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A new type of complex G-matrix interactions including the effect of three-body nucleon-nucleon (NN ) force
is proposed and applied to the folding-model calculation of proton-nucleus elastic scattering at Ep = 65 ∼
200 MeV for 12C, 40Ca, 90Zr, and 208Pb target nuclei. All the measured cross sections and analyzing powers
are well reproduced by the folding potentials with the new complex G-matrix interaction when the effect of
three-body force (TBF) is included so as to give the reasonable saturation property. The inclusion of TBF largely
reduces the strength of real-central component of folding potential at middle and short distances. The TBF effect
is clearly observed in drastic improvements of analyzing powers at forward angles, which is, however, due to
the TBF effect on the real-central potentials, not to the direct effects on the spin-orbit potentials. The calculated
folding potential is shown to be very sensitive to the difference of neutron-density profile of the target nucleus.
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I. INTRODUCTION

It is a long-standing and fundamental subject to understand
nucleon-nucleus (NA) and nucleus-nucleus (AA) interactions
microscopically starting from the basic nucleon-nucleon (NN )
interaction. Because, in general, this corresponds to solving
a very complicated nuclear many-body problem in nuclear
reactions, one needs to rely on an approximate but realistic
and reliable approach to this goal. The folding model approach
based on the lowest-order Brueckner theory will be one of such
approaches. In the Brueckner theory, the so-called G-matrix
is derived from a free-space NN interaction by solving the
Bethe-Goldstone (BG) equation in nuclear matter of uniform
nucleon density. The G-matrix is density-dependent due to the
many-body effects such as the Pauli exclusion principle and the
binding effect and considered to be the effective NN interac-
tion in nuclear medium. When the BG equation is solved under
the scattering boundary condition, the obtained G-matrix is
complex, having real and imaginary parts, and dependent not
only on the density but also on the energy of the incident
nucleon. The folding model converts this G-matrix interaction
in uniform nuclear matter into interactions between finite nu-
clear systems, i.e., nucleon-nucleus (NA) or nucleus-nucleus
(AA) ones, on the basis of the local-density approximation
(LDA). In other words, the G-matrix folding model is one of
the microscopic model to construct complex optical potentials
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for NA or AA system starting from the underlying NN

interaction. The G-matrix folding model for nucleon-nucleus
optical potentials has a long history [1–9], where various kind
of G-matrix interactions were proposed and applied to the
analyses of nucleon-nucleus elastic scattering more or less
successfully. In derivations of these G-matrix interactions,
the adopted NN interaction models are different from each
other.

It is well known that the empirical saturation point in
nuclear matter (the binding energy per nucleon E/A ≈
16 MeV at a saturation density ρ0 ≈ 0.17 fm−3) cannot be
reproduced with any two-body NN interaction in the lowest-
order Brueckner theory (G-matrix approximation). Then, one
needs to introduce a three-body force to reproduce the nuclear
saturation properties, which is indispensable to derive reliably
the equation of state (EOS) and the incompressibility of
high-density nuclear matter.

The importance of three-body force (TBF) is widely un-
derstood in nuclear structure calculations. In nuclear reaction
studies, however, the role of TBF has not been well established,
particularly in nucleon-nucleus elastic scattering. This is partly
due to the fact that the elastic-scattering observables are given
by asymptotic phase shifts of the scattering wave functions
that are not very sensitive to the potential depth in nuclear
interior where nucleon density is close to the saturation value
ρ0 and considerable TBF effects are expected.

As for the nucleus-nucleus (AA) system, the local density
in overlap region ρ1 + ρ2 may exceed the nuclear-matter
saturation density ρ0 and could reach about twice the saturation
density. In such a high-density region, one may expect a clear
evidence of the TBF effect. However, all the existing G-matrix
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interactions applied so far to the nucleon-nucleus (NA) scatter-
ing problems were only designed for densities below the satu-
ration density ρ0 with use of two-body NN interactions only. In
the NA system, the local density does not exceed the saturation
density and, hence, one needed not calculate G matrices up to
higher densities. Therefore, the existing G-matrix interactions
cannot directly be applied to AA scattering and, so far, two
alternative prescriptions have been used in application to AA

systems.
The first one is to introduce a phenomenological density

dependence by hand so as to simulate the density dependence
of original G matrix in low-density regions below the
saturation density and extend it to higher-density regions by
assuming a suitable functional form for the density dependence
(such as DDM3Y [10]) so as to be consistent with the
empirical EOS of nuclear matter [11,12] (In these cases,
however, only the real part of G matrix is used in the
folding calculation of AA optical potential and the imaginary
part is treated in a completely phenomenological way.) The
other prescription is to define a local density by an averaged
value (ρ1 + ρ2)/2 instead of a sum of two densities ρ1 + ρ2

(the frozen-density prescription) so that local densities do
not exceed the saturation density. However, this prescription
apparently underestimate the local density of nucleus-nucleus
system in overlap configurations, which leads to too deep
potential strength at short distances and, hence, one needs
to significantly reduce the potential strength [13]. Therefore,
this prescription may not bring about the expected effects
of three-body force in such situations. However, the former
prescription is known to be quite successful in reproducing
the nuclear-rainbow scattering and related refractive-scattering
phenomena observed in light heavy-ion scattering such as
16O + 16O and 16O + 12C ones [14,15], although the density
dependence adopted there is purely phenomenological as
mentioned above and has no logical relation to the realistic
three-body forces.

Considering such a situation, in the present article we pro-
pose new complex G-matrix interactions, which are applicable
up to high density near twice the saturation density with the
use of two-body as well as three-body NN forces and, as a first
step, we apply them to proton-nucleus elastic scattering and
test their validity. The application to nucleus-nucleus systems
will be reported in a forthcoming article.

In Sec. II, we construct a new type of G-matrix interaction
based on the first-order Brueckner theory and show some
details of the folding-model calculation of the nucleon-nucleus
optical potential. The results and discussion are given in
Sec. III and the final section will be devoted to summary and
conclusions.

II. FORMALISM

A. Derivation of complex G-matrix interaction

On the basis of the method given in Ref. [7], we derive the
G-matrix interactions in symmetric nuclear matter, including
a propagating nucleon with a positive energy E and a
momentum k. Here, the important parts in the formalism are
recaptured.

Let us consider the nucleon pair of the moving nucleon
with momentum k and a bound nucleon with momentum p
in nuclear matter with Fermi momentum kF . Relative and
center-of-mass momenta are given as kr = (k − p)/2 and
K c = k + p, respectively. With a NN interaction V , the
G-matrix equation giving the scattering of the pair in medium
is represented as

G(ω) = V +
∑
q1,q2

V
Q(q1, q2)

ω − e(q1) − e(q2) + iε
G(ω), (1)

where e(q) is a single-particle (s.p.) energy in an intermediate
state with momentum q and Q(q1, q2) is a Pauli blocking
operator defined by

Q(q1, q2)|q1, q2〉 =
{

|q1, q2〉 if q1, q2 > kF ,

0 otherwise.
(2)

The starting energy ω is given as a sum of the energy E(k) of
the propagating nucleon and a single-particle energy e(p) =
h̄2

2m
p2 + U [p, e(p)] of a bound nucleon.
The G-matrix calculations are performed with the so-called

continuous choice for intermediate nucleon spectra, playing
an essential role especially for imaginary parts of G matrices.
This choice means that single-particle energies

e(q) = h̄2

2m
q2 + U [q, e(q)] (3)

are calculated self-consistently not only for bound states
(q � kF ) but also for intermediate states (q > kF ). The
scattering boundary condition iε in the dominator leads to
complex G matrices, summation of which gives the complex
single-particle potential U [q, e(q)]. The plausible way is to use
this self-consistent complex potential in G-matrix equation
(1). Avoiding numerical complexities in such a procedure,
however, we use here its real part UR(q) = Re U [q, e(q)]
in the self-consistency process as well as various works in
the past [1–9]. Then, the energy E and the momentum k

of the propagating nucleon are determined by the dispersion
relation E(k) = h̄2

2m
k2 + Re U [k,E(k)]. If we use the complex

single-particle spectra in the intermediate states, the obtained
imaginary parts in the G matrices may be changed significantly
from those in the present treatment. In our analyses for
p-nucleus scattering, however, the imaginary parts in the
folding potentials derived from G matrices are adapted
phenomenologically to reproduce the observed total reaction
cross sections. Therefore, our important conclusions in the
present work are considered to be rather independent from
theoretical ambiguities of the calculated imaginary parts.

The G-matrix equation (1) is represented in each
(T , S, L, J ) state of a pair. L, S, and J are angular momenta
of relative-orbital, spin, and total states, respectively, and
T denotes isospin. The NN interaction, including tensor
components, is written as V T SJ

LL′ (r). The equation in coordinate
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space is then expressed as

uT SJ
LL′ (r; q) = jL(qr) δLL′ + 4π

∑
L′′

×
∫ ∞

0
r ′2dr ′ FL(r, r ′; q) V T SJ

L′L′′ (r ′) uT SJ
LL′′ (r ′; q),

FL(r, r ′; q) = 1

2π2

∫ ∞

0
q ′2dq ′

× Q̄(q ′, K̄c; kF )jL(q ′r)jL(q ′r ′)

ω − [
h̄2

m
q ′2 + h̄2

4m
K̄2

c + UR(q̄ ′+) + UR(q̄ ′−)
]

(4)

where jL(qr) is a spherical Bessel function for incident mo-
mentum q and uT SJ

LL′ (r; q) is the corresponding scattering wave
function. Q̄, K̄c, and q̄ ′

± are the angle-averaged expressions
for the Pauli operator Q, center-of-mass momentum K c, and
|q ′ ± 1

2 K c|, respectively. Then, the G-matrix elements and the
single-particle potentials are given as follows:

〈q|GT SJ
LL |q〉 = 4π

∑
L′′

∫ ∞

0
r2drjL(qr)

×V T SJ
LL′′ (r) uT SJ

LL′′ (r; q), (5)

U [k,E(k); kF ] = 1

2π2

∫ ∞

0
q2dqZ(q; k, kF )

×
∑

T SJT

1

2
(2J + 1)(2T + 1)〈q|GT SJ

LL |q〉,

(6)

with

Z(q; k, kF ) = 1

kq

[
k2
F − (k − 2q)2

]
. (7)

As an important higher effect, we take into account the
contribution from the so-called starting-energy rearrangement
diagram. Then, the single-particle potential is given as

Ũ [k,E(k); kF ] = (1 − K̄) U [k,E(k); kF ]. (8)

Here, K̄ is the averaged value of the correlation probability
K(p), p being a bound-state momentum. The expression for
K(p) is obtained, if G(ω) included in that for U [p, e(p)] is
replaced by − ∂G(ω)

∂ω
.

The G-matrix interaction represented as a local form in the
coordinate space can be given as follows [2]:

GT SJ
LL′ [r; kF ,E(k)]

=
∫ ∞

0 q2dqZ(q; k, kF )jL′(qr)
∑

L′′ V
T SJ
L′L′′ (r)uT SJ

LL′′ (r; q)∫ ∞
0 q2dqZ(q; k, kF )jL′(qr)jL(qr)

,

(9)

where the q dependence in the G matrix (5) is averaged over
to reproduce the single-particle potential (6) in the first-order
perturbation. The apparent k dependence in the right side
is attributed to the E dependence through the dispersion
relation. The obtained interaction GT SJ

LL (r) is simulated by a
linear combination of Gaussian functions with different range
parameters separately for real and imaginary parts. Although
this Gaussian fitting is more exact for a larger number of range

parameters, we adopt a three-range representation for simplic-
ity. Further sophistication for the fitting is not necessary for
our purpose: We confirmed that the four-range Gaussian fitting
for our G matrices does not lead to any meaningful change
of p-nucleus scattering observables calculated in this work. In
the three-range Gaussian parametrization, the outer two ranges
are determined by fitting the radial form of GT SJ

LL (r) in long-
and intermediate-range regions, and the innermost parts are
fixed so as to reproduce the (T SLJ ) state contributions to the
single-particle potential U . The J -independent central parts
GT S

LL(r) are obtained by averaging GT SJ
LL (r) with the statistical

weight (2J + 1). The LS components also are given by the
adequate linear combinations of GT SJ

LL on J . The L dependence
of GT S

LL(r) is further averaged for each parity state with the
statistical weight (2L + 1)

∫ ∞
0 q2dqZ(q; k, kF )jL(qr)jL(qr)

[2]. The obtained potential GT S
± (r) is refitted in a three-range

Gaussian form, ± denoting even and odd parities.
As for the NN interaction model, we adopt the extended

soft core (ESC) model proposed by T. A. Rijken [16,17].
Though many NN interaction models have been proposed
so far, the recent models reproduce the experimental phase
shifts equally well. The G-matrix interactions derived from
these models as well as ESC are considered to give rise to
similar results for nucleon-nucleus scattering observables. A
reason for adopting ESC here is in the nuclear saturation
problem. As is well known, the empirical saturation point
cannot be reproduced by the lowest-order Brueckner theory
(the G-matrix approximation), even if one use any two-body
NN interaction model. This deficiency can be corrected clearly
by introducing the three-body force (TBF) composed of the
three-body attraction (TBA) and the three-body repulsion
(TBR) [18–20]. The TBA is typically due to two-pion
exchange with excitation of an intermediate � resonance, that
is the Fujita-Miyazawa diagram, which gives an important
contribution at low densities. In this work, we derive the
effective two-body interaction from the TBA, which is added
on our G-matrix interaction, according to the formalism in
Ref. [21]. In our calculations, the pionic form-factor mass is
taken as 420 MeV rather arbitrarily, and the NN correlation
effect for the TBA is not taken into account. Then, the TBA
contribution at normal-density matter is −2.3 MeV. Though
out treatment for the TBA is not so rigorous quantitatively,
the TBA contribution does not bring about meaningful
effects on proton-nucleus scattering observables, as shown
later.

The role of the TBR is far more important than that of the
TBA in our present analyses. The TBR contribution becomes
more and more remarkable as the density becomes higher,
which plays a decisive role for the saturation curve. It is well
known that such a TBR effect is indispensable to obtain the stiff
equation-of-state of neutron-star matter assuring the observed
maximum mass of neutron stars. However, the origin of the
TBR is not necessarily established. In the ESC approach, the
TBR-like effects are represented rather phenomenologically
as the density-dependent two-body interactions induced by
changing the vector-meson masses MV in nuclear matter
according to MV (ρ) = MV exp(−αV ρ) with the parameter
αV . As mentioned in Ref. [17], this TBR-like contribution
introduced in ESC is found to be very similar to that of the
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FIG. 1. Saturation curves for the four types of G-matrix interac-
tions. See text for the meaning of four kinds of curves.

phenomenological TBR in Ref. [18] given as the density-
dependent two-body repulsion.

Figure 1 shows the saturation curves obtained from the
G-matrix calculations with the continuous choice. The solid
curve is obtained from the two-body interaction ESC only, and
the dotted one includes the TBR contribution with αV = 0.18.
The dashed (dot-dashed) curve includes both the contributions
from the TBA and the TBR with αV = 0.18 (αV = 0.11). The
box represents the area in which saturation occurs empirically.
The minimum point of the solid curve is far from this box,
and those of the dashed and dotted ones come close to the box
owing to the TBF contributions. It should be noted that the
rapid-rising behaviors of the dashed and dotted curves at the
high-density region are caused by the TBR contributions.
The TBA contributions are seen in the change from the dotted
curve to the dashed one, which are found to be moderate
as a function of density. This means that the TBA is not
so relevant to forms of nucleon-nucleus folding potentials
differently from the TBR. The nuclear incompressibility K is
an important quantity to characterize the saturation curve. The
obtained values of K are 84, 173, and 260 MeV, respectively,
in the cases of solid, dot-dashed, and dashed curves. The
strong TBR (αV = 0.18) contribution in the last case brings
about the large values of K = 260 MeV, which is consistent
with the constraint by the observed neutron-star mass and
the production data of hard photons in high energy central
heavy-ion collisions [12].

Our Gaussian-parametrized G-matrix interaction is named
CEG07. In this work, we propose the three types of CEG
interactions: CEG07a, CEG07b, and CEG07c. CEG07a is
derived from ESC only, and CEG07b is derived from ESC +
TBA + TBR (αV = 0.18). In the case of CEG07c derived from
ESC + TBA + TBR (αV = 0.11), also the ω-rearrangement
effect is taken into account, which works repulsively. The
repulsive contributions in the cases of CEG07b and CEG07c
are due to the stronger TBR and the moderate TBR added by

the ω-rearrangement effect, respectively. The calculated values
of K̄ in Eq. (8) are parametrized as a function of kF :

K̄ = 0.04113 + 0.05881 kF + 0.02179 k2
F . (10)

We tested also the version derived from ESC+TBR (αV =
0.18) without the TBA contribution. Then, it was found that
all the results for this version are very similar to those for
CEG07b: The role of the TBA is not essential for the quantities
discussed in this article.

B. Folding model potential

Now, we apply the new types of G-matrix interactions,
CEG07a–CEG07c, together with the original version of the
CEG interaction, which we refer to CEG86 hereafter, in
calculating the proton-nucleus optical potential based on
the folding model and examine them by comparing with
experimental data on the cross section and analyzing power
of proton-nucleus elastic scattering.

In general, proton-nucleus optical model potential (OMP)
will be written as

U = VN + iWN + (VLS + iWLS)� · σ + VCoul, (11)

where VN,WN denote the real and imaginary components of
the central part of OMP, whereas VLS,WLS are the real and
imaginary ones of the spin-orbit (LS) part and VCoul is the
Coulomb potential.

In this article, we construct the proton-nucleus OMP based
on the folding model using the three-types of new complex
G-matrix NN interactions discussed in the previous section.
The central and LS parts of the NN interaction give rise to
the central and LS parts of the proton-nucleus folding-model
potential (FMP), respectively.

For the central part, we calculated FMP on the same method
described in Ref. [7]. The proton-nucleus FMP at an incident
energy Ep is given by

VN (r1; Ep) + iWN (r1; Ep)

=
∫ {

ρp(r2)T D
pp

[
s; k(pp)

F ,Ep

]
+ ρn(r2)T D

pn

[
s; k(pn)

F ,Ep

]}
d r2

+
∫ {

ρp(r1, r ′
2)T EX

pp

[
s; k(pp)

F ,Ep

]
+ ρn(r1, r ′

2)T EX
pn

[
s; k(pn)

F ,Ep

]}
j0(ks)d r ′

2 (12)

where ρp and ρn are the proton and neutron densities,
respectively, of the target nucleus. The coordinate s is the
relative vector between the incident proton and a nucleon
in the target nucleus that interacts with the incident proton,
s = r2 − r1. The direct (D) and exchange (EX) parts of
the proton-proton (pp) and proton-neutron (pn) G-matrix
interaction are written as

T D,EX
pp = 1

4 (t01 ± 3t11), (13)

T D,EX
pn = 1

8 (±t00 + t01 + 3t10 ± 3t11), (14)

in terms of tST, the spin-isospin component (S = 0 or 1 and
T = 0 or 1) of the G-matrix interaction. Here, the upper
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and lower part of the double-sign symbols correspond to the
direct (D) and exchange (EX) parts, respectively. The local
momentum k which appears in Eq. (11) is defined as

k =
{

2µ

h̄2 [Ec.m. − VN (r1; E) − VCoul(r1)]

}1/2

, (15)

where µ is the reduced mass of the proton-nucleus system.
For finite nuclei with N �= Z, the proton Fermi momentum
k

(p)
F = (3π2ρp)1/3 is in general different from the neutron

one k
(n)
F = (3π2ρn)1/3. Here, the local densities ρp and ρn

are evaluated at a middle point of the interacting nucleons,
(r1 + r2)/2, throughout the present article. Therefore, when
we evaluate the density dependence of the G-matrix interaction
in Eq. (12), we use different Fermi momenta for the pp in-
teraction T D,EX

pp [s; kpp

F , Ep] and the pn one T D,EX
pn [s; kpn

F , Ep]
following the original GEG86 prescription [8] as

k
(pp)
F = k

(p)
F , (16)

k
(pn)
F = 1

2

[
k

(p)
F + k

(n)
F

]
. (17)

The density matrix ρ(r, r ′) is approximated in the same
manner as in Ref. [22];

ρp(r, r ′) = 3

keff
F,pp · s

j1
(
keff
F,pp · s

)
ρp

(
r + r ′

2

)
, (18)

ρn(r, r ′) = 3

keff
F,pn · s

j1
(
keff
F,pn · s

)
ρn

(
r + r ′

2

)
, (19)

where keff
F,pp and keff

F,pn are the effective Fermi momenta [23]
defined by

keff
F,pp =

{(
3π2ρp

)2/3 + 5Cs

[∇ρ2
p

]
3ρ2

p

+ 5∇2ρp

36ρp

}1/2

, (20)

keff
F,pn = 1

2


{

(3π2ρp)2/3 + 5Cs

[∇ρ2
p

]
3ρ2

p

+ 5∇2ρp

36ρp

}1/2

+
{

(3π2ρn)2/3 + 5Cs

[∇ρ2
n

]
3ρ2

n

+ 5∇2ρn

36ρn

}1/2

 , (21)

where we adopt Cs = 1/4 following Ref. [24]. The different
value of Cs = 1/16 was also suggested [24]. So, we have
tested the latter value but we have found that no significant
difference from the case with Cs = 1/4 is observed in the
present proton-nucleus scattering.

When we calculate the imaginary part of FMP, the imagi-
nary part of G-matrix interaction is multiplied by the ratio of
the k mass to the bare mass following the standard prescription
of Ref. [8,25];

Im T D,EX → mk

m
Im T D,EX, (22)

where m is the bare mass of a nucleon and mk is the k mass
defined in Ref. [5]. This leads to a reduction of the imaginary
part of folding potential at short distances by about 20–30%
at low energies and about 10% at high energies. However, the
effect of k mass is found to show only a negligible effect on

the cross sections and analyzing powers of the proton-nucleus
elastic scattering discussed in the present article.

The proton-nucleus spin-orbit (LS) potential is also calcu-
lated by folding the LS part of the G-matrix interaction with the
nucleon density of the target nucleus, which is also composed
of the direct and exchange parts;

ULS(r1; Ep) = UD
LS(r1; Ep) + UEX

LS (r1; Ep). (23)

The direct part of the folding-model LS potential is
calculated in the same way as in Ref. [4];

UD
LS(r1;Ep) = 1

4r2
1

∫
r1 · (r1 − r2)

{
ρp(r2)T D

LS,pp

[
s;k(pp)

F ,Ep

]
+ ρn(r2)T D

LS,pn

[
s; k(pn)

F ,Ep

]}
d r2. (24)

The exchange part is also divided into contributions from
protons and neutrons in the target nucleus as

UEX
LS (r1; Ep) = UEX

LS,p(r1; Ep) + UEX
LS,n(r1; Ep). (25)

In evaluating the exchange part, we use the modified LS folding
method described in Ref. [4], except that, in our calculation,
Eq. (15) of Ref. [4] is replaced by the following corrected
expression,

UEX
LS,α(r1; Ep)� · σ

= − ih̄

4

∫
d r2T

EX
LS,pα

[
s; k(pα)

F ,Ep

]
(s × ∇1) · σ 1

× ρα

(∣∣∣∣r1 + 1

2
s

∣∣∣∣
)

3

k
(pα)
F · s

j1
[
k

(pα)
F · s

]
eik·s

+ ih̄

4

∫
d r2T

EX
LS,pα

[
s; k(pα)

F ,Ep

]
ρα

(∣∣∣∣r1 + 1

2
s

∣∣∣∣
)

× 3

k
(pα)
F · s

j1
[
k

(pα)
F · s

]
(s × ∇2) · σ 1e

ik·s, (26)

where α represents p or n. The derivative with respect to the
coordinate s,∇s , should act also on the wave function φ(r2),
whereas in Ref. [4] ∇sφ(r2) was ignored. Equation (26) is then
finally reduced, by the same method as in Ref. [4], to

UEX
LS,α(r1; Ep)

= π

∫
dss3

[
2j0(ks)

r1
ρ

(α)
1 (r1, s) + j1(ks)

2k
δ

(α)
0 (r1, s)

]
, (27)

where

δ
(α)
0 (r1, s)

= 1

2

∫ +1

−1
dω

T EX
LS,pα

[
s; k(pα)

F ,Ep

]
x

×
{

3

keff
F,pα · s

j1
(
keff
F,pα · s

) d

dx
ρα(x)

∣∣∣∣
x=

√
r2

1 +s2/4+r1sω

+ sρα(x)
d

dx
keff
F,pα(x)

∣∣∣∣
x=

√
r2

1 +s2/4+r1sω

× d

dy

[
3

y
j1(y)

] ∣∣∣∣
y=keff

F,pα ·s

}
, (28)
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ρ
(α)
1 (r1, s)

= 1

2

∫ +1

−1
dωωT EX

LS,pα

[
s; k(pα)

F ,Ep

] 3

keff
F,pα · s

× j1
(
keff
F,pα · s

)
ρα(y)

∣∣
y=

√
r2

1 +s2/4+r1sω
. (29)

The LS part of the G-matrix interaction is also written as
follows;

T
D,EX

LS,pp = ±t11
LS, (30)

T
D,EX

LS,pn = 1
2

(
t10
LS ± t11

LS

)
. (31)

The meaning of the above expressions is similar to that of
Eq. (13) and (14).

III. RESULTS AND DISCUSSION

A. Calculated folding model potentials

We now show the calculated FMP and its application
to the proton elastic scattering by various target nuclei,
12C, 40Ca, 90Zr, and 208Pb, observed at incident energies of
Ep = 65 ∼ 200 MeV. For 12C, the nucleon (point) densities
are taken from the 3α-RGM calculation by Kamimura [26]
and for 40Ca, 90Zr, and 208Pb we adopt the density-dependent
Hartree-Fock (DDHF) calculation by Negele [27]. The DDHF
calculation provides with the different density profiles for
protons and neutrons. For all the target nuclei discussed here,
the adopted proton density is known to well reproduce the
electron-scattering experiment if it is converted to the charge
density by folding the finite size of proton charge. Needless to
say, it is essential to distinguish the charge-density distribution
from the proton point-density distribution [the distribution of
the center-of-mass (c.m.) of protons] when it is used in the
folding model calculation.

First, we compare the potentials obtained by the folding
of different types of G-matrix interactions. We have tested
four types of interactions: CEG86 that is the original CEG-
type interaction proposed in Ref. [8] and three types of
new complex G-matrix interactions (CEG07a, CEG07b, and
CEG07c). Figures 2 and 3 show the real and imaginary parts
of the central and LS components of FMP for 12C and 208Pb
target nuclei calculated at a proton incident energy of Ep =
200 MeV. The effects due to the use of different types of
G-matrix interactions are very similar for the two target
nuclei, although the detail shapes and magnitudes of FMP
are rather different between the two target nuclei, which is
natural reflecting the different size and density distribution of
the nuclei. The main characteristics of these figures are very
similar for other target nuclei or different incident energies
investigated here.

The effect of the TBF is clearly seen in the short-
and medium-range region of the real central potential by
comparing the CEG86 and CEG07a results with the GEC07b
and CEG07c ones, the latter two containing the TBR and the
TBA contributions, as mentioned before. It is found that the
large contribution of TBF in the real central FMP is mainly
due to the TBR contribution, whereas the TBA contribution
is found to be small in the real central part. As for the
imaginary part, the results with CEG07a and CEG07b have
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FIG. 2. The real and imaginary parts of the central and LS
components of FMP obtained by four types of G-matrix interactions
for the 12C target evaluated at Ep = 200 MeV. The dot-dashed,
dotted, dashed, and solid curves are the results with CEG86, CEG07a,
CEG07b, and CEG07c, respectively.

a very similar shape over the whole radial range. However,
this does not necessarily imply that the TBF effect on the
imaginary FMP is negligible. In fact, it is found that the
individual contributions of TBR and TBA to the imaginary
FMP, which are not separately shown here, are rather large but
they have opposite effects and cancel out, leading to an almost
negligible effect as a whole in the imaginary central FMP. In
fact, this balance disappears in the case of CEG07c in which a
weaker TBR (aV = 0.11) effect compared with the CEG07b
(aV = 0.18) case is included, although CEG07c also contains
the ω-rearrangement effect.
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FIG. 3. The same as described in the caption to Fig. 2 but for the
208Pb target.
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FIG. 4. The energy dependence of FMP for the 40Ca target with
the CEG07c interaction. The dot-dashed, double-dot-dashed, dotted,
dashed, and solid curves are for the proton incident energy of Ep =
50, 80, 135, 160, and 200 MeV, respectively.

However, in the LS part of FMP, little difference is observed
among the four types of interactions, except that CEG86 gives
rise to a noticeable deviation in the imaginary LS part from
those with other three interactions. One should note, however,
that the absolute magnitude of the imaginary LS potentials
themselves are very small (note the different vertical scales)
and, in fact, it is found that the deviation of the imaginary
LS potential for CEG86 gives rise to no visible effect on the
proton-nucleus scattering observables.

Next, we show the energy dependence of FMP in the
cases of 40Ca and 90Zr targets, as examples. Figures 4
and 5 show the energy dependence of the real and imaginary
parts of the central and LS components of FMPs calculated
with the CEG07c interaction in the energy range of Ep = 50 ∼
200 MeV. The strength of the real part decreases as the
increase of proton incident energy both in the central and
LS components, whereas the strength of the imaginary part
increases with the incident energy except in the nuclear surface
region, which is consistent with the tendency of empirical
optical potentials as well as microscopic optical potentials
with other interaction models [4,6,9].

B. Total reaction cross sections

Next, we apply these FMPs to the calculation of proton-
nucleus elastic scattering as well as the reaction cross sections
for 12C, 40Ca, 90Zr, and 208Pb targets in the energy range
of Ep = 65 ∼ 200 MeV. In the practical application to the
analysis of experimental observables, one needs to slightly
modify the present FMP. Now, we have adopted the G-matrix
interaction based on the lowest-order Brueckner theory in
nuclear matter and constructed the proton-nucleus optical po-
tential in the local-density approximation (LDA), in which the
non-local exchange part has also been localized approximately
in a standard way [4,7,8], as shown in the previous section.
This kind of approach is known to somewhat overestimate
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FIG. 5. The same as described in the caption to Fig. 4 but for the
90Zr target.

the imaginary part of optical potential [6,7] and one has to
introduce a renormalization (reduction) factor to the imaginary
part, which is also the case with the present FMPs. So, we
introduce the renormalization factor, say NW, to the imaginary
part of calculated FMP, which is taken to be common to the
central and LS components, as

Uopt = VN + iNWWN + (VLS + iNWWLS)� · σ + VCoul, (32)

and we fix the factor NW so that the renormalized FMP
reproduces the experimental data of proton-nucleus total
reaction cross sections.

Figure 6 shows the total reaction cross sections measured
at Ep = 50 ∼ 200 MeV for 12C, 40Ca, 90Zr, and 208Pb targets
which are compared with the calculated ones with the use
of FMPs based of the four types of G-matrix interactions.
It should be emphasized that, for each type of G-matrix
interaction, the measured reaction cross sections are well
reproduced by FMP with a single value of NW , irrespective
of the proton incident energy Ep or target nucleus. The
optimum value of NW for each type of G-matrix interaction
is summarized in Table I. These values are consistent with
the different strength of the imaginary part of original FMPs
shown in Figs. 2 and 3. For example, the same values for
CEG07a and CEG07b are due to the almost same strength
and shape of FMPs calculated with these interactions, while
the largest value of NW for CEG86 reflects the smallest
strength of imaginary part of FMP obtained by this interaction.

TABLE I. Renormalization factors (NW ) for the imaginary part
of the FMP needed to reproduce the total reaction cross-section data,
shown in Fig. 6, with FMPs generated by different types of complex
G-matrix interactions.

Interactions CEG86 CEG07a CEG07b CEG07c

NW 0.80 0.65 0.65 0.70
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FIG. 6. Energy dependence of the total reaction cross sections for
the proton-12C, 40Ca, 90Zr, and 208Pb systems. Experimental data are
from Refs. [28–30]. The meaning of the curves are the same as in
Fig. 2.

These results suggest that the present FMP with the fixed
renormalization factor given in Table I for the imaginary part
has a predicting power of total reaction cross sections for other
target nuclei and/or incident energies at least within the range
investigated here, AT = 12 ∼ 208 and Ep = 50 ∼ 200 MeV.

C. Differential cross sections and analyzing powers

Once the renormalization factor for the imaginary part
is fixed by the constraint of reproducing the reaction cross
sections, no freely adjustable parameter is left in the present
model in comparison with the experimental data for proton-
nucleus elastic-scattering cross sections and analyzing powers.
Therefore, it may become possible to judge which G-matrix
interaction is the most successful in the description of proton-
nucleus reactions and to estimate the role of effects included
in the G-matrix interactions, such as the TBF as well as the
density dependence that is closely related to the saturation
property of the NN interaction in nuclear matter seen in
Fig. 1.

Figure 7 shows the differential cross sections for proton
elastic scattering by the 12C target at Ep = 64.9, 74.8, 83.4,
96, 122, 160, 185, and 200 MeV. All the cross sections
calculated with the four types of FMPs well reproduce the
angular distributions of the experimental data up to backward
angles. Although minor difference among the calculated
ones as well as from the experimental data are observed
in the middle and backward angular regions, it is rather
difficult to judge which interaction is apparently better than
others only from the comparison with the cross section data.
Here, we should mention that the results with the CEG86
interaction (dot-dashed curves shown in Fig. 7) give better
fits to the experimental data compared with those reported
in the original article [8] where the CEG86 interaction was
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FIG. 7. Differential cross sections for proton elastic scattering by
12C at Ep = 64.9, 74.8, 83.4, 96, 122, 160, 185, and 200 MeV, which
are compared with the folding model calculations with the four types
of effective interactions. The meaning of the curves are the same as
in Fig. 2. Experimental data are taken from Refs. [31–35].

proposed. This is due to the correct treatment of folding
procedure in the exchange part of the spin-orbit potential that
was already mentioned in the previous section concerning to
Eqs. (26)–(29).

Figure 8 shows the analyzing powers for proton elastic scat-
tering by 12C target at Ep = 64.9, 74.8, 83.4, 122, 160, 185,
and 200 MeV. For the lowest three energies, no significant
difference is observed among the calculated results with
the four types of interactions as well as the experimental
data, except for the most backward angles. For energies over
100 MeV, however, a clear difference is observed at forward
angles, say θc.m. = 10 ∼ 50◦. Especially for Ep = 122 and
160 MeV, the results with CEG07b and CEG07c that include
the TBF effect show apparently better agreement with the
experimental data in this angular range than those with
the CEG86 and CEG07a. This result is a clear indication of
the important role of TBF in proton elastic scattering.

It should, however, be noted that the large effect of TBF
on the analyzing power is not due to the change of the LS
part of folding potential with the inclusion of TBF but mainly
due to the change of the real-central component of the folding
potential, the strength of which is most strongly affected by
the inclusion of TBF, particularly the TBR contribution as
already discussed concerning to the results shown in Fig. 2.
In fact, a “modified CEG07b” potential in which only the
real-central component is artificially replaced by that obtained
by the CEG07a interaction produces the analyzing powers
that are very close to the CEG07a results (the dotted curves in
Fig. 8). One should note that the analyzing power is composed
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FIG. 8. Analyzing powers for proton elastic scattering by 12C
at Ep = 64.9, 74.8, 83.4, 122, 160, 185, and 200 MeV, which are
compared with the folding model calculations with the four types
of effective interactions. The meaning of the curves are the same as
in Fig. 2. Experimental data are taken from Refs. [31,33–35].

of the product of vector amplitude that is mainly governed
by the LS potential and the scalar amplitude that is mainly
governed by the central potential and, in the present case, the
large change of the real-central component of folding potential
with the inclusion of TBF is the main source of the drastic
improvement of the analyzing power at forward angles.

Similar analyses have been made for the scattering by
other target nuclei. Figure 9 shows the cross sections and
the analyzing powers of the elastic scattering by 40Ca at
Ep = 65 ∼ 200 MeV. As in the case of 12C target, no essential
difference is observed in cross section calculated with the use
of different effective interactions and all the calculations well
reproduce the measured cross sections except those at large
angles for the scattering at Ep > 100 MeV. It is noticed that
the results with the CEG07c interaction, which contains the
effect of ω-rearrangement term, show a slight but systematic
deviation from those with other three interactions around
backward angles.

However, a very clear difference is observed in the calcu-
lated analyzing powers at small angles (θc.m. < 30◦), especially
in the cases of Ep = 152 and 181.5 MeV, where CEG86 and
CEG07a with no TBF included completely fail to reproduce
the experimental data, whereas CEG07b and CEG07c with
TBF give perfect fits to the data. Again, the clear effect of
TBF (mainly TBR effect) on the analyzing power originates
from the large effect of TBF on the real-central component of
the folding potential, not on the LS component, as in the case
of the 12C target.
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FIG. 9. The same as described in the captions to Figs. 7 and
8 but for the 40Ca target at Ep = 65, 80, 135, 152, 160, 181.5, and
200 MeV. Experimental data are taken from Refs. [36–40].

Figures 10 and 11 show the similar results for heavier
targets, 90Zr and 208Pb, in the similar range of proton incident
energies. Overall good agreements with the data are obtained
by all the interaction models. In a closer look at the detail
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FIG. 10. The same as Fig. 7 but for cross sections on the 90Zr tar-
get at Ep = 65, 80, 100, 135, 160, and 185 MeV and the 208Pb target
at Ep = 65, 80, 100, 155, 160, 182, and 200 MeV. Experimental data
are taken from Refs. [36,38,41–43].
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FIG. 11. The same as described in the caption to Fig. 10 but for
analyzing powers. Experimental data are taken from Refs. [36,39,42,
43].

comparison, the CEG07c interaction gives a better fit to the
cross-section data at middle and large angles at higher energies,
whereas at lower energies the calculated cross sections slightly
shift to backward angles compared with those calculated with
other three interactions as well as with the experimental data.
This kind of tendency has already started to appear in the case
of 40Ca target (Fig. 9) and seems to prominent as the target
mass number increases. The reason for the angular shift of the
CEG07c interaction for low-energy scattering by heavy targets
is not clear now.

Again, a clear effect of TBF is seen at forward angles of
analyzing powers for higher-energy scattering, especially at
Ep = 135 and 160 MeV, in the case of the 90Zr target. For
the 208Pb target, however, no clear effect of TBF is observed
even in the analyzing powers, although CEG07b and CEG07c
still give better agreements with the experimental data in the
forward angle region. In the case of the 208Pb target, the strong
Coulomb potential may conceal the effect of TBF in nuclear
folding potential that most strongly appears in the inner part
of real-central component of folding potential as shown in
Figs. 2 and 3.

D. Sensitivity to the neutron density distribution

In general, it is rather difficult to directly probe the neutron
density distributions in nuclei compared with the proton ones
that can be studied by the electromagnetic probes such as
electron scattering and energy shifts of muonic atoms. The
folding-model analysis of the proton elastic scattering is one of
the possible probe to survey the neutron density distributions.
We here examine how the present FMC is sensitive to the
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FIG. 12. Comparison of the two types of neutron densities of
208Pb in the linear scale (upper panel) and in the logarithmic scale
(lower panel). The solid curves (labeled as PBN1) show the neutron
density obtained by the DDHF calculation [27] and the dotted curves
(labeled PBN2) are the neutron density assumed to have the same
profile as the proton density obtained by the DDHF calculation.

choice of neutron density distribution and demonstrate it in the
case of 208Pb target with the use of the CEG07c interaction.
In this test calculation, we use two types of neutron densities.
One is the neutron density obtained by the density-dependent
Hartree-Fock (DDHF) calculation by Negele [27], which we
have already used in the calculations shown in Figs. 10
and 11, and the other is a simple and often used prescription
that the neutron density distribution is assumed to be the same
as the proton one, namely the neutron density being assumed
to be proportional to the proton one as ρn = (N/Z)ρp. We
refer to the former as PBN1 and to the latter as PBN2. In
both calculations, we use the same proton density obtained
by the DDHF calculation [27] which reproduces the electron-
scattering experiment as already mentioned. The two kinds of
neutron densities are compared in Fig. 12 both in the linear
and logarithmic scales. The two density profiles have rather
different shapes in the middle- and short-range region and they
also have different surface diffuseness, reflecting the difference
between the proton and neutron density profiles predicted by
the DDHF calculation. In addition, the root-mean-square (rms)
radius of PBN2 is 5.37 fm that is smaller than that of PBN1
(5.58 fm) by 0.21 fm.

The difference of neutron densities clearly appears in
the calculated cross sections and analyzing powers of the
proton elastic scattering that are shown in Fig. 13 in the
case of Ep = 182 MeV. The angular distribution obtained
with PBN2 slightly shifts toward backward angles, which
is mainly due to the smaller rms radius as well as the
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FIG. 13. Comparison of the calculated cross-section and analyz-
ing power of proton elastic scattering at Ep = 182 MeV by 208Pb
with the use of PBN1 and PBN2 neutron densities together with the
CEG07c interaction.

smaller surface diffuseness, and it is clear that the result
with PBN1 gives better agreement with the experimental
data. This result demonstrates the importance of using a
more realistic neutron density in the folding-model analysis of
proton scattering. In other words, the proton elastic scattering
is very sensitive to the detailed shape of neutron density
distribution in the target nucleus and one could extract detailed
information about the neutron density distribution in nuclei
from a precise comparison of the folding-model calculation
with the experimental data of proton elastic scattering.
This is of particular importance when the folding model is
applied to probe unknown neutron density as well as pro-
ton density distributions in proton-rich/neutron-rich unstable
nuclei.

IV. SUMMARY AND CONCLUSIONS

In this article, we have proposed three kinds of new complex
G-matrix interactions, CEG07a, CEG07b, and CEG07c, the
latter two of which include the effect of TBF to make
the saturation curve in nuclear matter more realistic in the
high-density region. The important role is played by the TBR,
which works more and more repulsively in the higher-density
region. This effect is known to be indispensable for a stiffening
of the EOS in neutron-star matter, assuring the observed
maximum mass of neutron stars. When the G-matrix inter-
actions are applied to the double-folding-model calculation
of nucleus-nucleus optical potentials, the density dependence
of G-matrices at densities higher than the saturation density is
critically important and the TBR effects are expected to appear
more dramatically. Such a situation will be investigated in our
future works.

We then apply the new types of complex G-matrix interac-
tions to the calculation of proton-nucleus optical potentials
within a framework of FMP in LDA for the cases of

12C, 40Ca, 90Zr, and 208Pb target nuclei at proton incident
energies of Ep = 65 ∼ 200 MeV and compare them with the
results obtained by the use of original version of CEG-type
interaction (which we call CEG86) [8]. The effect of TBF
is clearly seen in the real-central component of the folding
potential, the strength of which is largely reduced by the TBF
effect in the middle- and short-range region of the potential,
whereas the effect does not strongly affect the LS part of
the folding potential. Among the TBF effect, the repulsive
component of TBF (the TBR component) is found to dominate
the attractive one (the TBA one). The ω-rearrangement effect
included in CEG07c slightly reduces the strength of imaginary
part of the central potential. These trends are common to all
the target nuclei as well as to all the proton incident energies
investigated here.

We then calculate the proton-nucleus reactions observables,
namely the total reaction cross sections as well as the
differential cross sections and analyzing powers of the elastic
scattering, and compare them with the experimental data for
the 12C, 40Ca, 90Zr, and 208Pb target nuclei observed at Ep =
65 ∼ 200 MeV. To compare with the experimental data, we
first introduce a renormalization factor NW for the imaginary
part of FMP and the NW value for each G-matrix interaction
is determined to reproduce the observed total reaction cross
section. It is found that a single NW value for each G-matrix
interaction gives a reasonable fit to the reaction cross-section
data for all the target nuclei and incident energies investigated
here. Therefore, when we calculate the elastic-scattering cross
sections and analyzing powers, we use the fixed value of NW

listed in Table I for each G-matrix interaction. Namely once we
fix the NW value from the reaction cross sections, there exists
no adjustable parameter in the calculation of elastic-scattering
observables.

From the comparison with the experimental data for elastic
scattering, FMPs calculated with CEG07b and CEG07c are
apparently superior to those with CEG07a and CEG86,
indicating the important role of the TBF that is included in
the former two interactions. The TBF effect is clearly seen,
especially in the drastic improvement of the fit to the analyzing
power data at forward angles, which is, however, due to the
TBF effect on the real-central component of FMP, not on the
LS component as discussed in detail.

We have also tested the sensitivity of FMP and proton-
nucleus elastic-scattering observables to the choice of neutron
density distribution in the target nucleus in the case of 208Pb
target and we have shown an importance of using a realistic
neutron density profile that may be rather different from the
proton one for heavy targets as well as for proton-rich/neutron-
rich unstable nuclei.

As mentioned in the Introduction, our final goal is to
construct a realistic as well as reliable microscopic model
for predicting the nucleus-nucleus (AA) complex optical
potential (or, in general, nucleus-nucleus interactions to be
used in nuclear-reaction calculations such as distorted-wave
Born approximations and coupled-channels calculations) and
to establish a consistent definition of local density for AA

system based on the reliable G-matrix interaction having a
realistic density dependence over the wide range of nucleon
density consistent with the realistic nuclear-matter property.
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In the present article, we have proposed new realistic complex
G-matrix interactions that are calculated starting from a
free-space NN interaction called the ESC force. Inclusion
of the three-body force makes the saturation curve in nuclear
matter more realistic up to the high-density region. According
to the successful application to the proton-nucleus elastic
scattering over the wide range of incident energies and target
nuclei presented in this article, we may have a good reason
to expect the present new G-matrix interaction to be a
promising candidate of the effective interactions for our final
goal mentioned above. In fact, we have already tested the
present G matrix in some cases of nucleus-nucleus scattering
systems with a considerable success. A full detailed analysis

of application to the nucleus-nucleus systems is underway
by the present authors and the results will be reported in a
forthcoming article.
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