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Analytical expression for the α-decay half-life and understanding the data including very long
life-times and superheavy nuclei
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An analytically solvable composite potential that can closely reproduce the combined potential of an α +
nucleus system consisting of attractive nuclear and repulsive electrostatic potentials is developed. The exact
s-wave solution of the Schrödinger equation with this potential in the interior region and the outside Coulomb
wave function are used to give a heuristic expression for the width or half-life of the quasibound state at the
accurately determined resonance energy, called the Q value of the decaying system. By using the fact that for
a relatively low resonance energy, the quasibound state wave function is quite similar to the bound state wave
function where the amplitude of the wave function in the interaction region is very large as compared to the
amplitude outside, the resonance energy could easily be calculated from the variation of relative probability
densities of inside and outside waves as a function of energy. By considering recent α-decay systems, the
applicability of the model is demonstrated with excellent explanations being found for the experimental data of
Q values and half-lives of a vast range of masses including superheavy nuclei and nuclei with very long lifetimes
(of order 1022 s). Throughout the application, by simply varying the value of a single potential parameter describing
the flatness of the barrier, we obtain successful results in cases with as many as 70 pairs of α + daughter nucleus
systems.
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I. INTRODUCTION

Recent experiments on α decay [1–12] provide good
precision data of Q values and decay half-lives for many
α + daughter nucleus systems involving nuclei with proton
number ranging from Z = 52 to 118. In these host of data
listed in Ref. [13], there are results of decay half-lives as
long as 1022 s, representing extremely long lived states. The
explanation of these data has led to new theoretical studies on
α decay, for example, within the relativistic mean-field theory
[14] and using the density-dependent M3Y (DDM3Y) inter-
action [15,16], the generalized liquid drop model (GLDM)
[17,18], the Skyrme-Hartree-Fock mean-field model [6],
and phenomenological formulations [13,19]. If α emission
from a parent nucleus is understood as a two-body quan-
tum collision phenomenon involving the daughter and the
parent nuclei, a proper theoretical approach to calculate Q

values and half-lives requires a reliable input of α-daughter
nucleus potential. By using the latest development in mean-
field theory methods, many potentials for several pairs of
α-daughter nucleus system have become available. Once
such a potential is obtained, the α-decay process can be
subjected to a quasi-molecular decay path, which is governed
by a composite potential with a pocket followed by a
barrier resulting from the combined effect of the repulsive
Coulomb force and the attractive nuclear force. As a first
step toward making a theoretical estimate of Q value and
decay half-life, we may mention the well-known WKB type
semiclassical approximation [20], where one obtains the
energies of long-lived states of the effective potential. Then
one evaluates the probability of decay of the α-daughter
nucleus systems. The product of the constant assault fre-
quency and the barrier penetrability calculated approximately
by the WKB formula [20] gives the results of the decay

constant and hence the mean life and half-life of decay. This
method has certain problems related to the frequency factor
[21].

However, the decaying state could be understood as the
resonance state of the α-daughter nucleus two-body system
within the framework of quantum scattering theory, where
the resonance state is understood as a positive energy state
with finite and relatively long lifetime or, equivalently, a
narrow width. The most rigorous definition of a resonance
state and its width can be obtained from the analytic S

matrix (SM) theory of potential scattering. In this formulation,
resonances are identified as poles of the SM in the lower half
of the complex momentum (k =

√
2mE/h̄2 with energy E and

reduced mass m) close to the real axis. The complex pole
position k = kr − iki gives both energy [Er = h̄2

2m
(k2

r − k2
i )]

and width (� = h̄2

2m
4krki) of the resonance state. This approach

has been applied to the study of resonances in several
applications [20,22–24]. Though the SM method is rigorous
in principle, it suffers from serious problems in searching the
poles, particularly in the case of the α-nucleus system where
we deal with the Coulomb-nuclear problem. As both the height
and the spatial width of the potential barrier at the required Q

value are quite large, the magnitude of the imaginary part
(ki) of the pole position (kr − iki) is infinitesimally small
(typically ki

kr
is 10−18 or less). Further, the S matrix has a

zero at k = kr + iki . Thus, the S matrix jumps from pole
position to zero position very rapidly and creates serious
problems in reaching saturation in the iterative process in
the SM pole search method. Further, the irregular Coulomb
wave function found in the expression to decide pole position
of the s-wave Coulomb-nuclear S matrix takes exponentially
large values and hence creates a problem in searching this
pole.
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In view of these difficulties in the numerical computation
for resonance position and width in SM theory, we have to
consider other quantal methods for the α-nucleus problem.
In recent years methods have been developed [21,25–27]
to calculate narrow widths or corresponding long half-lives
for the decaying states by utilizing the behavior of these
quasibound state wave functions (WFs). These methods are
quite appropriate for the calculation of extremely narrow
widths of decaying systems governed by the Coulomb-nuclear
interaction. As the WF method depends critically on the nature
of the wave functions, an unambiguous estimate of the wave
function is essential in these calculations.

In this paper, we simulate the Coulomb-nuclear potential of
the α-nucleus system by a versatile potential expressed with
some parameters that account for the depth, range, diffuseness,
flatness, position, and height of the resultant potential showing
a pocket followed by a barrier. With this potential the s-wave
Schrödinger equation is solved for the wave function. This
exact wave function within the nuclear interaction region is
properly matched with the pure Coulomb wave function found
appropriate in the outer region of the barrier at a radial position
within the barrier region and an analytical expression for the
decay width or half-life is obtained as per the prescription
of the WF method. We use the confinement property and the
bound-state-like behavior of the wave function at the resonance
state to estimate the energy of resonance or the Q value of
the decaying state unambiguously. The corresponding decay

half-life is calculated by straightforward computation of the
analytical expression previously stated.

The formulation is applied to the simultaneous estimate
of Q values and half-lives of a host of α-nucleus systems
that include very heavy nuclei also. We need to fix the values
of several potential parameters that describe the potential of
the decaying system. These values may vary from system to
system while bringing close agreement of the calculated results
of Q values and half-lives with the respective measured data.
However, we have been able to find a global set of values for
these parameters, barring one parameter (λ1) that accounts for
the flatness of the barrier. Having fixed the values for all other
parameters, we vary the value of the parameter λ1 within a
specified range 1 < λ1 < 2, enabling us to explain the data of
all these systems or nuclei with remarkable success.

In Sec. II, we describe the potential used in the calculation
and present the formulation for an analytical expression of
the decay half-life. The experimental results of Q values and
half-lives of several nuclei are explained quantitatively by our
calculated results in Sec. III. Section IV contains the summary
and conclusion.

II. FORMULATION

A. The potential

The proposed potential [23] as a function of radial variable
r is given by

V (r) =
{

V01
{
λ2

1

[
B0 + (B1 − B0)

(
1 − y2

1

)] + ξ1
}

if 0 < r < R1,

V02
{
λ2

2B2
(
1 − y2

2

) + ξ2
}

if r � R1,
(1)

where

ξ1 =
(

1 − λ2
1

4

) [
5
(
1 − λ2

1

)
y4

1 − (
7 − λ2

1

)
y2

1 + 2
](

1 − y2
1

)
,

ξ2 =
(

1 − λ2
2

4

) [
5
(
1 − λ2

2

)
y4

2 − (
7 − λ2

2

)
y2

2 + 2
](

1 − y2
2

)
.

Here, V01 and V02 are the strength of the potential in MeV.
Denoting the mass of the particle moving under the potential
by m, we use dimensionless variable ρn = (r − R1)bn with
bn = [(2m/h̄2)V0n]1/2, n = 1, 2, such that ρn is related to the
new variable yn as

ρn = 1

λ2
n

[
tanh−1 yn − (

1 − λ2
n

)1/2
tanh−1

(
1 − λ2

n

)1/2
yn

]
. (2)

The ranges of variation of r, ρn, and yn are as follows. In the
interior side r varies from 0 to R1, ρ1 varies from −R1b1 to 0
while y1 starts with a value close to −1 and ends up with zero
at r = R1. In the outer side, while r goes from R1 to ∞, ρ2

varies from 0 to ∞ and hence y2 varies from 0 to 1.
The parameters λ1, B0, and B1 specify the potential in the

interior region r < R1 and the parameters λ2 and B2 specify
the potential in the outer region r > R1. Equation (1) generates

a potential barrier at r = R1 or y1 = y2 = 0 with the height
VB of the barrier expressed as

VB = V01

[
λ2

1B1 + 1 − λ2
1

2

]
= V02

[
λ2

2B2 + 1 − λ2
2

2

]
, (3)

so that V01 = VB/[λ2
1B1 + (1 − λ2

1)/2] and V02 = VB/

[λ2
2B2 + (1 − λ2

2)/2].
The parameters λ2 and B2 control the flatness and range

of the potential, respectively, in the region r � R1, whereas
the corresponding parameters in the left side (r < R1) of the
barrier are denoted by λ1 and B1. Near the origin (r = 0), the
value of the potential is given by the quantity V01λ

2
1B0 in MeV

when V01 is in MeV. Thus the parameter B0 is used to decide
the magnitude of the potential near the origin, which can be
positive or negative, and by this we can generate potential
pockets of different depths in the region 0 < r � R1.

For a typical α-nucleus system with α particle as the
projectile and the daughter nucleus as the target, let Ap and
At denote mass numbers and Zp and Zt stand for charge
numbers, respectively, with m representing the reduced mass of
the system. One can use the following global expression for the
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FIG. 1. Plot of potential V (r) as a function of radial distance
for the α + 273

110Ds system. The dashed curve represents the sum
of Coulomb and nuclear potential expressed by Eq. (6) with
Woods-Saxon parameters VN0 = −78.75 MeV, aN = 0.84 fm, RN =
7.649 fm, and RC = 9.688 fm. The solid curve represents the potential
expressed by Eq. (1) in the text with parameters λ1 = 1.5987, B0 =
−78.75, B1 = 21.2, λ2 = 1, B2 = 150, r0 = 0.9 fm, and a = 1.6 fm.
The arrow indicates the barrier position R1.

radial position R1 and height VB for the barrier potential [28]:

R1 = r0
(
A1/3

p + A
1/3
t

) + 2.72, (4)

VB = ZpZte
2

R1

(
1 − a

R1

)
, (5)

where r0 and a are two distance parameters expressed in
femtometers and e2 = 1.4398 MeV fm. There are altogether
seven parameters, namely, λ1, B0, B1, λ2, B2, r0, and a, to
describe the total effective potential expressed by Eq. (1). Con-
sidering some values for these parameters, λ1 = 1.5987, B0 =
−78.75, B1 = 21.2, λ2 = 1, B2 = 150, r0 = 0.9, fm and a =
1.6 fm with regard to the α + 273

110Ds system, we plot the
potential expressed by Eq. (1) as a solid curve in Fig. 1. As we
can see, this potential having a pocket and a barrier resembles
closely the sum total

VT (r) = VN (r) + VC(r) (6)

of nuclear (VN ) and Coulomb (VC) potentials shown by a
dashed curve in the short-range region 0 < r < R1, where
VN (r) in Woods-Saxon form is

VN (r) = −VN0/{1 + exp[(r − RN )/aN ]}, (7)

VC(r) =



(ZtZpe2)
(
3R2

C − r2
)/(

2R3
C

)
if 0 < r < RC,

(ZtZpe2)/r if r > RC

(8)

with certain values of the parameters VN0 = −78.75 MeV,
aN = 0.84 fm, RN = 7.649 fm, and RC = 9.688 fm.

B. Solution

With the potential expressed by Eq. (1), the reduced
Schrödinger equations for the s wave can be written in the
dimensionless form as follows [23]:

−d2u1(ρ1)

dρ2
1

+ {[
λ2

1(B1 − B0)
(
1 − y2

1

) + ξ1
] − Ec.m.

V01

+ λ2
1(B0)

}
u1(ρ1) = 0, r � R1, (9)

−d2u2(ρ2)

dρ2
2

+
{[

λ2
2B2

(
1 − y2

2

) + ξ2
] − Ec.m.

V02

}
× u2(ρ2) = 0, r > R1. (10)

Here, Ec.m. stands for the incident center-of-mass energy.
These equations can be solved analytically. The solution u1(ρ1)
in the region r � R1 is given by

u1(ρ1) = A1
[
λ2

1 + (
1 − λ2

1

)
z2

1

]1/4(
1 − z2

1

)− ik1
2λ2

1 F

×
(

a1, b1, c1,
1 − z1

2

)
+ A2

[
λ2

1 + (
1 − λ2

1

)
z2

1

]1/4

× (
1 − z2

1

) ik1
2λ2

1 F

(
a′

1, b
′
1, c

′
1,

1 − z1

2

)
, (11)

where the new variable

z1 = λ1y1[
1 + (

λ2
1 − 1

)
y2

1

]1/2 ,

F (a, b, c, z) is the hypergeometric function, and

a1 = ν̄1 + 1 − ik1

λ2
1

, b1 = −ν̄1 − ik1

λ2
1

, c1 = 1 − ik1

λ2
1

,

a′
1 = ν̄1 + 1 + ik1

λ2
1

, b′
1 = −ν̄1 + ik1

λ2
1

, c′
1 = 1 + ik1

λ2
1

,

ν̄1 =
[

1

4
− (B1 − B0) + λ2

1 − 1

λ4
1

k2
1

]1/2

− 1

2
,

k2
1 = Ec.m.

V01
− λ2

1B0.

The solution u2(ρ2) in the region r > R1 is given by

u2(ρ2) = A3
[
λ2

2 + (
1 − λ2

2

)
z2

2

]1/4(
1 − z2

2

) −ik2
2λ2

2 F

×
(

a2, b2, c2,
1 − z2

2

)
+ A4

[
λ2

2 + (
1 − λ2

2

)
z2

2

]1/4

× (
1 − z2

2

) ik2
2λ2

2 F

(
a′

2, b
′
2, c

′
2,

1 − z2

2

)
, (12)

where the variable

z2 = λ2y2[
1 + (

λ2
2 − 1

)
y2

2

]1/2

and

a2 = ν̄2 + 1 − ik2

λ2
2

, b2 = −ν̄2 − ik2

λ2
2

, c2 = 1 − ik2

λ2
2

,

a′
2 = ν̄2 + 1 + ik2

λ2
2

, b′
2 = −ν̄2 + ik2

λ2
2

, c′
2 = 1 + ik2

λ2
2

,

ν̄2 =
[

1

4
− B2 + λ2

2 − 1

λ4
2

k2
2

]1/2

− 1

2
,

k2
2 = Ec.m.

V02
.
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Near the origin r = 0, we have

ρ1 = −R1b1, y1 = y01 = −[
1 − 2e2λ2

1(ρ01−|ρ1|)],
ρ01 =

(
λ2

1 − 1
)1/2

λ2
1

arctan
(
λ2

1 − 1
)1/2

,

z1 = z01 = λ1y01[
1 + (

λ2
1 − 1

)
y2

01

]1/2 .

The boundary condition

u1(ρ1) → 0 for r → 0

gives us

C1 = −A2

A1
= (

1 − z2
01

)−iκ1
F

(
a1, b1, c1,

1−z01
2

)
F

(
a′

1, b
′
1, c

′
1,

1−z01
2

) , (13)

where κ1 = k1

λ2
1

and

F

(
a1, b1, c1,

1 − z01

2

)

= �(1 − iκ1)�(iκ1)

�(−ν̄1)�(1 + ν̄1)
+

(
1 + z01

2

)iκ1

× �(1 − iκ1)�(−iκ1)

�(ν̄1 + 1 − iκ1)�(−ν̄1 − iκ1)
, (14)

F

(
a′

1, b
′
1, c

′
1,

1 − z01

2

)

= �(1 + iκ1)�(−iκ1)

�(−ν̄1)�(1 + ν̄1)
+

(
1 + z01

2

)−iκ1

× �(1 + iκ1)�(iκ1)

�(ν̄1 + 1 + iκ1)�(−ν̄1 + iκ1)
, (15)

(
1 − z2

01

)−iκ1

� exp

{
(−2ik1)

(
1

λ2
1

log 2 − 1

λ2
1

log λ1 + ρ01 − b1R1

)}
,

(16)(
1 + z01

2

)iκ1

� exp

{
(−2ik1)

(
1

λ2
1

log λ1 − ρ01 + b1R1

)}
. (17)

The property of the wave function u2(ρ2) for large ρ2 → ∞
(or r → ∞) gives

u2 = A42
ik2
λ2

2 e−ik2ρ
′
2 [e−ik2ρ2 − Smeik2ρ2 ] for ρ2 → ∞, (18)

where the scattering matrix denoted by Sm is expressed as

Sm = C2 exp

[
(−2ik2)

(
log 2

λ2
2

− ρ ′
2

)]
, (19)

with

C2 = −A3

A4
,

(20)

ρ ′
2 = 1

λ2
2

log λ2 − ρ02,

and
ρ02 =

(
λ2

2 − 1
)1/2

λ2
2

arctan
(
λ2

2 − 1
)1/2

.

Equating the logarithmic derivatives of u1(ρ1) and u2(ρ2)
at ρ1 = ρ2 = 0, we can calculate C2 and hence the scattering
matrix Sm.

For the Coulomb-nuclear problem, the potential in the
region r > R1 can be considered pure Coulombic and the
outer solution u2(ρ2) in this analysis can be replaced by
the Coulomb-distorted outgoing spherical wave fC(kr) =
G0(η, kr) + iF0(η, kr) for the s wave. Here, with the reduced
mass m, the wave number k =

√
(2m/h̄2)Ec.m., η stands for

the Coulomb parameter η = mZpZte
2/h̄2k, and F0(η, kr)

and G0(η, kr) are the regular and irregular Coulomb wave
functions, respectively.

C. Resonance energy

The potential given by Eq. (1), having a pocket followed by
a repulsive barrier as shown in Fig. 1, generates quasibound
states with discrete positive energies called resonance energies.
One of these energies is recognized as the Q value for the
decaying system with some lifetime for decay. Exactly at a
resonance energy, the wave function looks like a bound-state
wave function depicting the confinement property that the
probability density (I = ∫ |u|2dr) in the interior region (0 <

r < R1) is very large as compared to that in the outer region
(r > R1). If the energy under consideration is slightly different
from the exact resonance energy, these results of densities of
the inner and outer wave functions get reversed. This behavior
of the wave function is shown in Figs. 2(a) and 2(b) in the case
of a typical α + 273

100Hs system at and near the resonance energy
Ec.m. = 11.618 MeV. We calculate the results of probability
densities in two regions:

(i) from r = 0 to r = R1, I1 = ∫ R1

0 |u|2dr, and

(ii) from r = 0 to r = R2 with R2 > R1, I2 = ∫ R2

0 |u|2dr .

Comparing these two densities, in Fig. 3 we plot the ratio
Ir = I1

I2
as a function of incident energy. The plot shows a

sharp peak at the exact resonance energy, which is easily
identified and recorded as the Q value of the system. We
call this method of calculating resonance energy the relative
probability density (RPD) method, which is found to be clean
and free from any ambiguities or difficulties experienced in
other methods, namely, (i) searching of poles of the S matrix
in the complex energy plane [20,22], (ii) variation of reaction
cross section using test imaginary potential [22], (iii) variation
of phase-shift time as a function of energy in the phase-shift
method [22], and (iv) the WKB approximation [20].

D. Decay lifetime or width of resonance

For the calculation of width or lifetime of the resonance
state, we follow the procedure presented in Ref. [25] where
one uses the wave functions on either side of the matching
radius r = R1. The normalized regular solution u1(r) of the
modified Schrödinger equation is matched at r = R1 to the
distorted outgoing Coulomb wave,

u1(R1) = N0 [G0(η, kR1) + iF0(η, kR1)], (21)
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FIG. 2. Plot of the square modulus of the wave function as a func-
tion of radial distance r for the α + 273

110Ds system (a) at the resonance
energy Ec.m. = 11.618 MeV, called the Q value, and (b) at an energy
Ec.m. = 11.613 MeV, less than resonance energy by 0.005 MeV.
R1 stands for barrier position and R2 indicates a position in the outer
region r > R1.

where R1 is outside the range of the nuclear field. Calculating
radial probability flux through a sphere by using the radial
wave function on the right-hand side of Eq. (21) and following
Ref. [26], one can express the mean lifetime τ (or width �) of
decay in terms of matching amplitude N0 as

τ = h̄

�
= m

h̄k

1

|N0|2 . (22)

Since the wave function u1(r) decreases rapidly with radius
outside the nucleus, it can be normalized by requiring

0
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0.8

1

11.55 11.6 11.65 11.7

I 1
/I 2

Ec.m. (MeV)

FIG. 3. Plot of the ratio of probability densities I1 and I2 (see
text) as a function of energy Ec.m. for the α + 273

110Ds system. The
peak position (Ec.m. = 11.618 MeV) represents the resonance energy
(Q value).

that ∫ R1

0
|u1(r)|2dr = 1, (23)

where R1 < R2, R2 being a large distance close to the classical
outermost turning point. It should be noted that unlike the
normalization of bound state, this normalization is confined to
the interior domain r � R1. Using this normalized u1(r), one
gets

N0 = u1(R1)

G0(η, kR1) + iF0(η, kR1)
. (24)

In our analysis, u1(R1) is the wave function [Eq. (11)] u1(r) =
A1ũ1(r) calculated at r = R1, where ũ1(r) at r = R1 can be
expressed explicitly as

ũ1(R1)

= λ
1/2
1 F

(
a1, b1, c1,

1

2

)
− C1λ

1/2
1 F

(
a′

1, b
′
1, c

′
1,

1

2

)
, (25)

F

(
a1, b1, c1,

1

2

)

= π1/2 �(1 − iκ1)

�
(

ν̄1
2 − iκ1

2 + 1
)
�

(− ν̄1
2 − iκ1

2 + 1
2

) , (26)

F

(
a′

1, b
′
1, c

′
1,

1

2

)

= π1/2 �(1 + iκ1)

�
(

ν̄1
2 + iκ1

2 + 1
)
�

(− ν̄1
2 + iκ1

2 + 1
2

) , (27)

where C1(= −A2/A1) is expressed by Eq. (13) and A1 =
(
∫ R1

0 |ũ1(r)|2dr)−1/2 is obtained through the normalization of
Eq. (23).

In the special cases of the Coulomb-nuclear problem, there
are specific values for η, k, and R1 for which F0(η, kR1) and
G0(η, kR1) can be expressed approximately. In the case where
2η > kR1 for � = 0 [29],

F0(η, kR1) ≈ 1

2
βeγ , G0(η, kR1) ≈ βe−γ , t = kR1

2η
,

γ = 2η

{
[t(1 − t)]

1
2 + sin−1 t

1
2 − 1

2
π

}
, (28)

β = {t/(1 − t)} 1
2 .

Further, in this condition of 2η > kR1, one finds that
|G0(η, kR1)| � |F0(η, kR1)| by several orders of magnitude.
This condition prevails in the α-nucleus systems of interaction
at energies below the respective Coulomb barrier height and
hence Eq. (24) can be reduced to

N0 � u1(R1)

G0(η, kR1)
. (29)

By using Eq. (25) for u1(R1) and Eq. (28) for G0(η, kR1) in
Eq. (29), N0 is calculated at a given energy and it is used
in Eq. (22) for the final result of mean life τ (or half-life
τ1/2 = 0.693τ ) of the decay process at the same energy (the
so-called Q value).

The correctness of our RPD method of calculation of
resonance energy and the analytical expression [Eq. (22)] for
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width can be demonstrated in the cases of the two similar
potentials shown in Fig. 1. For the Coulomb nuclear potential
shown by the dashed curve and expressed by Eq. (6), the
S matrix is obtained by numerical (Runge-Kutta) integration
of the Schrödinger equation and the pole of this S matrix
searched and found in the complex k-plane gives resonance
energy Er = 11.618 MeV and width � = 9.66 × 10−18 MeV.
Using the potential expressed by Eq. (1) and shown by the solid
curve in Fig. 1, one finds that the resonance energy calculated
by the RPD method is equal to 11.618 MeV and the result of
the width calculated by using Eq. (29) in Eq. (22) is found to
be � = 3.67 × 10−18 MeV. This is exactly the same resonance
energy as calculated previously by a pole of the S matrix, and
the width is fairly close to the previously calculated value given
by a pole of the S matrix as well. Hence, one can use, with
confidence, the RPD method for calculating resonance energy
and Eq. (22) along with Eq. (29) for decay lifetime (τ ) for a
decaying system with a potential expressed through Eq. (1). In
the following section, we apply this formulation to a number
of α + nucleus systems for an explanation of the experimental
results of Q values and α-decay half-lives.

III. RESULTS AND DISCUSSION

The application of the formulation described in Sec. II
requires an input potential for the α + nucleus system, which is

obtained recently by calculations based on mean-field theoretic
methods [20]. Such a potential for the α + 273

110Ds system [30]
is closely reproduced by our analytically solvable potential
[Eq. (1)] by fixing the values of five potential parameters,
namely, r0, a, B0, b1 = √

B1A
−1/3
t , and λ1 for the estimate of

resonance energy (Q value) and the corresponding half-life
τ1/2. To obtain the results for a variety of systems involving
light and heavy masses, the values of these parameters may
require some changes for a close agreement with the respective
experimental data of different systems. However, in the whole
of our application, we vary the value of one and only one
parameter: λ1, which describes flatness of the barrier within
the range 1 < λ1 < 2. The values of remaining four parameters
are fixed at r0 = 0.97 fm, a = 1.6 fm, B0 = −78.75, and
b1 = 0.82. We, first, using the RPD method, obtain the exact
experimental Q value as the resonance energy for certain value
of λ1. With the same value of λ1 and calculated Q value, we
obtain the result of τ1/2 = 0.693τ by using Eq. (22) along
with Eq. (29) and denote it by τ

(formula)
1/2 . These results together

with the experimental Q value (Q(expt)) and the half-life τ
(expt)
1/2

are presented in Tables I, II, and III for various α + daughter
nucleus systems obtained from Ref. [13].

It is clearly seen in Tables I and II that there is
quite good agreement between our calculated results and
the corresponding experimental data of half-lives in the

TABLE I. Comparison between recently known experimental results [13] of α-decay
half-lives and results of present calculation. Values of potential parameters r0 = 0.97 fm,
a = 1.6 fm, b1 = 0.82, and B0 = −78.75 are the same for all nuclei except for 174Hf,
where r0 = 1.1 fm and b1 = 1.085. Only the value of the parameter λ1 is varied (by the
amount shown in parentheses under the respective nucleus).

Nucleus Q(expt) (MeV) τ
(expt)
1/2 (s) τ

(formula)
1/2 (s)

105Te (1.04004) 4.900(0.050) 0.70+0.25
−0.17 × 10−6 0.50+0.28

−0.18×10−6

158Yb (1.04009) 4.172 4.3 × 106 4.3 × 106

174Hf (1.011391) 2.497 6.3 × 1022 32.5 × 1022

168W (1.04839) 4.507 1.6 × 106 4.8 × 106

164Os (1.18718) 6.475 4.2 × 10−2 2.1 × 10−2

168Pt (1.23205) 6.997 2.0 × 10−3 2.0 × 10−3

172Hg (1.27918) 7.525 4.2 × 10−4 2.6 × 10−4

188Hg (1.06521) 4.705 5.3 × 108 4.0 × 108

180Pb (1.27963) 7.415 5.0 × 10−3 2.9 × 10−3

186Pb (1.21065) 6.470 1.2 × 101 0.60 × 101

190Pb (1.14380) 5.697 1.8 × 104 1.3 × 104

194Pb (1.05386) 4.738 9.8 × 109 2.7 × 109

156Er (1.005184) 3.486 2.3 × 1010 3.8 × 1010

160Hf (1.08179) 4.902 1.9 × 103 2.3 × 103

158W (1.21285) 6.612+0.003
−0.003 1.5+2

−2 × 10−3 1.1+0.02
−0.01 × 10−3

162Os (1.20250) 6.767+0.003
−0.003 1.9+2

−2 × 10−3 2.0+0.04
−0.03 × 10−3

166Pt (1.24814) 7.286 3.0 × 10−4 2.6 × 10−4

170Pt (1.21581) 6.708 1.4 × 10−2 1.9 × 10−2

174Hg (1.261133) 7.233 2.1 × 10−3 2.0 × 10−3

178Pb (1.313420) 7.790 2.3 × 10−4 2.2 × 10−4

184Pb (1.231678) 6.774 6.1 × 10−1 4.2 × 10−1

188Pb (1.180780) 6.109 2.7 × 102 1.8 × 102

192Pb (1.09850) 5.221 3.6 × 106 3.6 × 106

188Po (1.41747) 8.087+0.025
−0.025 4.0 +2.0

−1.5 × 10−4 1.5 +0.18
−0.14 × 10−4
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TABLE II. Comparison between recently known experimental results [13] of α-decay
half-lives and results of present calculation. Values of potential parameters r0 = 0.97 fm,
a = 1.6 fm, b1 = 0.82, and B0 = −78.75 are the same for all nuclei. Only the value
of the parameter λ1 is varied (by the amount shown in parentheses under the respective
nucleus).

Nucleus Q(expt) (MeV) τ
(expt)
1/2 (s) τ

(formula)
1/2 (s)

189Po (1.36152) 7.703+0.020
−0.020 5.0+1

−1 × 10−3 2.0+0.19
−0.16 × 10−3

192Po (1.33788) 7.319+0.011
−0.011 2.9+1.5

−0.8 × 10−2 3.1+0.16
−0.2 × 10−2

196Rn (1.34243) 7.616+0.009
−0.009 4.4+1.3

−0.9 × 10−3 18.9+0.09
−0.08 × 10−3

202Ra (1.39686) 8.020 2.6 × 10−3 5.5 × 10−3

210Th (1.41015) 8.053 1.7 × 10−2 2.1 × 10−2

218U (1.56564) 8.773+0.009
−0.009 5.1+1.7

−1.0 × 10−4 8.8+0.37
−0.28 × 10−4

224U (1.63331) 8.620 7.0 × 10−4 22.7 × 10−4

228Pu (1.42281) 7.950 2.0 × 10−1 11.0 × 10−1

238Cm (1.19663) 6.62 2.3 × 105 7.7 × 105

258Rf (1.51164) 9.25 9.2 × 10−2 3.1 × 10−1

266Hs (1.61460) 10.34 2.3 × 10−3 7.1 × 10−3

270Ds (1.75789) 11.2 1.0 × 10−4 2.7 × 10−4

190Po (1.37532) 7.693 2.5 × 10−3 2.1 × 10−3

210Po (1.25548) 5.407 1.2 × 107 0.30 × 107

198Rn (1.32403) 7.349 6.5 × 10−2 13.9 × 10−2

204Ra (1.35477) 7.636 5.9 × 10−2 8.6 × 10−2

212Th (1.42118) 7.952 3.6 × 10−2 4.4 × 10−2

220U (1.99700) 10.30 6.0 × 10−8 20.0 × 10−8

226U (1.46388) 7.701 5.0 × 10−1 14.0 × 10−1

230Pu (1.30217) 7.180 1.0 × 102 5.9 × 102

258No (1.40278) 8.151 1.2 × 102 1.6 × 102

260Rf (1.46317) 8.901 1.0 × 100 3.2 × 100

270Hs (1.368) 9.02 2.2 × 101 2.7 × 101

282113 (1.5708) 10.63+0.08
−0.08 7.3+13.4

−2.9 × 10−2 3.2+0.65
−1.82 × 10−2

whole mass range. Graphically, such good agreement is
demonstrated in Fig. 4 in the cases of different isotopes of
the Pb nucleus. It may be mentioned here that there are
cases (namely, 174Hf, 156Er,194 Pb, 188Hg,210 Po, etc.) where
the results of τ

(expt)
1/2 are very large, corresponding to very

small widths in energy units. For instance, in the case of
156Er, τ (expt)

1/2 = 2.3 × 1010 s corresponds to an experimental
width �(expt) = 1.98 × 10−32 MeV. Such a small width could
be reproduced by our calculation with τ

(formula)
1/2 = 3.8 ×

1010 s (see Table I), which corresponds to width �(formula) =
1.2 × 10−32 MeV. More exciting is the case of 174Hf, which
records an extremely long half-life of τ

(expt)
1/2 = 6.3 × 1022 s,

corresponding to width �(expt) = 7.0 × 10−45 MeV with the
lowest measured Q value, Q(expt) = 2.497 MeV, in the
whole mass region considered in the paper. Our calcu-
lation for this case gives τ

(formula)
1/2 = 32.5 × 1022 s and

�(formula) = 1.4 × 10−45 MeV. In this case we have used
r0 = 1.1 fm and b1 = 1.085, which are slightly different from
the respective values used in all other cases listed in Tables I,
II, and III. As we see, our calculated results are very close
to the measured results and this success in explaining such
data of extremely small width or long decay time can be
considered highly remarkable in the theoretical study of decay
process.

Good agreement is also obtained in the cases of the heaviest
elements presented in Table III where the uncertainties both
in experimental Q values and α-decay half-lives are large.
Lower and upper limits of the calculated half-lives (τ (formula)

1/2 ),
corresponding, respectively, to upper and lower limits of
the experimental Q values, are also given. Besides very
close fitting of the data, in some cases we have obtained
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FIG. 4. α-decay half-lives for diffent isoptopes of the Pb nucleus.
Solid dots represent calculated results using Eq. (22) along with
Eq. (29) (see text). Experimental results (open diamonds) are obtained
from Table I of Ref. [13].
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TABLE III. Comparison between recently known experimental
results [13] of α-decay half-lives and results of present calculation.
Values of potential parameters r0 = 0.97 fm, a = 1.6 fm, b1 = 0.82,
and B0 = −78.75 are the same for all nuclei. Only the value of the
parameter λ1 is varied (see the last column).

Nucleus Q(expt) (MeV) τ
(expt)
1/2 τ

(formula)
1/2 λ1

294118 11.81 ± 0.06 1.8+7.5
−1.3 ms 1.7+0.4

−0.3 ms 1.68738
293116 10.67 ± 0.06 53+62

−19 ms 213+69
−46 ms 1.52691

292116 10.80 ± 0.07 18+16
−6 ms 101+34

−25 ms 1.543823
291116 10.89 ± 0.07 6.3+11.5

−2.5 ms 61+22
−13 ms 1.55048

290116 11.0 ± 0.08 15+26
−6 ms 33+14

−8 ms 1.56231
288115 10.61(6) 87+105

−30 ms 157+49
−31 ms 1.50840

287115 10.74(9) 32+155
−14 ms 75+36

−20 ms 1.52475
289114 9.96 ± 0.06 2.7+1.4

−0.7 s 3.9+1.4
−0.90 s 1.44146

288114 10.09 ± 0.07 0.8+0.32
−0.18 s 1.7+0.70

−0.45 s 1.45700
287114 10.16 ± 0.06 0.51+0.18

−0.10 s 1.1+0.39
−0.25 s 1.45828

286114 10.35 ± 0.06 0.16+0.07
−0.03 s 0.36+0.12

−0.08 s 1.48850
284113 10.15(6) 0.48+0.58

−0.17 s 0.62+0.19
−0.15 s 1.48336

283113 10.26(9) 100+490
−45 ms 317+162

−100 ms 1.49422
285112 9.29 ± 0.06 34+17

−9 s 82+34
−22 s 1.37139

283112 9.67 ± 0.06 4.0+1.3
−0.7 s 6.3+2.3

−1.6 s 1.50132
280111 9.87(6) 3.6+4.3

−1.3 s 0.88+0.29
−0.21 s 1.50132

279111 10.52(6) 170+810
−80 ms 19+20

−6.5 ms 1.65069
279110 9.84 ± 0.06 0.18+0.05

−0.03 s 0.53+0.17
−0.12 s 1.55289

276109 9.85(6) 0.72+0.87
−0.25 s 0.24+0.07

−0.06 s 1.58232
275109 10.48(9) 9.7+46

−4.4 ms 6.6+3.0
−1.5 ms 1.73313

275108 9.44 ± 0.07 0.15+0.27
−0.06 s 1.6+0.78

−0.35 s 1.53931
272107 9.15(6) 9.8+11.7

−3.5 s 5.5+2.03
−1.29 s 1.49537

271106 8.65 ± 0.08 2.4+4.3
−1.9 min 1.5+0.9

−0.48 min 1.43561

results slightly more and in other cases slightly less than
the corresponding experimental data, but on average, the
explanation of the data is satisfactory. The explanation in
individual cases can be improved further, provided the values
of r0, b1, and hence λ1 are slightly varied. To maintain
consistency, we have not changed the values of r0 (= 0.97 fm)
and b1 (=0.82) in the whole analysis of all masses presented
in Tables I, II, and III, barring the unique case of 174Hf.

We may conclude here that by the variation of the value of
a single parameter λ1 within a well-defined range 1 < λ1 < 2
(see Tables I, II, and III), we have obtained the results of
Q value and α-decay half-lives that are close to the respec-
tive experimental data in the whole mass range from A =
105 (Z = 52) to A = 294 (Z = 118) recently presented in
Ref. [13].

In the process of achieving this success in explaining the
experimental data of α-decay half-lives and Q value, we have
obtained the following systematics with regard to the nature
of the three crucial parameters λ1, b1, and r0 that describe the
property of the effective potential barrier that critically governs
the decay process:

(i) By increasing the value of r0, the same resonance energy
equal to the measured Q value can be obtained by some
minor changes in the values of λ1 and b1. However, the
result of half-life τ1/2 for larger r0 is smaller than the
value corresponding to smaller r0.

(ii) For a given value of r0, the same Q value can be
obtained in two different ways: (a) by using small λ1

with larger b1 and (b) by using larger λ1 with smaller
b1. However, unlike the Q value, the results of τ1/2 in
these two situations are not same. Rather, in situation
(a), the calculated result, τ

(formula)
1/2 , is slightly less than

that of experiment, τ
(expt)
1/2 , whereas in the latter case (b)

τ
(formula)
1/2 � τ

(expt)
1/2 . Following this nature of λ1 and b1, we

see that further variations of these parameters would lead
to a result almost equal to τ

(expt)
1/2 at the measured Q value.

IV. SUMMARY AND CONCLUSION

The phenomenon of decay of an α particle from a
parent nucleus is analyzed within the framework of potential
scattering problem of an α + daughter nucleus system. In
such a system, the attractive short-range nuclear force and the
long-range electrostatic force combine to generate a potential
that shows a pocket near the origin and a barrier outside. This
composite potential is simulated by a versatile and realistic
potential with a pocket and a barrier for which an exact
expression for the s-wave S matrix is analytically derivable.
The functional form of the potential is such that one can readily
vary its parameters to generate different forms for the pocket
and the barrier to closely reproduce the α + nucleus potential.
This potential generates discrete positive-energy quasibound
states called resonance states. One of these states is recognized
as the α-decay state, with its Q value being equal to the
resonance energy and its decay half-life related to the width
of the resonance state. Using the confinement property of the
wave function at the resonance state one can calculate the exact
resonance energy. After matching the interior wave function
with the outside pure Coulomb wave function, an analytical
expression for the width or decay half-life of the resonance
state is presented.

The formulation is applied to several α + nucleus systems
starting from a nucleus with A = 105 (Z = 52) to a nucleus
with A = 294 (Z = 118) to explain recent experimental data
of Q values and half-lives. Having reproduced exactly the
measured Q values, we can explain the respective measured
half-lives by our calculated results with remarkable success.
In this process of explaining the Q-value and half-life data
simultaneously for the whole mass region stated, the following
important features emerge:

(i) By the variation of a single parameter (λ1) that describes
the flatness of the potential barrier within a specified
range 1 < λ1 < 2, the results of the whole mass region
including superheavy nuclei could be explained.

(ii) By using an analytical expression for the decay half-life,
the measured results of very long half-lives (2.3 × 1010 s
in the case of α + 156Er and 6.3 × 1022 s for α + 174Hf,
which correspond to the extremely narrow resonance
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widths of order 10−32 and 10−45 MeV, respectively)
are explained quite accurately by our calculated results.
This success in explaining the extremely narrow width
is believed to be a remarkable achievement in this fully
quantum mechanical description of the decay process.

The formulation can be applied to the explanation of
experimental results of half-lives of spherical proton emitters.
This will be reported soon.
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