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Coulomb corrections in quasi-elastic scattering: Tests of the effective-momentum approximation
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Coulomb corrections for quasielastic scattering of electrons by nuclei are calculated using eikonal distorted
waves. Corrections to the lowest-order eikonal approximation are included to obtain accurate results. Spin-
dependent eikonal phase shifts are evaluated and they yield very small corrections to the longitudinal and
transverse cross sections at electron energies of 500 MeV or higher. Because of this the Rosenbluth procedure
is accurate for separation of the longitudinal and transverse response functions. The effective-momentum
approximation is also found to be accurate with regard to removal of the remaining Coulomb effects from
the distorted waves. Calculations are presented for electron scattering from 208Pb and 56Fe nuclei at energies of
500 and 800 MeV and momentum transfers q = 550 and 900 MeV/c.
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I. INTRODUCTION

Measurements of cross sections for quasielastic electron
scattering provide basic tests of our understanding of nuclei.
Experiments were performed at the MIT Bates Laboratory
[1–9], at the Saclay Laboratory [10–15], and at SLAC [16–18]
to explore this reaction. A recent review of quasi-elastic
scattering provides a guide to the experimental and theoretical
results [19]. Generally it is assumed that the reaction is
dominated by the exchange of one hard photon between the
electron and a nucleon in the nucleus. Many soft photons
also are exchanged and their effects are described by distorted
waves based on the Coulomb potential in the initial and
final states of the electron. An important issue is to account
for the effects of the Coulomb interaction in a manner that
allows extraction of the nuclear response functions, RL and
RT , which correspond to plane-wave matrix elements of
the longitudinal and transverse parts of the currents. After
the nucleon form factor is divided out, the longitudinal
response function at a fixed and sufficiently large value of
the momentum transfer, q, is expected to satisfy a Coulomb
sum rule, i.e.,

∫
dωSL(q, ω) ≈ Z, where Z is the number of

protons. Such a sum rule should hold under general conditions
for a nonrelativistic description of nuclear wave functions and
currents provided only that q is sufficiently large to make the
effects of correlations small. Although the response functions
are affected by the final-state interactions (FSI), the sum rule
should not be affected by them because it relies on a sum over
a complete set of final states of the nucleus. When relativistic
effects in the nuclear current are taken into account, there are
minor relativistic corrections to the sum rule but it remains
useful. However, attempts to verify it experimentally have
produced puzzling results and controversy about Coulomb
corrections.

To obtain the longitudinal response function, it is con-
ventional to perform a Rosenbluth separation after dividing
the cross section by the Mott cross section σM and some

kinematical factors,

1

σM

dσ

d�dω
ε

q4

Q4
= εR

expt
L (q, ω) + 1

2

(
q2

Q2

)
R

expt
T (q, ω) (1)

with Q2 = ω2 − q2 and where σM = 4α2E2
f cos2( 1

2θe)/Q4.
The longitudinal virtual-photon polarization is defined as

ε =
(

1 + 2q2

Q2
tan2 θe

2

)−1

. (2)

At fixed q and ω, it varies from 0 to 1 as the electron scattering
angle θe varies from 180 to 0 degrees. Measurements of the
cross section at different values of ε for fixed values of q and
ω allow a separation of the experimental response functions,
R

expt
L and R

expt
T . The R

expt
L that is extracted from experimental

cross section as in Eq. (1) can differ from the desired RL,
which is the plane-wave matrix element of the longitudinal
current, for two reasons. One is that Coulomb corrections
associated with spin-dependent effects in the electron wave
functions can cause the contributions of the longitudinal and
transverse currents to have different dependence on θe than is
assumed in the Rosenbluth separation [20]. The other is that
Coulomb distorted waves alter the response. These Coulomb
corrections should be removed before the Coulomb sum rule
can be evaluated. In addition, nucleon form factors should be
divided out of the longitudinal response function. A standard
approach to modeling the Coulomb corrections is to use the
distorted-wave Born approximation (DWBA). One solves the
Dirac equation for the electron distorted waves in the presence
of the Coulomb potential for both the initial and final states
of the electron [21–24]. When these distorted waves are
combined with nuclear wave functions obtained from a model
of nuclear structure, and appropriate current operators, cross
sections may be calculated and compared with experimental
results. The DWBA analysis involves extensive numerical
calculations. Owing to the infinite range of the Coulomb
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potential, partial-wave expansions converge very slowly, the
more so as the energy increases.

A number of works have used the eikonal approximation
to simplify the analysis at high energies. The use of the
eikonal approximation also must be accompanied by inclusion
of “focusing factors” that are not present in the eikonal
wave functions [25–27]. Czyz and Gottfried [28] used the
eikonal approximation to analyze electron scattering but that
work did not include focusing factors. An analysis based on
the Schrodinger equation showed that the corrections to the
eikonal approximation generally produce a focusing factor in
the wave function [29]. Work by Giusti et al. also is based
on the eikonal approximation [30,31] and some recents works
have combined the eikonal approximation with semiclassical
focusing factors to assess Coulomb corrections in quasielastic
scattering [32,33].

A very simple effective-momentum approximation (EMA)
for treating the Coulomb corrections was developed by
Rosenfelder [27] and Triani et al. [34,35]. In the EMA the
effects of the Coulomb potential are incorporated as shifts of
the initial and final electron momentum values that should be
used in a plane-wave Born approximation (PWIA) analysis.
The shifted electron momenta are the effective momenta.
They imply a corresponding shift of the photon momentum,
q → qeff .

Interpretations of quasielastic data depend on many exper-
imental details and different experiments have produced sig-
nificantly different values of the Coulomb sum rule [19,36]. In
addition to possible experimental differences, there are theoret-
ical differences in the analysis of the Coulomb corrections be-
cause the DWBA analysis based on partial waves has been used
for some experiments and the EMA analysis has been used for
others. Sometimes it is assumed that the nucleon form factors
can be pulled out of the matrix element and evaluated at the mo-
mentum transfer of the electron [24]. At other times the form
factors are evaluated at the effective photon momentum, qeff .

To address questions about the theoretical differences in
the treatment of Coulomb distorted waves, we developed a
systematic eikonal expansion in Ref. [37] that provides more
accurate eikonal wave functions for a DWBA analysis. The
accuracy is good enough to eliminate concerns about use of
the eikonal approximation at the energies of interest. Moreover
the “focusing factors” arise naturally as part of the corrections
to the eikonal approximation and the ad hoc procedure of
incorporating them is replaced by a systematic procedure.
The eikonal expansion was found to converge rapidly at
electron energies of interest. It has the advantage of providing
insight into the nature of the Coulomb corrections because the
focusing factors, the eikonal phase shifts that determine the
momentum shifts and spin-dependent effects can be isolated
for study.

To assess the accuracy of the EMA using the eikonal wave
functions, we used in Ref. [37] a very simple model of the
nuclear wave functions and we neglected the spin-dependent
Coulomb corrections for simplicity. To compare full DWBA
calculations of RL with the results based on the EMA, the
DWBA results were fit to the EMA formula,

RL(q, ω) = ARPWIA
L (qeff, ω), (3)

where the effective photon momentum is given by

qeff = k̂i[ki − δk] − k̂f [kf − δk]. (4)

There are two parameters in our EMA fits: the momentum-shift
δk and the overall normalization constant A ≈ 1. Usually the
parameter A is assumed to be unity when experimental data
are fit using Eq. (3). In model calculations that assumption
can be checked because the PWIA response is known in the
model. A factor fEMA can be used to relate δk to the Coulomb
potential at r = 0, as follows,

fEMA = δk

Vc(0)
. (5)

The factor fEMA is approximately the same for different
nuclei. We found momentum shifts in Fig. 7 of Ref. [37] that
correspond to fEMA(ω) ≈ 0.7 near the peak of the response
function for 500 MeV e− scatttering. Larger values of fEMA

up to about 1 were found at the smallest and largest ω values
but the response is small at those points. Although fits of the
DWBA results can be made more precise by allowing δk to
depend on the energy loss, ω, in this work we use a constant
shift δk. That yields reasonable results and is simpler and thus
preferable for the analysis of experimental data.

If the momentum-shift δk and normalization constant A

are determined theoretically for a given nucleus such that the
DWBA response is well described by the EMA fit of Eq. (3),
then one may equate RL(q, ω) at fixed electron beam energy,
E, and fixed momentum transfer q to a constant A times the
PWIA response function evaluated at the effective momen-
tum transfer. That would remove the Coulomb effects to a
reasonable approximation and allow the PWIA response to
be extracted from experimental data [38]. We expect similar
Coulomb corrections for a variety of nuclear models [39]. The
goal is to remove them with minimal reliance on any nuclear
model. However, it must first be determined how well RL can
be extracted from experimental data.

The spin dependence of the eikonal wave functions was
omitted in our previous article, which left unanswered the
question of the accuracy with which the desired response
functions might be extracted from experimental cross sections.
That is the first issue addressed in this article. In Sec. II
we restate the essential results of the eikonal expansion for
Dirac wave functions and focus on the spin-dependent eikonal
corrections. These are shown to provide very small differences
to quasielastic cross sections, i.e., the helicity matrix elements
of the electron current are very close to those based on the
PWIA. The consequence is that when both initial and final
electron energies are 200 MeV or more, the usual Rosenbluth
separation provides an accurate separation of RL and RT ,
well within the limits of experimental accuracy. Although
the Rosenbluth separation should be accurate, there remain
significant Coulomb effects within RL. They can be treated
with reasonable accuracy by use of the effective momentum
approximation.

To determine more realistic values of the momentum shift,
δk, shell-model wave functions are used to describe the
nucleus in this work. Our calculations are simplified by use
of an approximation that is introduced by us in Ref. [38]
and described in Sec. III and that is denoted EMAr. That
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approximation applies the effective momentum approximation
to the hard-photon propagator and form factors to reduce
the numerical evaluation to a three-dimensional integration
that provides a careful treatment of the full r dependence of
the Coulombic effects from the electron wave functions. In
the EMAr analysis, the nuclear current is handled in terms
of a hadronic tensor, which can be extended to include the
neutron contributions to cross sections. A comparison of the
full DWBA and EMAr calculations for the 1s shell of 208Pb
shows close agreement of the results.

Section IV presents numerical calculations for quasielastic
scattering by 208Pb and 56Fe using kinematics that are relevant
to a recent experiment at Jefferson Laboratory. The nuclear
model used is simple and a number of significant effects are
omitted from the calculations, such as final-state interactions
[40], correlations [41,42], and pion and 	 production [43,44],
but the calculated cross sections are expected to be roughly
similar to experimental ones. The main goal is to determine
suitable fitting parameters for use in applying Eq. (3) to
experimental data so as to determine RPWIA

L . Conclusions are
presented in Sec. V.

II. QUASIELASTIC RESPONSE FUNCTIONS

Because electron energies of interest generally are much
greater than the electron mass, and the Coulomb potential and
photon exchange are vector interactions, electron helicity is
conserved to a very high degree of accuracy in quasielastic
scattering. For example, using 500-MeV electrons one finds
that the helicity is conserved except for terms of relative order
m2

e/E
2 ≈ 10−6. In this work we keep only the effects that are

consistent with helicity conservation.
The distorted-wave Born approximation is used with

eikonal wave functions for the electron. For outgoing-wave
(+) or incoming-wave (−) boundary conditions, the Dirac
wave functions for potential V (r) are written as [37]



(±)
k,λ (r) =

[
u(±)(r)

2λu(±)(r)

]
ξλ,

(6)

u(±)(r) =
(

1 − V

E2

)1/2

eikzeiχ (±)
e−ω(±)

eiσeγ̄
(±)

,

where ξλ is a two-component helicity spinor and λ = ± 1
2 is the

helicity eigenvalue. The lower components of the Dirac spinor
are simply 2λ times the upper components because the electron
mass is neglected. The wave propagates in the z direction,
which is along the asymptotic momentum k, and an impact
vector b is defined as the part of r that is perpendicular to the
ẑ direction. The eikonal phases χ (±), ω(±), and γ̄ (±) = γ (±) ±
iδ(±) are obtained from integrals over the potential along the z

direction as shown in Ref. [37]. The spin matrix in the eikonal
phase is σe = σ · b̂ × ẑ, the energy is E and E2 = E + m.

A. DWBA analysis

The DWBA cross section for knockout of a nucleon of
momentum p involves a two-dimensional integration over the

angles of the knocked-out nucleon as follows,

1

σM

dσ

d�dω
= Q4

cos2
(

θe

2

) ∑
nlm

∫
d�p

pEp

(2π )5
|Mnlm|2. (7)

Omitting the final-state interactions of the nucleon, the matrix
element for quasielastic knockout involves a six-dimensional
integration,

Mnlm = 1

(2π )2

∫
d3q ′

∫
d3r


(−)∗
kf ,λf

(r)γ µe−iq′ ·r
(+)
ki ,λi

(r)

× jNµ(q′, p)

q′2 − ω2
ψnlm(q′ − p)

= 1

(2π )2

∫
d3q ′

∫
d3rei(q−q′)·rhµ

e (r)ff fie
iχ

× jNµ(q′, p)

q′2 − ω2
ψnlm(q′ − p) (8)

where jNµ(q′, p) is the nucleon current, h
µ
e is a four-vector of

helicity matrix elements of the electron current and ψnlm(q′ −
p) is the momentum-space wave function of a nucleon in
the nucleus with quantum numbers n (radial), l (angular
momentum), and m (z component of angular momentum).
Subscripts i and f refer to the initial and final electron
states with asymptotic momenta ki and kf that provide the
respective z directions for incoming and outgoing waves. The
exchanged photon has energy ω and momentum q′, the initial
electron helicity is λi , and the final electron helicity is λf .
The momentum transferred by the electron is q = ki − kf

and it differs from the momentum q′ of the photon because of
the Coulomb effects. Nucleon form factors within the nucleon
current depend on the photon momentum, q ′, that is integrated.
The sum of eikonal phases for incoming and outgoing waves
is χ = χ

(−)
f (r) + χ

(+)
i (r) and the focusing factors are defined

by

fi(r) =
(

1 − V

E2i

)1/2

e−ω
(+)
i ,

(9)

ff (r) =
(

1 − V

E2f

)1/2

e−ω
(−)
f ,

where E2i = Ei + m and E2f = Ef + m.
The Coulomb potential for scattering from a 208Pb nucleus

is shown in Fig. 1. The solid line shows the potential based on
a fit of experimental data for the charge density [45] and the
dashed line shows the simple potential used in our calculations,
namely

Vc(r) = −V0

(r2 + R2)1/2
. (10)

The simple potential allows an analytical evaluation of the
eikonal phases. The parameters V0 and R are chosen so that the
simple potential has the same value as the empirical potential
at r = 0 and the same average value as the potential based
on experimental data in the sense that

∫
drρexpt(r)Vc(r) =∫

drρexpt(r)Vexpt(r). This ensures that Vc(r) provides a good
fit in the range where the nuclear density is significant (the
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FIG. 1. Coulomb potential for 208Pb. The solid line shows the
potential based on the empirically determined charge density [45].
The dashed line shows the approximate potential used in this work
based on parameter values V0 = 0.0256 GeV and R = 7.1 fm. The
dash-dotted line shows one-tenth the charge density, 0.1ρch(r), for
208Pb.

dot-dashed line shows one-tenth the nuclear charge density
for reference).

Eikonal phases based on the Coulomb potential of Eq. (10)
are shown in Fig. 2. The phases χ

(+)
i and ω

(+)
i are shown as a

function of impact parameter |b| at z = 0 and the nucleus is
located at b = 0, z = 0. Note that χ

(+)
i and χ

(−)
f each have the

same behavior at z = 0 and the total phase χ = χ
(+)
i + χ

(−)
f

is approximately double the values shown. Figure 2 shows
that the eikonal expansion produces well-converged results
for the wave function at electron energy equal to 500 MeV for
scattering from 208Pb.

Coulomb corrections affect the helicity matrix elements
of the electron current because of the spin-dependent eikonal
phases involving γ̄ (±) as follows,

hµ
e (r) = δλf λi

ξ
†
λf

(θe)eiσef
γ̄

(−)∗
f {1, 2λi �σ }eiσei

γ̄
(+)
i ξλi

. (11)

As shown in Ref. [37], the required helicity matrix elements
are given by

h0
e = A2λi

cos 1
2θe + C2λi

sin 1
2θe −→ cos 1

2θe,

hx
e = B2λi

sin 1
2θe + D2λi

cos 1
2θe −→ sin 1

2θe,

hy
e = 2iλi

(
A2λi

sin 1
2θe − C2λi

cos | 1
2θe

) −→ 2iλi sin 1
2θe,

hz
e = B2λi

cos 1
2θe − D2λi

sin 1
2θe −→ cos 1

2θe. (12)
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P
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(+) + χ2
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ω1
(+) + ω2

(+)

FIG. 2. Eikonal phases at z = 0 for 500-MeV electron scattering
from 208Pb.

The Rosenbluth separation implicitly assumes that the helicity
matrix elements take the plane-wave values that are shown
following the arrows in Eq. (12). One sees in Eq. (12) that
the spin-dependent Coulomb effects cause each component of
the four-vector of electron helicity matrix elements to involve
both cos 1

2θe and sin 1
2θe. This property carries over to the

longitudinal and transverse currents. Consequently, R
expt
L and

R
expt
T extracted using the Rosenbluth separation each involve

admixtures of the longitudinal and transverse currents.
The spin-orbit parts of the eikonal phases enter the helicity

matrix elements in the following four combinations as shown
in Ref. [37],

A2λi
≡ cos γ̄

(−)∗
f cos γ̄

(+)
i − sin γ̄

(+)
i sin γ̄

(−)∗
f e2iλi (φi−φf ),

B2λi
≡ cos γ̄

(−)∗
f cos γ̄

(+)
i + sin γ̄

(+)
i sin γ̄

(−)∗
f e2iλi (φi−φf ),

C2λi
≡ cos γ̄

(−)∗
f sin γ̄

(+)
i e2iλiφi + cos γ̄

(+)
i sin γ̄

(−)∗
f e−2iλiφf ,

D2λi
≡ cos γ̄

(−)∗
f sin γ̄

(+)
i e2iλiφi − cos γ̄

(+)
i sin γ̄

(−)∗
f e−2iλiφf .

(13)

Figure 3 shows the eikonal phases γ (+) and δ(+) that are the
real and imaginary parts of γ̄ (+). There is a simple relation
between the phases as follows,

γ̄ (±)(r) = γ (±)(r) ± iδ(±)(r)

= 1

2(E + m)

d

db
[χ (±)(r) ± iω(±)(r)]. (14)

This relation has been corrected from the one given in Ref. [37]
because a factor 1

2 was omitted there.
Our previous numerical calculations omitted the spin-

dependent Coulomb corrections, using instead the PWIA he-
licity matrix elements that are indicated following the arrows in
Eq. (12). In this work we include the spin-dependent Coulomb
corrections and find the important result that they provide
negligible corrections to quasielastic cross sections. This
can be understood qualitatively as follows. For a 500-MeV
electron scattering from the Coulomb potential of a 208Pb nu-
cleus, the phase γ̄ (+) = γ (+) + iδ(+) typically has magnitude
of 0.03 or less as shown in Fig. 3. It vanishes at zero impact
parameter. Consequently, the coefficients A2λi

≈ 1 + O(γ̄ )2

and B2λi
≈ 1 + O(γ̄ )2 are very close to unity. The coefficients

C2λi
and D2λi

have contributions that are first order in γ̄ .
They also involve phase factors e2iλiφi or e2iλiφf , where
tanφf = tanφi/[cos θe

2 − sin θe

2 /(tanθi cosφi)] with θi and φi

being the angles of the vector r relative to the polar axis
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-0.04

-0.03

-0.02

-0.01

0

0.01

P
ha
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γ1
(+)+γ2
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δ2
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FIG. 3. Spin phases for 500-MeV electron scattering from 208Pb.
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 ω  (GeV) 
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1

1.001

R
L(γ

)
/  

R
L(0

)

Ratio
1 + 0.0001 R

L

FIG. 4. Circles show the ratio of the longitudinal response
function R

(γ )
L that includes the spin-dependent Coulomb corrections to

the longitudinal response function R
(0)
L that omits them for 500-MeV

electron scattering from 208Pb at q = 550 MeV/c. The dotted line
shows 1 + 0.0001RL. Note that the effects of the spin-dependent
Coulomb corrections are largest for ω values where the response
function is a small fraction of its maximum value.

along k̂i . When current matrix elements are integrated over
r and summed over helicities, cancellations stemming from
these phase factors cause the contributions to be very small.
Current matrix elements are Fourier transforms and the φi,f -
dependent phase factors can receive support in the integration.
However, the quasifree cross sections involve an additional
integration over angles of the knocked-out proton. The net
effect is to reduce substantially the contributions from terms
that involve the azimuthal angles φi,f . Our numerical results
show that cross sections calculated with the spin-dependent
Coulomb corrections included are closer than one part per
thousand to ones calculated using the PWIA helicity matrix
elements. An example of this is shown in Fig. 4, which
shows the ratio of longitudinal response functions [calculated
from Eq. (30)] with and without the spin-dependent Coulomb
corrections at 500-MeV electron energy. Only for large energy
loss, where the final-state electron energy becomes small, does
the ratio differ from unity by more that a few parts in 10,000.
For reference, the dotted line shows the variation of 1 +
0.0001RL. Note that for energy loss ω = 300 MeV, the final
electron energy is 200 MeV, but the ratio of cross sections with
and without the Coulomb spin corrections differs from unity
by less that 1 part per 1000. As the energy loss increases, the
Coulomb spin corrections become relatively more important
but the response function is decreasing to zero. The net effect
is that the absolute error in the response function is about
1 part in 10,000 of the maximum value of RL.

This is important because the helicity matrix elements
govern the dependence of the cross sections on the electron
scattering angle, θe, at fixed q. When the PWIA helicity
matrix elements provide an accurate approximation, the
angle dependence is the same as in PWIA cross sections,
and the Rosenbluth separation can be used to extract the
longitudinal and transverse current matrix elements. We find
negligible mixing of actual longitudinal and transverse current
matrix elements in the response functions extracted using the
Rosenbluth separation for all the cases evaluated in this article.

Significant Coulombic effects remain in the RL and RT

response functions that can be extracted by use of the

Rosenbluth separation because of the spin-independent
Coulomb effects. They may be treated using an effective
momentum approximation.

III. EFFECTIVE PHOTON MOMENTUM
APPROXIMATION

Because the effective-momentum approximation was found
to be accurate in our prior work, in this work we approximate
the photon momentum q′ that appears in the photon propagator
and the nucleon current of Eq. (8) by an effective momentum
qeff as follows,

jN
µ (p, q′)

q′2 − ω2
→ jN

µ (p, qeff)

q2
eff − ω2

, (15)

where qeff is given in Eq. (4). Note that this approximation
also evaluates the nucleon form factors within the nucleon
current at the effective photon momentum. This is a minimal
use of the effective-momentum approximation designed to
reduce the computation to a three-dimensional form, i.e.,
the approximation allows the photon propagator and the
nuclear current to be factored out of the integral over q′,
which is then performed to obtain

∫
d3q ′
(2π)3 e

−iq′ ·rψnlm(q′ − p) =
e−ip·rψnlm(r). This yields

Mnlm −→ MEMAr
nlm = 2π

Q2
eff

jN
µ (p, qeff)Mµ

nlm (16)

where Q2
eff = q2

eff − ω2 and we define

Mµ

nlm =
∫

d3rei(Q−p)·reiχ(r)fi(r)ff (r)hµ
e (r)ψnlm(r). (17)

This procedure has been discussed in Ref. [38] and is called the
EMAr approximation. It has the advantage over the usual EMA
of not approximating the r dependence of the eikonal phases
and focusing factors that provide the Coulomb corrections to
the electron wave functions. The three-dimensional integration
of Eq. (17) provides a good correspondence with the full
DWBA analysis at much lower computational cost. Procedures
to determine appropriate values of δk, and thus the effective
photon momentum that is factored out of the integral, are
discussed later.

A. Hadronic tensor

In the EMAr analysis, the bound-state nucleon’s wave
function is taken to be a product of a Dirac spinor, u(p −
q), times a nonrelativistic wave function for a nucleon,
i.e., [M/(Ep−q)1/2u(p − q)ψnlm(p − q)], and the knocked-out
nucleon’s wave function is a Dirac spinor, (M/Ep)1/2u(p). The
relevant nucleon current is

jN
µ = K1/2ū(p)

[
γµF1 + iκ

2M
F2σµνq

ν
]
u(p − q), (18)

where F1(Q2) and F2(Q2) are nucleon form factors, κ is
the anomalous magnetic moment, and K = M2/(EpEp−q) is
a normalization factor arising from the spinors. The EMAr
cross section for knock-out of a nucleon of momentum p by
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absorption of a photon then takes the form

1

σM

dσ

d�dω
= Q4

cos2
(

θe

2

) ∑
nlm

∫
d�p

4pEp

(2π )3

K(
q2

eff − ω2
)2

×Mµ

nlmWµν(p, qeff)Mν†
nlm (19)

where the hadronic tensor is

Wµν(p, q) = 1

2
T r

[
p/ + M

2M

(
γµF1 + i

κ

2M
F2σµαqα

)
× p/ − q/ + M

2M

(
γνF1 + i

κ

2M
F2σνβqβ

)]
.

(20)

Carrying out the trace over nucleon spins produces

Wµν(p, q)

= 1

2
gµνF

2
1

+ pµ(p − q)ν + (p − q)µpν − p · (p − q)gµν

2M2
F 2

1

+
(

κ

2M2
F1F2 + κ2

8M2
F 2

2

)
(q2gµν − qµqν)

+ κ2

8M2
F 2

2 [−qµqν(p2 + p · q)

+ 2(qµpν + pµqν)(q2 − p · q)

+ (2p · q − q2)p · qgµν − q2(2pµpν − p2gµν)]. (21)

The hadronic tensor is gauge invariant when the momenta
are on mass shell, i.e., p2 = M2 and (p − q)2 = M2. These
conditions require that p · q = 1

2q2. We also use Ep = M + ω

for an initial nucleon at rest, leading to K = M2/[M(M + ω)].
Using the on-mass-shell kinematics and Q2 = −q2 leads to the
gauge invariant form that is used in this work,

Wµν(p, q) = 1

M2

(
pµ − 1

2
qµ

)(
pν − 1

2
qν

)(
F 2

1 + κ2Q2

4M2
F 2

2

)
+ q2gµν − qµqν

4M2
(F1 + κF2)2. (22)

This form of the hadronic tensor is evaluated at qµ → (ω, qeff)
in the EMAr analysis.

B. Cross sections and response function

The form of the hadronic tensor shows that the cross
sections involve an incoherent sum of two parts, which is
a consequence of averaging over nucleon spins. The cross
sections may be written concisely in terms of the Sachs form
factors,

GE = F1 − κQ2

4M2
F2

(23)
GM = F1 + κF2

using the combination of form factors,

G̃2
E = G2

E + Q2

4M2 G
2
M

1 + Q2

4M2

, (24)

in place of F 2
1 + κ2Q2

4M2 F 2
2 . Using current conservation, which

takes the effective forms �Mnlm · q̂eff = (ω/qeff)M0
nlm and

he · q̂eff = (ω/qeff)h0
e , the longitudinal components of the

electron and nuclear currents can be expressed in terms of
the correspond charge components. In so doing we arrive at

1

σM

dσ

d�dω
= Q4

cos2
(

θe

2

) ∑
nlm

∫
d�p

pEp

(2π )3

K(
Q2

eff

)2

×
[∣∣∣∣∣M + 1

2ω

M
M0

nlm

(
1 − ω2

q2
eff

)

− p
M

· �MT
nlm

∣∣∣∣∣
2

G̃2
E

(
Q2

eff

)
−Mµ

nlmgµνMν†
nlm

Q2
eff

4M2
G2

M

(
Q2

eff

)]
. (25)

The transverse amplitude arising from the vector part of the
convection current is

�MT
nlm = �Mnlm − ( �Mnlm · q̂eff)q̂eff . (26)

As has been shown, it is a good approximation to omit the
spin-dependent eikonal effects. Then the helicity four-vector
simplifies to the plane-wave form,

hµPW
e = δλf λi

{
cos

θe

2
, sin

θe

2
, 2λisin

θe

2
, cos

θe

2

}
.

(27)

It follows that∣∣M0
nlm

∣∣2 ∝ cos2 θe

2
,∣∣ �MT

nlm

∣∣2 ∝ sin2 θe

2

Mµ

nlmgµνMν†
nlm ∝ hµPW

e gµνh
νPW
e = −2sin2 θe

2
. (28)

The interference terms between M0
nlm and �MT

nlm vanish by
symmetry and the quasielastic cross section takes the form of
Eq. (1) with response function RL being proportional to the
square of the matrix element of the time component of the
current. The longitudinal cross section is obtained as

1

σM

dσL

d�dω
= Q4

cos2
(

θe

2

) ∑
nlm

∫
d�p

pEp

(2π )3

K(
Q2

eff

)2

×
∣∣∣∣∣M + 1

2ω

M
M0

nlm

(
1 − ω2

q2
eff

)∣∣∣∣∣
2

G̃2
E

(
Q2

eff

)
.

(29)

This analysis suggests that to extract the longitudinal re-
sponse function, one should perform the Rosenbluth separation
as in Eq. (1) except that a factor q4

eff/Q
4
eff should be used in

place of the q4/Q4 kinematical factor to cancel the 1 − ω2/q2
eff

factor in the matrix element. Applying the factors q4
eff/Q

4
eff and
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1/σM to the longitudinal contribution of Eq. (25) yields

REMAr
L =

[(
M + 1

2ω
)2

M(M + ω)

][
Q4

Q4
eff cos2

(
θe

2

)][
G̃2

E

(
Q2

eff

)]
×

∑
nlm

∫
d�p

pEp

(2π )3

∣∣M0
nlm

∣∣2
. (30)

The first prefactor arises from the relativistic wave-function
normalization factor, K , and the current, where p0 = M + ω

and q0 = ω have been used. The second prefactor should
cancel to a large extent with similar factors in the M0

nlm

amplitude. In particular, the helicity matrix element h0
e ≈

cos( θe

2 ) cancels to a high degree. To the extent that the
focusing factors from the electron wave functions in the
DWBA matrix element can be approximated at r = 0, they
give approximately a factor keff

i keff
f /kikf to the matrix element,

which should cancel with Q4/Q4
eff = (kikf /keff

i keff
f )2 from the

prefactor. Because the EMAr analysis involves an integration
over r with the full coordinate dependence, the focusing factors
can differ from the approximate result. For example, the
contributions from radial wave functions that vanish at r = 0,
as in the shells with L > 0, depend on the focusing factors
away from the origin. Consequently, accurate values of δk are
not known a priori such that the second prefactor cancels the
Coulomb effects owing to focusing factors. A procedure is
needed to determine them.

To test the Coulomb sum rule, one should remove the
nucleon form factor. Consistent with the photon momentum in
the nuclear current being shifted, the form factors evaluated at
Q2

eff should be divided out of the cross section, giving

SL(q, ω) = 1

Z

RL(q, ω)

G̃2
E

(
Q2

eff

) ,

∫
dωSL(q, ω) ≈ 1. (31)

C. Comparison of EMAr and DWBA analyses

The six-dimensional (6D) integration of Eq. (8) should be
performed for nuclear models in order to obtain the full DWBA
response function. Similar calculations of the EMAr response
function should then be normalized, by choice of the Qeff

value in the prefactor of the EMAr amplitude, such that the
magnitude of the peak DWBA response is reproduced by the
EMAr analysis. However, the full six-dimensional integration
in the matrix element together with the two-dimensional
integration over angles of the final momenta is extremely time
consuming when many shells contribute to the response. In
this work, a limited form of the full DWBA analysis has been
performed based on the wave function of a single shell, the
1s shell of the 208Pb nucleus. We then normalize the EMAr
analysis to the DWBA analysis for the 1s shell. Figure 5
shows the PWIA, EMAr, and DWBA response functions based
on the 1s shell. In the full DWBA calculation, the nucleon
form factor F (q′2 − ω2), the photon propagator, 1/(q′2 − ω2),
and the current-conservation factor

(
1 − ω2/q′2) have been

evaluated at the running photon momentum that is integrated
as in Eq. (8). The response function is obtained by dividing
the resulting longitudinal cross section by the corresponding
factors evaluated at the effective photon momentum, G̃E(q2

eff −
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FIG. 5. Response function for the 1s shell based on the PWIA,
EMAr, and full 6D calculations for 208Pb at Ei = 500 MeV and
q = 550 MeV/c.

ω2)(1 − ω2/q2
eff)/(q2

eff − ω2). In the EMAr analysis, there is an
exact cancellation of these factors.

The DWBA and EMAr results agree very well for the shift
of the peak response relative to the peak of the PWIA response
function. This is confirmed by fits of each of these responses
to the EMA form of Eq. (3) using the parameters shown in
Table I. The shift of the 1s-shell peak response relative to the
PWIA peak response is fit by δk of −22.0 MeV for the full
DWBA case (labeled 6D-Fexact in the table) and by −22.0 MeV
for the EMAr response function. The magnitude of the peak
EMAr response function is about 1.5% lower than that for the
DWBA response function as shown by the A fit parameters in
the table.

To test one of the assumptions of the EMA or EMAr
analysis, we also calculated full DWBA cross sections with
the form factor and current-conservation factor evaluated at
qeff and removed from the integral over the photon momentum.
However, the photon propagator was left within the integral.
This allows a comparison of results for SDWBA

L with the
nonlocality of the form factor integrated over versus otherwise
identical results with the form factor evaluated at the effective
momentum transfer and taken out of the integral. In the latter
case the form factor simply cancels out of the result. When
SDWBA

L is calculated with the form factor evaluated at qeff and
factored out of the integral, thus canceling, the result is fit
using the parameters in the line of Table I labeled 6D-Feff .
When SDWBA

L is calculated with the form factor integrated
over and then divided out at qeff , the result is fit using the
parameter values in the line labeled 6D-Fexact in the table.
Both calculations are found to produce essentially the same
response functions, SDWBA

L , in the sense that the same fitting
parameters describe both equally well. Thus, there is no
evidence for errors associated with evaluating the form factor
at qeff and factoring it out of the integral. This is a nontrivial

TABLE I. EMA fit parameters for the 1s-shell response functions
at E = 500 MeV and q = 550 MeV/c. δk is in MeV.

δk fEMA A

EMAr −22.0 0.80 0.985
6D-Fexact −22.0 0.80 1.00
6D-Feff −22.0 0.80 1.00

044604-7



S. J. WALLACE AND J. A. TJON PHYSICAL REVIEW C 78, 044604 (2008)

and important result because the form factor reduces the cross
sections by about a factor 4 for q = 0.55 GeV/c. There would
be a significant difference if the form factor evaluated at
the momentum transfer of the electron were divided out in
Eq. (31) as has been assumed to be the correct procedure in
some works. Use of the momentum transfer of the electron,
q, versus the effective photon momentum, qeff , leads to a dif-
ference in cross sections by a factor G̃2

E(q2 − ω2)/G̃2
E(q2

eff −
ω2) ≈ 1.23 for 208Pb at q = 0.55 GeV/c and ω = 0.17 GeV.
We find very clear evidence from this analysis that the form
factor should be evaluated at the effective photon momentum
transfer rather than the momentum transfer of the electron
when response functions are extracted from data.

We draw the following conclusions from these tests.
The EMAr approximation provides a good approximation to
the full 6D DWBA analysis. It reproduces the shift of the
DWBA response relative to the PWIA response very well, i.e.,
the momentum shift δk is the same: [δk(6D) = δkEMAr]. When
the focus factors are kept within the integration over r as in the
EMAr analysis, they do not cancel precisely with the prefactor
Q4/Q4

eff . The r integration provides a normalization reduction
of about 1.5%, i.e., A = 0.985 in fits of the EMAr results to
the EMA form. In the 6D analysis with the nonlocality of the
photon propagator also included in the integration over photon
momentum, but everything else the same as in the EMAr
calculation, there is no normalization correction, i.e., A = 1.00
in fits to the EMA form. We conclude that the nonlocality of
the photon propagator produces a normalization 1.5% greater
than the normalization of the EMAr response function: (R6D

L ≈
1.015REMAr

L ), thus canceling the normalization reduction of
the EMAr result. To include the nonlocality of the photon
propagator, the normalization of the EMAr response for 208Pb
should be increased by the factor 1.015. It then agrees with the
normalization of the full DWBA result because the nonlocality
of the photon propagator cancels the reduction that arises in
the EMAr result. The renormalized EMAr result is found to
give excellent agreement with the full DWBA results for both
the shift and the normalization. When the nucleon form factor
and current-conservation factors also are kept in the integration
over photon momentum, there is no additional change of the
normalization compared with evaluating those factors at qeff .

D. Comparison of EMAr and EMA calculations

The three-dimensional integral of Eq. (17) is dominated
by a stationary phase point that may be obtained by approxi-
mating the eikonal phase χ (r) ≈ χ (0) + r · ∇χ (0) + · · ·. The
effective momentum is then

qeff = q + ∇χ (0) (32)

and the integral for the time-component of the current takes
the form [using h0

e = cos 1
2θe]

M0,EMAr′
nlm = cos

1

2
θee

iχ(0)
∫

d3rei(qeff−p)·rfi(r)ff (r)ψnlm(r).

(33)

Generally it is found that the use of qeff overestimates the
Coulomb corrections unless ∇χ (0) is reduced by a factor to
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FIG. 6. (Color online) Longitudinal response function for the 1s

shell of 208Pb based on the PWIA (dotted line), EMA (open circles),
EMAr′ (dashed line), EMAr (solid line), and full 6D calculations (×
symbols) at Ei = 500 MeV and q = 550 MeV/c.

simulate an average value over the nucleus, i.e.,

qeff = q + fEMA∇χ (0). (34)

We refer to this stationary-point analysis with the full r
dependence of the focus factors left within the integral as
EMAr′ and use fEMA = 0.8, as is consistent with fits of the
EMAr result. When the focus factors are also approximated
using

fi(r)ff (r) ≈ [1 − fEMAV (0)/ki][1 − fEMAV (0)/kf ]

= ki,effkf,eff

kikf

(35)

then they are canceled by the 1/Q2
eff factor in the response

function. That approximation leads to the usual EMA result,

M0,EMA
nlm = cos

1

2
θe

ki,effkf,eff

kikf

ψnlm(qeff − p). (36)

The effective momentum approximations provide a good
reproduction of the full 6D analysis for both the longitudinal
response function, RL, and the transverse response function,
RT , as shown in Figs. 6 and 7. The EMAr′ stationary-
point analysis using fEMA = 0.8 produces essentially the
same results as the EMAr that includes the integration over
the variation of χ (r). The EMA result is also very close to the
results based on EMAr and EMAr′. Thus, it is clear that the
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FIG. 7. (Color online) Transverse response function for the 1s

shell of 208Pb based on the PWIA (dotted line), EMA (o symbols),
EMAr′ (dashed line), EMAr (solid line), and full 6D calculations (×
symbols) at Ei = 500 MeV and q = 550 MeV/c.
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TABLE II. Numerical values for RL and RT for the 1s shell of
208Pb at E = 500 MeV and q = 550 MeV/c.

ω R
(PWIA)
L R

(EMA)
L R

(EMAr)
L R

(EMAr′)
L R

(6D)
L

0.10 0.47 0.15 0.12 0.15 0.13
0.16 6.5 5.4 5.3 5.5 5.2
0.20 2.5 3.9 4.1 3.9 3.9

ω R
(PWIA)
T R

(EMA)
T R

(EMAr)
T R

(EMAr′)
T R

(6D)
T

0.10 0.33 0.11 0.09 0.11 0.09
0.16 4.6 4.1 4.1 4.2 3.9
0.20 1.9 3.1 3.2 3.1 3.1

integration over r that is incorporated in the EMAr analysis
provides results that differ only in the fine details. The usual
EMA analysis is almost as good once one has in hand a
reasonable value of fEMA to use. Some numerical values are
given in Table II to provide a more quantitative comparison of
the approximations with the 6D calculation.

IV. CROSS-SECTION CALCULATIONS

Numerical calculations using the EMAr analysis have been
performed including all shells of shell-model wave functions
with the harmonic oscillator parameter adjusted so that the
correct nuclear charge radius is obtained. Table III shows the
parameter values used. Harmonic oscillator wave functions are
used for the shell model. In coordinate space they are

ψnlm(r) = NYlm(�r )rl
1F1[−(n − l)/2, l

+ 3/2, r
√

2/β]e−(r/β)2
(37)

with normalization constants N determined by
∫

d3r|ψ(r)|2 =
1. Furthermore, Ylm are the well-known spherical harmonics
and 1F1 the confluent hypergeometric functions.

Neutron contributions to cross sections are required to
include the magnetic scattering. They are assumed to be
proportional to the proton contributions and are included by
using suitable form factors, i.e.,

G̃2
E −→ G̃2

Ep + N

Z
G̃2

En,

(38)

G2
M −→ G2

Mp + N

Z
G2

Mn

times the proton contributions, where subscripts p and n refer
to the proton and neutron, respectively. Dipole form factors
1/(1 + Q2/0.71 GeV2)2 are used for the variation of F1 and
F2 with Q2.

Figure 8 shows cross sections for 208Pb at 500 MeV electron
energy. The momentum transfer is held fixed at 550 MeV/c and

TABLE III. Parameters used in calculations: β is the harmonic
oscillator parameter; V0 and R are the Coulomb potential parameters.

Nucleus β(fm) V0 (GeV) R (fm)

208Pb 3.564 0.0256 7.10
56Fe 2.854 0.0124 3.97
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FIG. 8. Ratio of EMAr and PWIA longitudinal, transverse and
total cross sections to Z times the Mott cross section for 500-MeV
electron scattering from 208Pb at q = 550 MeV/c.

therefore the scattering angle varies with energy loss ω from
about 70◦ to about 100◦. The figure shows the plane-wave
(PWIA) cross sections as light lines and the EMAr results for
Coulomb distorted cross sections as heavy lines. Generally the
Coulomb corrections shift the peaks to larger energy loss. In
our calculations, the average binding energy of 8 MeV was
used for all shells. Figure 9 shows similar cross sections at
800 MeV electron energy with the momentum transfer held
fixed at 900 MeV/c. In this case the scattering angle varies from
about 70◦ to about 105◦. At the higher momentum transfer, the
longitudinal cross section is seen to be a small fraction of the
total cross section even without the pionic contributions.

Longitudinal response functions for 208Pb are shown in
Fig. 10. In this figure, the PWIA response functions shown
obey the Coulomb sum rule in the form∫

dω
SPWIA

L (ω, q)

1 + ω2

4M(M+ω)

= 1, (39)

where the kinematical factor in the denominator cancels the
kinematical factors due to wave function normalizations and
currents. The correction is modest: the denominator factor is
about 1.01 at ω = 0.2 GeV and 1.03 at ω = 0.4 GeV.
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FIG. 9. Ratio of EMAr and PWIA longitudinal, transverse, and
total cross sections to Z times the Mott cross section for 800-MeV
electron scattering from 208Pb at q = 900 MeV/c.
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FIG. 10. EMAr longitudinal response functions divided by Z

and the nucleon form factor for 208Pb at Ei = 500 MeV and q =
550 MeV/c (solid line) and at Ei = 800 MeV and q = 900 MeV/c
(dashed line). The corresponding PWIA response functions without
Coulomb effects included are shown by the light dashed lines. Fits
of the response functions using Eq. (3) are shown by the × symbols
and the parameters of the fits are given in Table IV.

Note that the contributions due to correlations in the
nuclear wave functions are omitted in our calculations. If they
are small at the q values shown, the Coulomb sum rule
should be satisfied approximately. Our wave functions are
approximate and final-state interactions of the knocked-out
nucleon have been omitted. Cross sections presented in this
work are not expected to be very close to experimental results;
however, the nuclear model used is expected to be adequate
for testing the accuracy with which Coulombic effects can be
removed.

We have fit the EMAr longitudinal response functions to
the EMA form as in Eq. (3) using the same value of qeff in
the prefactor of Eq. (30) as in the PWIA response function.
The fits of the EMAr response function based on all shells
yield similar values for A and a little smaller values for δk

compared with fits of the 1s-shell response function. The fit
parameters are summarized in Table IV. Accounting for the
nonlocality of the photon propagator as in the results based
on the 208Pb1s-shell DWBA response, the AEMAr factors are
renormalized by the factor 1.015 to estimate factors ADWBA

for a full DWBA analysis that includes all shells. Our results
support the use of the EMA fits of experimental data as in
Eq. (3) using A = 1. The fEMA factors are a little smaller
when all shells are included. That is understandable because
higher shells include ones with wave functions that vanish at
r = 0. For those shells, the distortion effects in the electron
waves contribute at radii away from r = 0 where the Coulomb
potential is weaker. The results for the 1s shell show that both

TABLE IV. EMA fit parameters for the EMAr response functions
at energy E in GeV and momentum transfer q in GeV/c. The value
of δk is in MeV.

Nucleus E q δk fEMA AEMAr ADWBA

208Pb 0.5 0.55 −21.0 0.82 0.98 ≈1.00
208Pb 0.8 0.90 −19.5 0.76 0.985 ≈1.00
58Fe 0.5 0.55 −8.8 0.71 0.99 ≈1.00
58Fe 0.8 0.90 −9.5 0.77 1.00 ≈1.00
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FIG. 11. EMAr longitudinal response functions divided by Z

for 208Pb at Ei = 500 MeV and q = 550 MeV/c (solid line). The
corresponding PWIA response function without Coulomb effects
included is shown by the dashed line and the EMA calculation using
fEMA = 0.8 and A = 1.0 is shown by the × symbols.

EMAr and DWBA yield the same value of δk. The momentum
shifts should be equal also for response functions based on the
sum over all shells.

Figures 11 and 12 show the longitudinal and transverse
response functions RL and RT that do not have form factors
divided out for Pb at q = 550 MeV/c. Results are shown for the
PWIA, EMA, and EMAr calculations, where the EMA results
are not a fit but rather are a straightforward calculation using
fEMA = 0.8 and A = 1.0. The Coulomb effects of the EMAr
analysis are well approximated by the EMA calculation. As has
been discussed, the overall magnitude of the EMA response
is higher than the EMAr response by about 2% because the A

parameter has not been used.
Figure 13 shows cross sections for 56Fe at 500-MeV

electron energy and q = 550 MeV/c and Fig. 14 shows cross
sections at 800 MeV electron energy and q = 900 MeV/c.
Coulomb effects are somewhat smaller for the 56Fe nucleus
because the Coulomb potential is smaller. Response functions
for the 56Fe target are shown in Fig. 15. Fits of the response
functions to the EMA form of Eq. (3) yield the fitting
parameters shown in Table IV. The shifts are given in this
case by fEMA = 0.71 (500 MeV) and 0.77 (800 MeV).
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FIG. 12. EMAr transverse response functions divided by Z for
208Pb at Ei = 500 MeV and q = 550 MeV/c (solid line). The
corresponding PWIA response function without Coulomb effects
included is shown by the dashed line and the EMA calculation using
fEMA = 0.8 and A = 1.0 is shown by the × symbols.
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FIG. 13. Ratio of EMAr and PWIA longitudinal, transverse, and
total cross sections to Z times the Mott cross section for 500-MeV
electron scattering from 56Fe at q = 550 MeV/c.
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FIG. 14. Ratio of EMAr and PWIA longitudinal, transverse, and
total cross sections to Z times the Mott cross sections for 800-MeV
electron scattering from 56Fe at q = 900 MeV/c.
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FIG. 15. EMAr longitudinal response functions divided by Z

and the nucleon form factor for 56Fe at Ei = 500 MeV and q =
550 MeV/c (solid line) and at Ei = 800 MeV and q = 900 MeV/c
(dashed line). The corresponding PWIA response functions without
Coulomb effects included are shown by the light dashed lines. Fits
of the response functions using Eq. (3) are shown by the × symbols
and values of the fitting parameters are given in Table IV.

V. CONCLUSIONS

In this work we have tested some assumptions that have
been used in the analysis of experimental data for quasielastic
scattering from nuclei. The main focus is to use a known
nuclear model (in this case the shell model) to test how well
the Coulomb corrections can be removed from DWBA cross
sections using the EMA. The goal is to extract PWIA response
functions from the DWBA cross sections. It is assumed that
the Coulomb corrections are not much affected by the nuclear
model used.

At the electron beam energies considered in the work,
namely 500 MeV and higher, the Coulomb effects in quasielas-
tic scattering from nuclei can be described accurately using the
eikonal distorted waves that include higher-order corrections.
The eikonal analysis has simplifying features because one can
isolate the phases that cause shifts of the electron momenta,
the focusing factors and the spin phases that affect the L/T

separation. We have used the analytical phases up to order 1/k2

in the eikonal expansion that were developed in Ref. [37]. As
one check on the numerics, the eikonal phases were computed
two ways: by direct numerical integration of the defining
equations and by use of the analytical formulas. Both give
the same results. For the cases considered in this work, the
eikonal wave functions provide very well converged results.
As a check of the three-dimensional integration used in the
EMAr analysis, the PWIA results were computed two ways:
using analytical Fourier transforms of the nucleon’s bound-
state wave functions and by three-dimensional numerical
integration. The latter calculations are the same as those for the
EMAr amplitude except that the Coulomb effects are omitted.
With suitable integration grids the results are essentially the
same at an accuracy better than 1% near the peak of response
functions and errors at larger ω can be 1% or 2% of the
peak value of the response function. Generally the errors in
numerical results are insignificant in the plots.

Full DWBA computations are extremely time consuming.
An approximation called EMAr is used to simplify the
analysis. The EMAr analysis evaluates the full r dependence of
the eikonal distorted waves but approximates the hard-photon
propagator and the form factor in the nucleon current by
evaluating them at the effective momentum, qeff . Tests of the
EMAr against the full DWBA analysis were carried out for the
response function of the 1s shell of 208Pb. Those tests showed
that the EMAr produces close agreement with the DWBA.
Moreover, the assumption that one should remove the nucleon
form factor (which is integrated over in the DWBA analysis)
by evaluating it at qeff was found to be justified with better than
1% accuracy. This should be compared with large differences
in cross sections when the form factor is evaluated at q, the
momentum transfer of the electron, instead of qeff . We find
clear evidence that the form factor should be evaluated at the
effective momentum when it is divided out of experimental
cross sections to check the Coulomb sum rule.

The analysis of Bates experimental data in Ref. [9] uses
the form factor at q rather qeff for a 40Ca nucleus. Results for
the Coulomb sum rule are about 0.8–0.9 compared with the
expectation of unity. If qeff were used in the analysis, the Bates
results for the Coulomb sum rule would be increased by about
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5%, thus making them closer to unity. The analysis of Saclay
experimental data in Refs. [11,12] uses form factors at qeff .
Significantly lower values for the Coulomb sum rule are found
based on the Saclay analysis. The differences between the
Bates and Saclay results are much larger than can be attributed
to Coulomb corrections.

We find that the spin phases in electron wave functions
produce very small effects at energies of 500 MeV or higher.
The helicity matrix elements that involve the spin phases
are very close to those of a PWIA analysis for quasielastic
scattering. Consequently, the Rosenbluth separation extracts
response functions R

expt
L and R

expt
T that are accurate in the

sense that they correspond very closely to the distorted wave
matrix elements of the longitudinal and transverse parts of the
currents.

The effects of the distorted waves on the longitudinal
response function are twofold: (i) for electron scattering they
shift the peak of the response functions toward larger values
of the energy loss, ω, and (ii) they distort the shapes of the
response functions, more so for the inner shells than the
outer ones. However, reasonably accurate fits of the distorted
response functions can be obtained using the EMA fitting
procedure of Eq. (3). The momentum shift parameter δk is
found to be given by fEMA ≈ 0.80, for both the 208Pb and
56Fe nuclei, i.e., δk ≈ 0.80Vc(0), where Vc(r) is the Coulomb
potential. More precise values are given in Table IV. The
normalization parameter A is equal to 1.00 within 1 or 2%. The
uncertainty arises because the normalization for the sum over
shells has been calculated based on the full DWBA for the 1s

shell of 208Pb and because the shape of the distorted response
function differs a little from the shape of the PWIA response
function for ω significantly away from the peak. Therefore fits
to the PWIA shape cannot reproduce the response precisely.
Note that the good agreement of fEMA and A for 208Pb and
56Fe demonstrates that the Coulomb corrections do not depend
significantly on the nuclear model. Note also that the analysis
of experimental data using a fit as in Eq. (3) tends to give more
accurate results for RPWIA

L at the peak of the response because
that is controlled by δk and less accurate results away from the
peak because of the distortion of the shape.

Estimates of longitudinal, transverse, and total cross sec-
tions have been calculated using shell-model wave functions
for 208Pb and 56Fe at q = 0.55 GeV/c and q = 0.8 GeV/c.
These kinematical conditions match the ones used in a recent
experiment at the Thomas Jefferson National Accelerator
Facility. Because final-state interactions, correlations, and pion
production have been omitted, the calculated cross sections
may differ significantly from experimental cross sections.

Nevertheless the Coulomb corrections should be reliable at
the level of a few percent error for quasielastic scattering.
Other reactions, such as (e, e′p), are sensitive to the final-
state interactions and the Coulomb corrections may be less
amenable to an EMA treatment.

For definiteness, we state the following recipe for an
EMA analysis of quasielastic electron-scattering data when
the initial electron energy is 500 MeV or more.

(i) Equations (1) and (2) with all occurrences of photon
momentum, q, including those in Q2 = q2 − ω2, replaced
with the effective photon momentum, qeff , and with θe equal
to the observed electron scattering angle, allow an accurate
determination of RL(qeff, ω) and RT (qeff, ω). These response
functions correspond closely to the desired matrix elements of
the longitudinal and transverse currents.

(ii) The effective photon momentum can be calculated as in
Eqs. (4) and (5) using the Coulomb potential at r = 0, Vc(0),
based on the empirically determined charge density and a
factor fEMA ≈ 0.8, or a value taken from Table IV. There
is no need for a renormalization factor, i.e., A = 1 is adopted
in Eq. (3).

(iii) The nucleon form factor based on the effective photon
momentum, qeff , should be divided out as in Eq. (31).

(iv) The first prefactor of Eq. (30), (M + 1
2ω)2/M(M + ω),

should be divided out to obtain a quantity that should satisfy
the Coulomb sum rule provided that the effects of nuclear
correlations are sufficiently small. This correction removes
minor relativistic effects that originate in the longitudinal
current and the bound-state wave functions.

Coulomb corrections are notoriously difficult to calculate
and our calculations refute claims that may be found in
the literature. For example, Ref. [46] claims that the EMA
procedure is not accurate for the longitudinal response at 485
electron energy and 60◦ scattering angle for a 208Pb target.
The basis for the claim is that significant differences are found
between EMA results and results based on an ad hoc DWBA
analysis that has been used extensively. We find that the EMA
with appropriate parameters can describe the 1s-shell DWBA
or all-shells EMAr results very well at essentially the same
kinematics. We wish to emphasize that all of our numerics are
under good control and various consistency checks have been
made that give confidence in the results reported herein.
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