �2α

comes from Ref. [13], which says that the values of
Hebbard [5] are probably more accurate. The compilation
gives Hebbard’s values in Table 16.22 (from 15N + p reac-
tions): �2p = 100 keV, �2α = 40 keV, and �2 (laboratory) =
140(10) keV. These are all laboratory values [10], and they
are all formal widths [14]; observed widths in the c.m. system
would be about 80% of these. Zyskind and Parker [3] and
Redder et al. [4] both used �2p = 100 keV, �2α = 30 keV,
and �2 = 130 keV. La Cognata et al. [1] give �2p = 95.31 keV
and �2α = 45 keV; they say that these are obtained by fitting
the direct measurements in Refs. [2–4], but only Ref. [2] covers
the region of the upper 1− level and Hebbard [5] included the
data of Ref. [2] in his fits. Bray et al. [10] found �0

2p =
111 keV and �0

2α = 26 keV. To cover (roughly) this range
of values, we do fits with three sets of values of �2p, �2α (in
keV): A 100, 30; B 100, 45; C 95, 45. In view of the evidence
above, set A is preferred. To obtain values of γ2c, we interpret

these experimental widths as observed widths, given by

�0
2c = 2 γ 2

2cPc(E2)

/
1 +

∑
c′=p,α

γ 2
2c′ (dSc′/dE)E2


 , (1)

provided Bc = Sc(E2).
From Ref. [11], we fit the S factors obtained in the direct

measurements [3,4] with the formulas

S(E) = E e2πη
(
3π/k2

p

)
Pp(E)Pα(E)

×
∣∣∣∣∣∣

2∑
λ,µ=1

γλpγµαAλµ(E)

∣∣∣∣∣∣
2

, (2)

(A(E)−1)λµ = (Eλ − E)δλµ

−
∑

c=p,α

γλcγµc[Sc(E) − Bc + i Pc(E)]. (3)

We take the uncertainty in the Zyskind and Parker [3]S factor
as ±5% for Ep � 213 keV, the same as the uncertainty in the
Redder et al. [4] data for Ep � 107.4 keV. Initially we use the
conventional value ap = 1.45(151/3 + 1) fm = 5.03 fm and
aα = 6.5 fm [15]. Results of fits to the direct data [3,4] are
given in Table I. For each of the cases A, B, and C, only the
parameters of level 1 are adjusted. In row D, the reduced-width
amplitudes for level 2 are also allowed to vary. The fits to
the Zyskind and Parker data [3] have values of the reduced
χ2(χ2

ν = χ2/degree of freedom) much smaller than those of
the fits to the full Redder et al. data [4]. When the reduced
widths for level 2 are also allowed to vary (rows D), the fit
to the Zyskind and Parker data is not improved, while for
the Redder et al. data χ2

ν is reduced appreciably but the fit
is unreasonable because it gives �0

2p = 25 keV and �0
2α =

268 keV. It seems that the Zyskind and Parker data are
consistent with the measured properties of the upper level,
while the Redder et al. data would favor a larger width. For a
better comparison with the Zyskind and Parker fits, Table I also
gives fits to the Redder et al. data for Ep � 418 keV. Again fit
D is unreasonable, while fits A–C are poorer than the Zyskind
and Parker fits. Although the two sets of data agree well over
the peak region, the Redder et al. values of S(E) lie below the
Zyskind and Parker values for Ep <∼ 200 keV, and about half
of χ2 for the Redder et al. fits comes from this region.

For the Zyskind and Parker fits, our values of S(0) ≈
80 MeV b agree with theirs; for the Redder et al. fits, our
values range from 74 to 82 MeV b (omitting the R71 A fit,
for which χ2

ν is very high), which is considerably above their
value of 65(4) MeV b.

The parameter values in Table I are for Bc = Sc(E2), so
that E2 is the resonance energy of the upper level, and its
observed widths are given directly by Eq. (1). Exactly the
same fits may be obtained for any choice of Bc, say B ′

c,
provided the values of Eλ and γλc are adjusted suitably [16],
giving the corresponding primed quantities. For B ′

c = Sc(E′
1),

then E′
1 is the resonance energy of the lower level, and its

observed widths are given by an equation similar to Eq. (1),
but involving primed quantities. Table II gives the values of
these quantities. The values of the energy and widths agree with
those given in the compilation [12] from 12C + α reactions:
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TABLE I. Fits to 15N(p, α0)12C direct data [3,4], using R-matrix two-level, two-channel formulas with Bc = Sc(E2) [ap = 5.03 fm, aα =
6.5 fm].

Case E1 (MeV) γ1p (MeV1/2) γ1α (MeV1/2) E2 (MeV) γ2p (MeV1/2) γ2α (MeV1/2) χ 2
ν S(0) (MeV b)

ZP21a A 0.156 0.639 −0.112 0.9624d 0.522d 0.0635d 0.115 82
B 0.153 0.641 −0.110 0.9624d 0.522d 0.0778d 0.111 77
C 0.155 0.634 −0.110 0.9624d 0.506d 0.0775d 0.106 78
D 0.169 0.583 −0.111 0.9624d 0.374 0.0903 0.114 79

R71b A 0.156 0.650 −0.118 0.9624d 0.522d 0.0635d 5.04 92
B 0.152 0.645 −0.112 0.9624d 0.522d 0.0778d 1.30 80
C 0.154 0.639 −0.112 0.9624d 0.506d 0.0775d 1.58 82
D 0.170 0.543 −0.108 0.9624d 0.247 0.180 0.59 69

R32c A 0.156 0.634 −0.109 0.9624d 0.522d 0.0635d 1.84 78
B 0.153 0.636 −0.108 0.9624d 0.522d 0.0778d 1.39 74
C 0.156 0.630 −0.108 0.9624d 0.506d 0.0775d 1.44 75
D 0.076 0.424 −0.263 0.9624d 0.385 0.666 0.90 56

aZyskind and Parker [3], Ep = 93.1–418 keV, 21 data points.
bRedder et al. [4], Ep = 77.6–810 keV, 71 data points.
cRedder et al. [4], Ep = 77.6–418 keV, 32 data points.
dFixed value.

E1 = 0.314(4) MeV, �1p = 1.1 keV, �1α = 92(8) keV, and
�1 = 99(7) keV.

We now use the R-matrix formula Eq. (4) in Ref. [11] to fit
the THM values of S(E) given in Table III of La Cognata et al.
[1]. To obtain their values of S, La Cognata et al. multiplied
their measured cross section by a 15N + p penetration factor,
calculated with “a channel radius given by the sum of the
radii of the two interacting nuclei.” Apparently [17] this is
ap = 1.40(151/3 + 1) fm = 4.85 fm. In our fits, we are using
ap = 5.03 fm. The R-matrix formula is of the form of Eq. (2),
but with γλp replaced by a feeding amplitude gλ. Only the gλ are
now adjusted; values of the level energies and reduced-width
amplitudes are taken from fits to the direct data [3,4] as given
in Table I. Results are given in Table III. For our preferred fits
A, g2/g

′
1 (which is equivalent to M0

21 in Ref. [1]) is 1.93–1.97,
while γ2p/γ ′

1p (equivalent to γAx(21)) is 0.98–1.00.
Because g2/g

′
1 is quite different from γ2p/γ ′

1p, the THM is
measuring values of a quantity STH(E), which is different from

the S(E) determined in direct measurements. Consequently
the extrapolated values STH(0) in Table III are not values
of S(0). For example, for the parameters in the first row
ZP21 A of Table III, the value of S(0) is 82 MeV b (from
Table I).

Similar fits have also been made with two other sets of
values of the channel radii: ap = 5.03 fm, aα = 5.5 fm, and
ap = 4.5 fm, aα = 6.5 fm. In both cases χ2

ν is little changed
for the Zyskind and Parker fits, and is somewhat smaller for
the Redder et al. and THM fits, while in all cases S(0) and
STH(0) are changed by less than 1 MeV b.

Isospin mixing in the 12.44 and 13.09 MeV 1− levels has
been discussed previously [4–6]. In a two-state isospin-mixing
model, the levels 1 and 2 may be written

|1〉 = α|T = 0〉 + β|T = 1〉,
(4)

|2〉 = β |T = 0〉 − α|T = 1〉, (α2 + β2 = 1).

TABLE II. Fits to 15N(p, α0)12C direct data as in Table I, with Bc = B ′
c = Sc(E′

1).

Case E′
1 (MeV) γ ′

1p (MeV1/2) γ ′
1α (MeV1/2) �0

1p (keV) �0
1α (keV) �0

1 (keV)

ZP21 A 0.314 0.526 −0.122 1.1 96 97
B 0.313 0.527 −0.123 1.1 97 98
C 0.313 0.527 −0.122 1.1 97 98
D 0.312 0.526 −0.122 1.1 96 98

R71 A 0.318 0.534 −0.128 1.1 106 107
B 0.314 0.531 −0.125 1.1 100 101
C 0.314 0.531 −0.125 1.1 101 102
D 0.303 0.519 −0.124 1.1 99 100

R32 A 0.312 0.522 −0.120 1.1 92 94
B 0.311 0.524 −0.121 1.1 94 95
C 0.311 0.523 −0.121 1.1 94 95
D 0.172 0.389 −0.320 0.01 698 698
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TABLE III. Fits to 15N(p, α0)12C THM S factor of La Cognata et al. [1], using R-matrix parameter values
from Table I.

Case g1 g2 χ 2
ν STH(0) (MeV b) g′

1 g2/g′
1 γ2p/γ ′

1p

ZP21 A 0.774 1.073 0.994 60 0.551 1.95 0.99
B 0.738 0.895 0.862 60 0.550 1.63 0.99
C 0.730 0.887 0.883 60 0.550 1.61 0.96
D 0.652 0.696 0.945 60 0.550 1.27 0.70

R71 A 0.766 1.051 0.818 66 0.544 1.93 0.98
B 0.737 0.891 0.780 62 0.548 1.63 0.98
C 0.729 0.882 0.773 62 0.548 1.61 0.95
D 0.574 0.357 0.827 57 0.540 0.66 0.48

R32 A 0.775 1.085 1.111 58 0.552 1.97 1.00
B 0.740 0.908 0.954 58 0.551 1.65 1.00
C 0.732 0.900 0.967 58 0.551 1.63 0.97
D 0.437 0.454 1.705 48 0.395 1.15 0.99

Then γ ′
1α = αγT =0,α and γ2α = βγT =0,α , as given before,

but also γ ′
1p = αγT =0,p + βγT =1,p and γ2p = βγT =0,p −

αγT =1,p. From the values in Tables I and II for the
ZP21 A case, we find α = 0.887, β = −0.462 and γT =0,p =
0.226 MeV1/2, γT =1,p = −0.706 MeV1/2. These values sug-
gest that the T = 0 and T = 1 basic states have quite different
structures, so that the near equality of γ ′

1p and γ2p appears to
be accidental.

III. ROLFS AND RODNEY TYPE FITS

Table IV gives the results of fits to the same data as in
Table I, but using the Rolfs and Rodney [6] expression instead
of the R-matrix formula. In this case, widths are given by
�λc = 2 γ 2

λcPc(Eλ). We use the same penetration factors as
before; the approximations given by Rolfs and Rodney lead to
penetration factors that vary more rapidly with energy for both
proton and α channels. Zyskind and Parker [3] and Redder
et al. [4] do not say how they calculated penetration factors.
Compared with the R-matrix fits in Table I, the Rolfs and

Rodney expression gives similar fits to those of the Zyskind
and Parker data, and generally better fits to the Redder et al.
data, but the χ2

ν values are still much smaller for the Zyskind
and Parker fits than for the Redder et al. fits. The parameter
values in Table IV for the lower level are all much the same,
and all give �1p = 1.1 keV and �1α = 95–102 keV. For the
upper level, the fits D all give unacceptable values; e.g., for
R32, �2p = 317 keV and �2α = 23 keV. The values of S(0) in
Table IV are generally smaller than the corresponding values
in Table I; however, the values of S(0) from our fits to the
Redder et al. data are still appreciably larger than the Redder
et al. value of 65(4) MeV b.

For a comparison with the results of La Cognata et al. [1],
we give in Table V the values from fits to their data when a
Rolfs and Rodney type expression (with gλ replacing γλp) is
used instead of the R-matrix formula. For the preferred case
A, g2/g1 = 1.81–1.84 while γ2p/γ1p = 0.99–1.01. For case
C, for which the assumed values of �2p and �2α are close to
those used by La Cognata et al., we find g2/g1 = 1.52–1.54
and γ2p/γ1p = 0.97–0.98. These may be compared with the
La Cognata et al. values: M0

21 ≈ 1.13 and γAx(21) = 1.1 ± 0.1.

TABLE IV. Fits to 15N(p, α0)12C direct data [3,4], using Rolfs and Rodney [6] two-level expression.

Case E1 (MeV) γ1p (MeV1/2) γ1α (MeV1/2) E2 (MeV) γ2p (MeV1/2) γ2α (MeV1/2) χ 2
ν S(0) (MeV b)

ZP21 A 0.315 0.484 −0.112 0.9624a 0.485a 0.0590a 0.105 78
B 0.314 0.486 −0.113 0.9624a 0.485a 0.0723a 0.170 74
C 0.314 0.486 −0.113 0.9624a 0.473a 0.0723a 0.155 74
D 0.315 0.484 −0.112 0.9624a 1.246 0.0221 0.116 79

R71 A 0.318 0.490 −0.117 0.9624a 0.485a 0.0590a 3.66 86
B 0.314 0.487 −0.114 0.9624a 0.485a 0.0723a 0.772 74
C 0.314 0.488 −0.114 0.9624a 0.473a 0.0723a 0.926 76
D 0.312 0.486 −0.113 0.9624a 0.873 0.0438 0.604 70

R32 A 0.313 0.482 −0.111 0.9624a 0.485a 0.0590a 1.49 75
B 0.312 0.484 −0.112 0.9624a 0.485a 0.0723a 1.16 71
C 0.312 0.484 −0.112 0.9624a 0.473a 0.0723a 1.19 72
D 0.310 0.486 −0.114 0.9624a 0.863 0.0522 1.04 65

aFixed value.
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TABLE V. Fits to 15N(p, α0)12C THM S factor of La Cognata et al. [1], using a Rolfs and Rodney
type expression and parameter values from Table IV.

Case g1 g2 χ 2
ν STH(0) (MeV b) g2/g1 γ2p/γ1p

ZP21 A 0.507 0.921 0.978 59 1.81 1.00
B 0.507 0.776 0.835 59 1.53 1.00
C 0.507 0.772 0.855 59 1.52 0.97
D 0.508 2.461 1.041 59 4.85 2.57

R71 A 0.502 0.912 0.774 63 1.82 0.99
B 0.506 0.780 0.797 59 1.54 0.99
C 0.506 0.775 0.787 60 1.53 0.97
D 0.506 1.314 0.825 58 2.60 1.80

R32 A 0.509 0.934 1.081 57 1.84 1.01
B 0.508 0.788 0.909 57 1.55 1.00
C 0.508 0.784 0.935 57 1.54 0.98
D 0.505 1.148 0.672 57 2.27 1.77

La Cognata et al. did not allow the feeding amplitudes to vary
in fitting their own data with their Eq. (34), but took g1 = γ1p

and g2/g1 = M0
21 = 1.13; with these restrictions for case C, we

find, for the three cases ZP21, R71, and R32, χ2
ν = 1.32, 1.24,

and 1.49, and STH(0) = 68, 70, and 66 MeV b. These are to be
compared with La Cognata et al.’s values, for ap = 5.0 fm, of
χ2

ν = 1.9 and STH(0) = 65.0 MeV b.

IV. CONCLUSION

The differences between the ratio of the feeding amplitudes
and the ratio of the 15N + p reduced-width amplitudes that are
obtained in our best fits to the direct and THM data, as shown
in Tables I and III for the R-matrix fits and in Tables IV and V
for the Rolfs and Rodney type fits, indicate that the THM “S
factor” is indeed a different quantity from the normal S factor

obtained from direct measurements. The La Cognata et al. [1]
peak is appreciably broader than that of either Zyskind and
Parker [3] or Redder et al. [4]; because of this, even though
La Cognata et al. normalized their data to the direct data in
the resonant region Ec.m. = 200–400 keV, the maximum value
of STH(E) found by La Cognata et al. is about 3440 MeV b,
while the direct measurements give about 3930 MeV b [3] and
3950 MeV b [4].

Our best R-matrix fits give S(0) ≈ 80 MeV b, from
both the Zyskind and Parker data [3] and the Redder
et al. data [4]. The values of about 60 MeV b obtained
from fits to the THM data [1] should not be regarded as
values of the same quantity. More generally, in other cases
where two or more resonances contribute significantly to
the low-energy cross section, it seems that the THM would
not necessarily give direct information about the value of
S(0).

[1] M. La Cognata et al., Phys. Rev. C 76, 065804 (2007).
[2] A. Schardt, W. A. Fowler, and C. C. Lauritsen, Phys. Rev. 86,

527 (1952).
[3] J. L. Zyskind and P. D. Parker, Nucl. Phys. A320, 404 (1979).
[4] A. Redder, H. W. Becker, H. Lorenz-Wirzba, C. Rolfs,

P. Schmalbrock, and H. P. Trautvetter, Z. Phys. A 305, 325
(1982).

[5] D. F. Hebbard, Nucl. Phys. 15, 289 (1960).
[6] C. Rolfs and W. S. Rodney, Nucl. Phys. A235, 450 (1974).
[7] C. Angulo et al., Nucl. Phys. A656, 3 (1999).
[8] A. M. Mukhamedzhanov, L. D. Blokhintsev, B. F. Irgaziev,

A. S. Kadyrov, M. La Cognata, C. Spitaleri, and R. E. Tribble,
J. Phys. G: Nucl. Part. Phys. 35, 014016 (2008).

[9] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
[10] K. H. Bray, A. D. Frawley, T. R. Ophel, and F. C. Barker, Nucl.

Phys. A288, 334 (1977).
[11] F. C. Barker, Phys. Rev. C 62, 044607 (2000).
[12] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A564,

1 (1993).
[13] J. M. Morris, G. W. Kerr, and T. R. Ophel, Nucl. Phys. A112,

97 (1968).
[14] T. R. Ophel, A. D. Frawley, P. B. Treacy, and K. H. Bray, Nucl.

Phys. A273, 397 (1976).
[15] R. E. Azuma et al., Phys. Rev. C 50, 1194 (1994).
[16] F. C. Barker, Aust. J. Phys. 25, 341 (1972).
[17] C. Spitaleri et al., Phys. Rev. C 63, 055801 (2001).

044611-5


