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We give a complete geometrical description of the effective Hamiltonians common in nuclear shell-model
calculations. By recasting the theory in a manifestly geometric form, we reinterpret and clarify several points.
Some of these results are hitherto unknown or unpublished. In particular, commuting observables and symmetries
are discussed in detail. Simple and explicit proofs are given, and numerical algorithms are proposed that improve
and stabilize methods commonly used today.
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I. INTRODUCTION

Effective Hamiltonians and interactions are routinely used
in shell-model calculations of nuclear spectra [1–3]. The
published mathematical theory of the effective Hamiltonian is
complicated and usually focuses on perturbation theoretical
aspects, diagram expansions, etc. [4–12]. In this article,
we recast and reinterpret the basic elements of the theory
geometrically. We focus on the geometric relationship between
the exact eigenvectors |ψk〉 and the effective eigenvectors
|ψeff

k 〉, both for the usual non-Hermitian Bloch-Brandow
effective Hamiltonian [1,4,5,9] and for the Hermitian effective
Hamiltonian [6,11,13,14], which we dub the canonical effec-
tive Hamiltonian because of its geometric significance. This
results in a clear geometric understanding of the decoupling
operator ω (defined in Sec. III C), and a simple proof and char-
acterization of the Hermitian effective Hamiltonian in terms
of subspace rotations, in the same way as the non-Hermitian
Hamiltonian is characterized by subspace projections.

The goal of effective interaction theory is to devise a
Hamiltonian Heff in a model space P of (much) smaller
dimension m than the dimension n of Hilbert space H,
with m exact eigenvalues of the original Hamiltonian H =
H0 + H1, where H1 is usually considered as a perturbation.
The model space P is usually taken as the span of a few
eigenvectors |ek〉mk=1 of H0, i.e., the unperturbed Hamiltonian
in a perturbational view.

Effective Hamiltonians in A-body systems must invariably
be approximated (otherwise there would be no need for
Heff), usually by many-body perturbation theory, but since
such approaches suffer from bad convergence properties in
general [15], a subcluster approximation approach has been
proposed and is in wide use today [3,6]. In this case, the
exact a-body canonical effective Hamiltonian is computed,
where a < A. From this, one extracts an effective a-body
interaction and applies it to the A-body system. We present a
new algorithm for computing the exact effective Hamiltonian,
which is useful in the subcluster approach to Heff . It is
conceptually and computationally simpler than the usual
one, which relies on both matrix inversion and square root
[3,11], because the only nontrivial matrix operation is the
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singular value decomposition (SVD). This algorithm is a
simple by-product of the geometric approach to analyzing
the effective Hamiltonians. We comment that in the subcluster
approach, it is invariably assumed that the a-body Hamiltonian
is exactly diagonizable, so its exact eigenpairs are available.
Thus, algorithms for the subcluster approach to Heff are not
perturbative in nature.

The article is organized as follows. In Sec. II we introduce
some notation and define the singular value decomposition of
linear operators and the principal angles and vectors between
two linear spaces. In Sec. III we define and analyze the
Bloch-Brandow and canonical effective Hamiltonians. The
main part consists of a geometric analysis of the exact
eigenvectors and forms the basis for the analysis of the effective
Hamiltonians. We also discuss the impact of symmetries of
the Hamiltonian, i.e., conservation laws. In Sec. IV we give
concrete matrix expressions and algorithms for computing the
effective Hamiltonians; and in the canonical case, it is, to the
best of our knowledge, previously unknown. In Sec. V we sum
up and briefly discuss the results and possible future projects.

II. TOOLS AND NOTATION

A. Linear spaces and operators

We shall use the Dirac notation for vectors, inner products,
and operators, in order to make a clear, basis-independent
formulation. By F ,G, etc., we denote (finite dimensional)
Hilbert spaces, and vectors are denoted by kets, e.g., |ψ〉, as
usual. Our underlying Hilbert space is denoted by H, with n =
dim(H). In general, n is infinite. We shall, however, assume it
to be finite. Our results are still valid in the infinite dimensional
case if H is assumed to have a discrete spectrum and at least
m linearly independent eigenvectors.

We are also given a Hamiltonian H , a linear, Hermitian
operator (i.e., H = H †) on H. Its spectral decomposition is
defined to be

H =
n∑

k=1

Ek|ψk〉〈ψk|.

Thus, Ek and |ψk〉 are the (real) eigenvalues and (orthonormal)
eigenvectors, respectively.
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We are also given a subspace P ⊂ H, called the model
space, which in principle is arbitrary. Let {|ek〉}mk=1 be an
orthonormal basis, for definiteness, viz.,

P := span{|ek〉 : k = 1, . . . , m}.
Let P be its orthogonal projector, i.e.,

P : H → P, P =
m∑

j=1

|ej 〉〈ej |, m = dim(P) � n.

The basis {|ej 〉}mj=1 is commonly taken to be eigenvectors for
H0.

The orthogonal complement of the model space, Q = P⊥,
has the orthogonal projector Q = 1 − P , and is called the
excluded space.

This division of H into P and Q transfers to operators in
H. These are in a natural way split into four parts, viz., for an
arbitrary operator A,

A= (P + Q)A(P + Q) =PAP + PAQ + QAP + QAQ,

(1)

where PAP maps the model space into itself, QAP maps P
into Q, and so forth. It is convenient to picture this in a block
form of A, viz.,

A =
[

PAP PAQ

QAP QAQ
.

]

B. Singular value decomposition

A recurrent tool in this work is the singular value decompo-
sition (SVD) of an operator A : X → Y . Here, p = dim(X )
and q = dim(Y) are arbitrary. Then there exists orthonormal
bases {|xk〉}pk=1 and {|yk〉}qk=1 of X and Y , respectively, and
r = min(p, q) non-negative real numbers σk with σk � σk+1

for all k, such that

A =
r∑

k=1

σk|yk〉〈xk|.

This is the SVD of A, and it always exists. It may happen that
some of the basis vectors do not participate in the sum, either
if p �= q or if σk = 0 for some k.

The vectors |xk〉 are called right singular vectors, while
|yk〉 are called left singular vectors. The values σk are
called singular values, and A is one-to-one and onto (i.e.,
nonsingular) if and only if σk > 0 for all k, and p = q. The
inverse is then

A−1 =
r∑

k=1

1

σk

|xk〉〈yk|,

as easily verified.
A recursive variational characterization of the singular

values and vectors is the following [16]:

σk = max
|u〉∈X , 〈u|u〉=1
〈u|uj 〉=0, j<k

max
|v〉∈Y, 〈v|v〉=1
〈v|vj 〉=0, j<k

Re〈v|A|u〉

=:〈vk|A|uk〉. (2)

The latter equality implicitly states that the maximum is
actually real. The SVD is very powerful, as it gives an
interpretation and representation of any linear operator A as a
simple scaling with respect to one orthonormal basis, and then
transformation to another. The singular vectors are not unique,
but the singular values are.

C. Principal angles and vectors

Important tools for comparing linear subspaces F and G
of H are the principal angles and principal vectors [17,18].
The principal angles generalize the notion of angles between
vectors to subspaces in a natural way. They are also called
canonical angles. Assume that

p = dim(F) � q = dim(G) � 1.

(If p < q, we simply exchange F and G.) Then, q principal
angles θk ∈ [0, π/2], with θk � θk+1 for all k, and the left
and right principal vectors |ξk〉 ∈ F and |ηk〉 ∈ G are defined
recursively through

cos θk = max
|ξ 〉∈F , 〈ξ |ξ 〉=1
〈ξ |ξj 〉=0, j<k

max
|η〉∈G, 〈η|η〉=1
〈η|ηj 〉=0, j<k

Re〈ξ |η〉

=:〈ξk|ηk〉. (3)

Again, the last equality implicitly states that the maximum
actually is real. One sees that θk is the angle between |ξk〉 ∈ F
and |ηk〉 ∈ G.

It is evident from Eqs. (2) and (3) that the principal angles
and vectors are closely related to the SVD. Indeed, if we
consider the product of the orthogonal projectors PF and PG
and compute the SVD, we obtain

PFPG =
p∑

k=1

|ξk〉〈ξk|
q∑

j=1

|ηk〉〈ηk| =
q∑

k=1

cos θk|ξk〉〈ηk|,

where we extended the orthonormal vectors {|ξk〉}qk=1 with
p − q vectors into a basis for F , which is always possible.
This equation in particular implies the additional orthogonality
relation 〈ξj |ηk〉 = δj,k cos θk on the principal vectors.

The principal vectors constitute orthonormal bases that
should be rotated into each other if the spaces were to be
aligned. Moreover, the rotations are by the smallest angles
possible.

III. EFFECTIVE HAMILTONIANS

A. Similarity transforms

The goal of the effective Hamiltonian is to reproduce
exactly m of the eigenvalues, and (necessarily) approximately
m of the eigenvectors. We shall assume that the first m

eigenpairs (Ek, |ψk〉), k = 1, . . . , m, defines these. We define
the space E as

E := span{|ψk〉 : k = 1, . . . , m}.
The orthogonal projector P ′ onto E is

P ′ =
m∑

k=1

|ψk〉〈ψk|. (4)
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We denote by (Ek, |ψeff
k 〉), k = 1, . . . , m, the effective

Hamiltonian eigenvalues and eigenvectors. Of course, the
|ψeff

k 〉 ∈ P must constitute a basis for P , but not necessarily
an orthonormal basis. Geometrically, we want |ψeff

k 〉 to be as
close as possible to |ψk〉, i.e., we want E to be as close to P as
possible.

Let |ψ̃eff
k 〉 be the bi-orthogonal basis, i.e., 〈ψ̃eff

j |ψeff
k 〉 = δj,k ,

so that

P =
m∑

k=1

|ek〉〈ek| =
m∑

k=1

∣∣ψeff
k

〉〈
ψ̃eff

k

∣∣.
The spectral decomposition of Heff becomes

Heff =
m∑

k=1

Ek

∣∣ψeff
k

〉〈
ψ̃eff

k

∣∣.
Since Heff is to have eigenvalues identical to m of those of H ,
and since Heff operates only in P , we may relate Heff to H

through a similarity transform, viz.,

Heff = PH̃P = P (e−SHeS)P, (5)

where exp(S)exp(−S) = I . Any invertible operator has a
logarithm, so Eq. (5) is completely general.

Now, Heff = PH̃P is an effective Hamiltonian only if the
Bloch equation

QH̃P = Qe−SHeSP = 0 (6)

is satisfied [8], since P is then invariant under the action of H̃ .
The eigenvectors of Heff are now given by∣∣ψeff

k

〉 = e−S |ψk〉 ∈ P, k = 1, . . . , m. (7)

Thus, an effective Hamiltonian can now be defined for every
S such that Eq. (6) holds. It is readily seen that H̃ = H̃ † if
and only if S is skew-Hermitian, i.e., that S† = −S. There is
still much freedom in the choice of exponent S. Indeed, given
any invertible operator A in P, A−1HeffA is a new effective
Hamiltonian with the same effective eigenvalues as Heff , and
|ψeff〉 = A−1exp(−S)|ψ〉.

B. Geometry of the model space

We will benefit from a detailed discussion of the spaces E
and P before we discuss the Bloch-Brandow and canonical
effective Hamiltonians in detail.

Since dim(P) = dim(E) = m, the closeness of the effective
and exact eigenvectors can be characterized and measured by
the orientation of E relative to P in H, using m canonical
angles θk and principal vectors |ηk〉 ∈ E and |ξk〉 ∈ P . Recall
that cos θk = 〈ξk|ηk〉 and that the angles θk ∈ [0, π/2] were
the smallest possible such that the principal vectors are the
orthonormal bases of P and E that are closest to each other.

We now define the unitary operator Z = exp(G) that rotates
P into E according to this description, i.e., we should have
Z|ξk〉 = |ηk〉. In Fig. 1 the plane spanned by |ηk〉 and |ξk〉 if
θk > 0 is depicted. Recall that 〈ξj |ηk〉 = cos θj δj,k . Note that
|ξk〉 = |ηk〉 if and only if θk = 0, and the plane degenerates into
a line. If θk > 0, the vector |χk〉 is defined so that it together

FIG. 1. Plane spanned by |ξk〉 and |ηk〉, and action of projectors
P and Q on |ηk〉.
with |ξk〉 is an orthonormal basis for the plane, viz.,

|ηk〉 = P |ηk〉 + Q|ηk〉 = cos(θk)|ξk〉 + sin(θk)|χk〉, (8)

where

|χk〉 = Q|ηk〉
〈ηk|Q|ηk〉1/2 . (9)

Thus, {|χk〉} ∪ {|ξk〉} is an orthonormal basis forP ⊕ E , whose
dimension is 2m − nz, where nz is the number of θk = 0. The
set {|χk〉 : θk > 0, k = 1, . . . , m} is an orthonormal basis for
QE which contains Q|ψk〉 for all k = 1, . . . , m.

The operator Z is now defined as a rotation in P ⊕ E , i.e.,
by elementary trigonometry,

Z|ξk〉:= |ηk〉,
(10)

Z|ηk〉:= 2 cos θk|ηk〉 − |ξk〉.
In terms of the orthonormal basis, we obtain a manifest planar
rotation for each k, i.e.,

Z|χk〉 = cos θk|χk〉 − sin θk|ξk〉,
(11)

Z|ξk〉 = sin θk|χk〉 + cos θk|ξk〉.
On the rest of the Hilbert space,H � (P ⊕ E), Z is the identity.
The operator Z implements the so-called direct rotation [19]
of P into E . From Eq. (11) we obtain

Z:= I +
m∑

k=1

[cos(θk) − 1](|χk〉〈χk| + |ξk〉〈ξk|)
(12)

+
m∑

k=1

sin(θk)(|χk〉〈ξk| − |ξk〉〈χk|).

It is instructive to exhibit the Lie algebra element G ∈ su(n)
such that Z = exp(G) ∈ SU(n). Since we have Eq. (11), it is
easy to do this. Indeed, taking the exponential of

G =
m∑

k=1

θk(|χk〉〈ξk| − |ξk〉〈χk|), (13)

by summing the series for sin(θ ) and cos(θ ), we readily obtain
Z = exp(G), the desired result. Moreover, observe that the
kth term in Eq. (13) commutes with the j th term, so, exp(G)
is exhibited as a sequence of commuting rotations using the
canonical angles θk .
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C. Bloch-Brandow effective Hamiltonian and
decoupling operator

For reference, we review some properties of the Bloch-
Brandow effective Hamiltonian, which we denote by H BB

eff
[1,4,5,9]. The effective eigenvectors |ψeff

k 〉 are defined by∣∣ψeff
k

〉
:= P |ψk〉 := |Pψk〉. (14)

Since |Pψk〉 are the orthogonal projections of |ψk〉 onto P , we
deduce that the Bloch-Brandow effective eigenvectors are the
closest possible to the exact model space eigenvectors. In this
sense, the Bloch-Brandow effective Hamiltonian is the optimal
choice.

It is obvious that H BB
eff is non-Hermitian, as rejecting the

excluded space eigenvector components renders the effective
eigenvectors non-orthonormal, i.e.,〈

ψeff
j |ψeff

k

〉 = δj,k − 〈ψj |Q|ψk〉 �= δj,k.

In terms of similarity transforms, we obtain H BB
eff by setting

S = ω, the so-called decoupling operator or correlation oper-
ator [1,11]. It is defined by ω = QωP and the equation

ωP |ψk〉 := Q|ψk〉. (15)

Again, for this to be a meaningful definition, {|Pψk〉}mk=1 must
be a basis for P .

Since ω2 = 0, exp(±ω) = 1 ± ω, and Eq. (7) becomes

e−ω|ψk〉 = (1 − ω)|ψk〉 = (1 − Q)|ψk〉 = |Pψk〉.
For H BB

eff we thus obtain

H BB
eff = Pe−ωHeωP = PH (P + ω). (16)

After this initial review, we now relate ω to the geometry of
E and P . The SVD of ω is readily obtainable by expanding the
principal vectors {|ηk〉}mj=1 in the m eigenvectors {|ψk〉}mk=1,
sets, which both constitute a basis for E , and inserting into
Eq. (15). We have

Q|ηk〉 =
m∑

j=1

Q|ψj 〉〈ψj |ηk〉

=
m∑

j=1

ωP |ψj 〉〈ψj |ηk〉 = ωP |ηk〉,

that is,

ω (cos θk|ξk〉) = sin θk|χj 〉.
The result is

ω =
m∑

k=1

tan θk|χk〉〈ξk|, (17)

which is the SVD of ω. The operator ω is thus exhibited as an
operator intimately related to the principal angles and vectors
of P and E : it transforms the principal vectors of P into an
orthonormal basis for QE , with coefficients determined by the
canonical angles θk . Using Eq. (8) we obtain an alternative
expression, viz.,

ω + P =
m∑

k=1

1

cos θk

|ηk〉〈ξk|. (18)

D. Canonical effective Hamiltonian

Hermitian effective Hamiltonians have independently
been introduced by various authors since 1929, when Van
Vleck [13,14,20] introduced a unitary transformation H̃ =
exp(−S)H exp(S) to decouple the model space to second
order in the interaction. In 1963, Primas [21] considered an
order by order expansion of this H̃ using the Baker-Campbell-
Hausdorff formula and commutator functions to determine
S, a technique also used in many other settings in which
a transformation is in a Lie group, see, e.g., Ref. [22] and
references therein. This approach was elaborated by Shavitt
and Redmon [7], who were the first to mathematically connect
this Hermitian effective Hamiltonian to H BB

eff , as in Eq. (27)
below. In the nuclear physics community, Suzuki [23] has
been a strong advocate of Hermitian effective interactions and
the a-body subcluster approximation to the A-body effective
interaction [3,11,23]. Hermiticity in this case is essential.

Even though a Hermitian effective Hamiltonian is not
unique because of the non-uniqueness of S = −S†, the various
Hermitian effective Hamiltonians put forward in the literature
all turn out to be equivalent [6]. In the spirit of Klein and Shavitt
[6,7] we employ the term “canonical effective Hamiltonian”
since this emphasizes the “natural” and geometric nature of the
Hermitian effective Hamiltonian, which we denote by H c

eff .
Recall the spectral decomposition

H c
eff =

m∑
k=1

Ek

∣∣ψeff
k

〉〈
ψeff

k

∣∣,
where the (orthonormal) effective eigenvectors are now de-
fined by the following optimization property: The effective
eigenvectors |ψeff

k 〉 are the closest possible to the exact
eigenvectors |ψk〉 while still being orthonormal. Thus, where
the Bloch-Brandow approach globally minimizes the distance
between the eigenvectors, at the cost of non-orthonormality,
the canonical approach has the unitarity constraint on the
similarity transformation, rendering H c

eff Hermitian.
Given a collection {
 = |φ1〉, . . . , |φm〉} ⊂ P of m vectors,

which are candidates for effective eigenvectors, we define the
functional S[
] by

S[
]:=
m∑

k=1

‖|φk〉 − |ψk〉‖2

=
m∑

k=1

‖Q|ψk〉‖2 +
m∑

k=1

‖P |ψk〉 − |φk〉‖2

= m +
m∑

k=1

‖|φk〉‖2 − 2 Re
m∑

k=1

〈ψk|P |φk〉. (19)

In the last equality, we have used ‖|ψk〉‖ = 1. The effective
eigenvectors are now minimizers of S[
].

The global minimum, when 
 ⊂ P is allowed to vary
freely, is seen to be attained for |φk〉 = |Pψk〉, the Bloch-
Brandow effective eigenvectors. However, the canonical ef-
fective eigenvectors are determined by minimizing S[
] over
all orthonormal sets 
, which then becomes equivalent to
maximizing the last term in Eq. (19), i.e., the overlaps∑

k Re〈ψk|P |φk〉 under the orthonormality constraint.
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We will now prove the striking fact that the solution is given
by ∣∣ψeff

k

〉 = |φk〉 = e−G|ψk〉, (20)

where the unitary operator Z := exp(G) ∈ SU(n) is the ro-
tation (12). Equation (20) should be compared with Eq. (7).
Thus, the exact eigenvectors are simply the direct rotations of
the effective eigenvectors from the model space into E .

Let us expand |ψk〉 ∈ E and |φk〉 ∈ P in the principal vector
bases, viz.,

|ψk〉 =
m∑

j=1

|ηj 〉〈ηj |ψk〉,

|φk〉 =
m∑

j=1

|ξj 〉〈ξj |φk〉.

Using 〈ηj |ξk〉 = δj,k cos θj , we compute the sum A :=∑m
k=1 〈ψk|P |φk〉 as

A =
m∑

k,j,�=1

〈ψk|ηj 〉〈ηj |ξ�〉〈ξ�|φk〉

=
m∑

j,k=1

cos θj 〈ξj |φk〉〈ψk|ηj 〉

Now,

A =
m∑

j=1

cos θjuj,j ,

where uj,k is a unitary matrix, which implies |uj,j | � 1.
Moreover, uj,j = 1 for all j if and only if uj,k = δj,k , which
then maximizes A, and also ReA. Thus,

m∑
k=1

〈ξj |φk〉〈ψk|η�〉 = δj,�,

i.e.,

〈ξj |φk〉 = 〈ηj |ψk〉 = 〈ξj |Z†|ψk〉,
from which Eq. (20) follows, since {|ξk〉}mk=1 is a basis for P ,
and the proof is complete.

The similarity transform in Eq. (5) is thus manifest, with
S = G, viz.,

H c
eff = PZ†HZP = Pe−GHeGP. (21)

Moreover, QH̃P = PH̃Q = 0, verifying that the direct rota-
tion in fact block-diagonalizes H .

E. Computing |ψ eff
k 〉

Assume that |Pψk〉 := P |ψk〉, k = 1, . . . , m are available,
as would be the case in the subcluster approach to the effective
Hamiltonian. The effective eigenvectors |ψeff

k 〉 are then given
by a basis change F , i.e., the operator F : P → P defined by

F |Pψk〉 := ∣∣ψeff
k

〉
.

Using the principal vector basis, we obtain

F |Pψk〉 = FP

m∑
j=1

|ηj 〉〈ηj |ψk〉

= F

m∑
j=1

cos θj |ξj 〉〈ηj |ψk〉

:=
m∑

j=1

|ξj 〉〈ξj |ψeff
k 〉

=
m∑

j=1

|ξj 〉〈ηj |ψk〉,

from which we get the SVD

F :=
m∑

k=1

1

cos θk

|ξk〉〈ξk|

= (ω†ω + P )1/2, (22)

where we have used Eq. (18). From Eq. (22) we see that F

is symmetric and positive definite. Moreover, smaller angles
θk means F is closer to the identity, consistent with E being
closer to P .

Let |Pψk〉 now be given in the orthonormal “zero order”
basis {|ek〉}mk=1 for P , i.e., we have the basis change operator
Ũ given by

Ũ :=
m∑

k=1

|Pψk〉〈ek|, (23)

which transforms from the given basis to the Bloch-Brandow
effective eigenvectors. In terms of the principal vector basis,

Ũ =
m∑

j=1

cos θj |ξj 〉〈ηj |
∑

k

|ψk〉〈ek|

=:
m∑

j=1

cos θj |ξj 〉〈yj |, (24)

which is, in fact, the SVD, since the last sum over k is a unitary
map from P to E . In the operator Ũ Ũ † this basis-dependent
factor cancels, viz.,

Ũ Ũ † =
m∑

k=1

|Pψk〉〈Pψk|

=
m∑

k=1

cos2 θk|ξk〉〈ξk|,

that is,

F = (Ũ Ũ †)−1/2.

If we seek |ψeff
k 〉 in the basis {|ek〉}mk=1 as well, we let Ṽ be the

corresponding basis change operator, i.e.,

Ṽ := FŨ = (Ũ Ũ †)−1/2Ũ . (25)

Equation (25) shows that |ψeff
k 〉 is obtained by “straightening

out” |Pψk〉, and that this depends only on the latter vectors.
This is, in fact, an alternative to the common Gram-Schmidt
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orthogonalization used in mathematical constructions and
proofs. It was first introduced by Löwdin [24] under the name
“symmetric orthogonalization,” and the so-called Löwdin
bases are widely used in quantum chemistry, where non-
orthogonal basis functions are orthogonalized according to
Eq. (25). It seemingly requires both inversion and matrix
square root but is easily computed using the SVD. Combining
Eqs. (22) and (24) gives

Ṽ =
m∑

k=1

|ξk〉〈yk|, (26)

so that if the SVD (24) is available, Ṽ is readily computed.
Equation (26) is easily expressed in terms of matrices, but we
defer the discussion to Sec. IV.

F. Shavitt’s expression for exp(G)

Shavitt and Redmon [7] proved that

G = tanh−1(ω − ω†) (27)

gives the Lie algebra element for the unitary operator
Z = exp(G). The quite complicated proof was done using
an expansion of the similarity transform using the Baker-
Campbell-Hausdorff formula.

It may be clear now that in the present context we obtain
the result simply as a by-product of the treatment in Sec. III B
and the SVD (17) of ω, given in terms of the principal vectors
and angles. We prove this here.

The function tanh−1(z) is defined by its (complex) Taylor
expansion about the origin, i.e.,

tanh−1(z) =
∞∑

n=0

z2n+1

2n + 1
. (28)

The series converges for |z| < 1. Moreover,

tanh−1(z) = 1

2
ln

(
1 + z

1 − z

)
, (29)

also valid for |z| < 1. For z := ω − ω† we compute

z =
m∑

k=1

µk(|χk〉〈ξk| − |ξk〉〈χk|), µk := tan(θk).

Using orthogonality relations between |ξk〉 and |χk〉, we obtain

z2n+1 = (−1)n
m∑

k=1

µ2n+1
k (|χk〉〈ξk| − |ξk〉〈χk|)

= i

m∑
k=1

(−iµk)2n+1(|χk〉〈ξk| − |ξk〉〈χk|).

Using i tanh−1(−iz) = tan−1(z), we sum the series (28) to

G = tanh−1(z) =
m∑

k=1

θk(|χk〉〈ξk| − |ξk〉〈χk|),

which is identical to Eq. (13). The series does not converge
for θk � π/4, but the result is trivially analytically continued
to arbitrary 0 � θk � π/2.

We now turn to the effective Hamiltonian. It is common
[2,3,11] to compute H c

eff in terms of ω directly, using the
definition (29) of tanh−1(z), which implies

e± tanh−1(z) =
√

1 ± z

1 ∓ z
= 1 ± z√

1 − z2

Upon insertion into H̃ = exp(−G)Hexp(G), we obtain

H̃ = 1 − ω + ω†
√

1 + ω†ω + ωω†
H

1 + ω − ω†
√

1 + ω†ω + ωω†
.

Projecting onto P , the effective Hamiltonian becomes

Heff = (P + ω†ω)−1/2(P + ω†)H (P + ω)(P + ω†ω)−1/2.

(30)

By using the Bloch equation (6) for the Bloch-Brandow
effective Hamiltonian, we may eliminate QHQ from the
above expression for Heff , yielding

H c
eff = (P + ω†ω)1/2H (P + ω)(P + ω†ω)−1/2. (31)

This expression is commonly implemented in numerical
applications [3,25]. By comparing with Eqs. (22) and (16),
we immediately see that

H c
eff = FH BB

eff F−1, (32)

which gives H c
eff as a similarity transform of H BB

eff . In
themselves, Eqs. (31) and (32) are not manifestly Hermitian,
stemming from the elimination of QHQ. An implementation
would require complicated matrix manipulations, including a
matrix square root. It is therefore better to compute H c

eff using

H c
eff =

∑
k

Ek

∣∣ψeff
k

〉〈
ψeff

k

∣∣,
together with Eq. (26), where the most complicated operation
is the SVD of the operator Ũ given by Eq. (23). In Sec. IV we
give a concrete matrix expression for H c

eff .

G. Commuting observables

Great simplifications arise in the general quantum problem
if continuous symmetries of the Hamiltonian can be identified,
i.e., if one can find one or more observables S such that
[H, S] = 0. Here, we discuss the impact of such symmetries
of H on the effective Hamiltonian Heff ; both in the Bloch-
Brandow and the canonical case. We point out the importance
of choosing a model space that is an invariant of S as well, i.e.,
[S, P ] = 0. In fact, we prove that this is the case if and only if
[Heff, S] = 0, i.e., Heff has the same continuous symmetry.

Let S = S† be an observable such that [H, S] = 0, i.e., H

and S have a common basis of eigenvectors. We shall assume
that {|ψk〉}nk=1 is such a basis, viz.,

H |ψk〉 = Ek|ψk〉,
(33)

S|ψk〉 = sk|ψk〉.
In general, there will be degeneracies in both Ek and sk .

We now make the important assumption that

[S, P ] = 0, (34)
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which is equivalent to

S = PSP + QSQ.

Under the assumption (34), we have

S|Pψk〉 = PS|ψk〉 = sk|Pψk〉,
so that the Bloch-Brandow effective eigenvectors are still
eigenvectors of S with the same eigenvalue sk . Moreover, as
we assume that {|Pψk〉}mk=1 is a (non-orthonormal) basis for
P , this not possible if [S, P ] �= 0. Thus, [H BB

eff , S] = 0 if and
only if [S, P ] = 0 [in addition to the assumption (33).]

The assumption (34) also implies that [S, ω] = 0, where
ω = QωP is the decoupling operator. We prove this by
checking that it holds for all |ψk〉. For k � m,

ωS|ψk〉 = skQ|ψk〉 = SQ|ψk〉 = Sω|ψk〉, (35)

while for k > m we need to expand P |ψk〉 in |Pψj 〉, j � m,
viz.,

P |ψk〉 =
m∑

j=1

|Pψj 〉〈P̃ψj |P |ψk〉, k > m,

and use Eq. (35). Furthermore, [S, ω†]† = [ω†, S] = 0. It
follows that

[S, (ω − ω†)n] = 0, n = 0, 1, . . . ,

and, by Eq. (28), that

[S, eG] = [S, e−G] = 0.

This gives

S
∣∣ψeff

k

〉 = Se−G|ψk〉 = sk

∣∣ψeff
k

〉
.

Again, since {|ψeff
k 〉}mk=1 is a basis for P , this holds if and

only if [S, P ] = 0. Accordingly, [H c
eff, S] = 0 if and only if

[S, P ] = 0 [and the assumption (33).]
The importance of this fact is obvious. If one starts with

a Hamiltonian that conserves, say, angular momentum, and
computes the effective interaction using a model space that
is not an invariant for the angular momentum operator, i.e.,
not rotationally symmetric, then the final Hamiltonian will not
have angular momentum as a good quantum number.

One possible remedy if [P, S] �= 0 is to define the effective
observable Seff := P exp(−G)Sexp(G)P (which in the com-
muting case is equal to PSP ) which obviously commutes with
Heff and satisfies

Seff

∣∣ψeff
k

〉 = sk

∣∣ψeff
k

〉
.

This amounts to modifying the concept of rotational symmetry
in the above example.

The assumptions (33) and (34) have consequences also for
the structure of the principal vectors |ξk〉 ∈ P and |ηk〉 ∈ E .
Indeed, we write

E =
⊕

s

Es ,

P =
⊕

s

Ps ,

where the sum runs over all distinct eigenvalues sk, k =
1, . . . , m of S, and where Es (Ps) is the corresponding

eigenspace, i.e.,

Es := span{|ψk〉 : S|ψk〉 = s|ψk〉},
Ps := span

{∣∣ψeff
k

〉
: S

∣∣ψeff
k

〉 = s
∣∣ψeff

k

〉}
.

The eigenspaces are all mutually orthogonal, viz.,
Es ⊥ Es ′ ,Ps ⊥Ps ′ , and Es ⊥Ps ′ , for s �= s ′. The definition (3)
of the principal vectors and angles can then be written

cos(θk) = max
s

max
|ξ 〉∈Ps , 〈ξ |ξ〉=1
〈ξj |ξ 〉=0, j<k

max
|η〉∈Es , 〈η|η〉=1
〈ηj |η〉=0, j<k

Re〈ξ |η〉

=:〈ξk|ηk〉.
Thus, for each k, there is an eigenvalue s of S such that

S|ξk〉 = s|ξk〉,
S|ηk〉 = s|ηk〉,

showing that the principal vectors are eigenvectors of S if and
only if [S, P ] = 0, [S,H ] = 0, and the assumption (33).

The present symmetry considerations imply that model
spaces obeying as many symmetries as possible should be
favored over less symmetric model spaces, since these other
model spaces become less “natural” or “less effective” in
the sense that their geometry is less similar to the original
Hilbert space. This is most easily seen from the fact that
principal vectors are eigenvectors for the conserved observable
S. This may well have great consequences for the widely used
subcluster approximation to the effective Hamiltonian in no-
core shell model calculations [3,6,26], where one constructs
the effective Hamiltonian for a system of a particles in
order to obtain an approximation to the A > a-body effective
Hamiltonian. The model space in this case is constructed in
different ways in different implementations. Some of these
model spaces may therefore be better than others due to
different symmetry properties.

IV. MATRIX FORMULATIONS

A. Preliminaries

Since computer calculations are invariably done using
matrices for operators, we here present matrix expressions
for H c

eff and compare them to those usually programed in the
literature, as well as expressions for H BB

eff and ω.
Recall the standard basis {|ek〉}nk=1 ofH, where the {|ek〉}mk=1

constitute a basis for P . These are usually eigenvectors of the
unperturbed “zero order” Hamiltonian H0, but we will not
use this assumption. As previously, we also assume without
loss that the eigenpairs we wish to approximate in Heff are
{(Ek, |ψk〉)}mk=1.

An operator A : H → H has a matrix A ∈ C
n×n associated

with it. The matrix elements are given by Ajk = 〈ej |A|ek〉 such
that

A =
n∑

j,k=1

|ej 〉〈ejA|ek〉〈ek|| =
n∑

j,k=1

|ej 〉Ajk〈ek|.

Similarly, any vector |φ〉 ∈ H has a column vector �φ ∈ C
n

associated with it, with �φj = 〈ej |φ〉. We will also view dual
vectors, e.g., 〈ψ |, as row vectors.
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The model space P and the excluded space Q are conve-
niently identified with C

m and C
n−m, respectively. Also note

that PAP,PAQ, etc., are identified with the upper left m × m,
upper right m × (n − m), etc., blocks of A as in Eq. (1). We
use a notation inspired by FORTRAN and MATLAB and write

PAP = A(1 : m, 1 : m), PAQ = A(1 : m,m + 1 : n),

and so forth.
We introduce the unitary operator U as

U =
n∑

k=1

|ψk〉〈ek|,

i.e., a basis change from the chosen standard basis to the
eigenvector basis. The columns of U are the eigenvector
components in the standard basis, i.e.,

Ujk = �ψk,j = 〈ej |ψk〉,
and are typically the eigenvectors returned from a computer
implementation of the spectral decomposition, viz.,

H = UEU†, E = diag(E1, . . . , En). (36)

The SVD is similarly transformed to matrix form. The SVD
defined in Sec. II B is then formulated as follows: for any ma-
trix A ∈ C

q×r there exist matrices X ∈ C
q×p[p = min(q, r)]

and Y ∈ C
r×p, such that X†X = Y†Y = Ip (the identity matrix

C
p×p), and a non-negative diagonal matrix  ∈ R

p×p such
that

A = XY†.

Here,  = diag(σ1, . . . , σp), σk being the singular values.
The columns of X are the left singular vectors’ components,

i.e., Xj,k = 〈ej |xk〉, and similarly for Y and the right singular
vectors. The difference between the two SVD formulations is
then purely geometric, as the matrix formulation favors the
standard bases in X and Y .

The present version of the matrix SVD is often referred to
as the “economic” SVD, since the matrices X and Y may be
extended to unitary matrices over C

q and C
r , respectively, by

adding singular values σk = 0, k > m. The matrix  is then a
q × r matrix with “diagonal” given by σk . This is the “full”
SVD, equivalent to our basis-free definition.

B. Algorithms

Let the m eigenvectors |ψk〉 be calculated and arranged in
a matrix U, i.e., ψk = U(1 : n, k) (where the subscript does
not pick a single component). Consider the operator Ũ defined
in Eq. (23), whose matrix columns are the Bloch-Brandow
effective eigenvectors |Pψk〉 in the standard basis, viz.,

Ũ = U(1 : m, 1 : m).

The columns of the matrix of Ṽ = (Ũ Ũ †)−1/2Ũ are the
canonical effective eigenvectors �ψeff

k . The SVD (24) can be
written as

Ũ = XY†,

which gives

ŨŨ† = X2X†.

Since kk = cos θk > 0, we obtain

(ŨŨ†)−1/2 = X−1X†,

which gives, when applied to Ũ,

Ṽ = (ŨŨ†)−1/2Ũ = XY†.

Thus, we obtain the canonical effective eigenvectors by
taking the matrix SVD of Ũ = U(1 : m, 1 : m) and multiplying
together the matrices of singular vectors. As efficient and
robust SVD implementations are almost universally available,
e.g., in the LAPACK library, this makes the canonical effective
interaction much easier to compute than that in Eq. (31), viz.,

Hc
eff = ṼE(1 : m, 1 : m)Ṽ†.

This version requires one SVD computation and three matrix
multiplications, all with m × m matrices, one of which is
diagonal. Equation (31) requires, on the other hand, several
more matrix multiplications, inversions, and the square root
computation. The Bloch-Brandow effective Hamiltonian is
simply calculated by

HBB
eff = ŨE(1 : m, 1 : m)Ũ−1.

For the record, the matrix of ω is given by

ω = U(m + 1 : n, 1 : m)Ũ−1,

although we have no use for it when using the SVD-based
algorithm. It may be useful, though, to be able to compute
the principal vectors for P and E . For this, one may compute
the SVD of ω or of PP′ = ŨU(1 : n, 1 : m)†; the latter gives
cos θk, |ξk〉, and |ηk〉 directly in the standard basis as singular
values and vectors, respectively.

V. DISCUSSION AND OUTLOOK

We have characterized the effective Hamiltonians com-
monly used in nuclear shell-model calculations in terms
of geometric properties of the spaces P and E . The SVD
and the principal angles and vectors were central in the
investigation. While the Bloch-Brandow effective Hamiltonian
is obtained by orthogonally projecting E onto P , thereby
globally minimizing the norm-error of the effective eigen-
vectors, the canonical effective Hamiltonian is obtained by
rotating E into P using exp(−G), which minimizes the
norm-error while retaining orthonormality of the effective
eigenvectors. Moreover, we obtained a complete description
of the decoupling operator ω in terms of the principal angles
and vectors defining exp(G).

An important question is whether the present treatment
generalizes to infinite dimensional Hilbert spaces. Our analysis
fits into the general assumptions in the literature, being that
n = dim(H) is large but finite, or at least that the spectrum
of H is purely discrete. A minimal requirement is that H has
m eigenvalues, so that E can be constructed. In particular,
the SVD generalizes to finite rank operators in the infinite
dimensional case and is thus valid for all the operators
considered here even when n = ∞.

Unfortunately, H has almost never a purely discrete
spectrum. It is well known that the spectrum in general
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has continuous parts and resonances embedded in these,
and a proper theory should treat these cases as well as
the discrete part. In fact, the treatments of Heff in the
literature invariably glosses over this. It is an interesting
future project to develop a geometric theory for the effective
Hamiltonians that incorporates resonances and continuous
spectra.

The geometrical view simplified and unified the available
treatments in the literature somewhat and offered further in-
sights into the effective Hamiltonians. Moreover, the symmetry
considerations in Sec. III G may have significant bearing on
the analysis of perturbation expansions and the properties of
subcluster approximations to H c

eff .
Indeed, it is easy to see that if we have a complete set of

commuting observables (CSCO) [27] for H0, and the same
set of observables form a CSCO for H1, all eigenvalues and
eigenfunctions of H (z) = H0 + zH1 are analytic in z ∈ C,
implying that the Rayleigh-Schrödinger perturbation series
for H = H0 + H1 converges (i.e., at z = 1) [15]. Intuitively,
the fewer commuting observables we are able to identify, the
more likely it is that there are singularities in Heff(z), the
so-called intruder states. The Rayleigh-Schrödinger series
diverges outside the singularity closest to z = 0 [15]; and in
nuclear systems, this singularity is indeed likely to be close to
z = 0. On the other hand, resummation of the series can be
convergent and yield an analytic continuation of Heff outside
the region of convergence [28]. To the best of our knowledge,
there is no systematic treatment of this phenomenon in the
literature, except for some iterative procedures [29,30] and
attempts at using Padé approximants [31]. On the contrary, to

be able to do such a resummation consistently is sort of the
“holy grail” of many-body perturbation theory. A geometric
study of the present kind to many-body perturbation theory and
diagram expansions may yield a step closer to this goal, as we
have clearly identified the impact of commuting observables
on the principal vectors of E and P .

We have also discussed a compact algorithm in terms of
matrices to compute H c

eff , relying on the SVD. This algorithm,
useful in the subcluster approach to the effective Hamiltonian,
is, to the best of our knowledge, previously unpublished. Since
robust and fast SVD implementations are readily available,
e.g., in the LAPACK library, and since few other matrix
manipulations are needed, it should be preferred in computer
implementations.

As stressed in the Introduction, the algorithms presented
are really only useful if we compute the exact effective
Hamiltonian, as opposed to a many-body perturbation the-
oretical calculation, and if we know what exact eigenpairs
to use, such as in a subcluster approximation. In this case,
one should analyze the error in the approximation, i.e., the
error in neglecting the many-body correlations in H c

eff . In
the perturbative regime, some results exist [6]. We believe
that the geometric description may facilitate a deeper analysis,
and this is an interesting idea for future work.

ACKNOWLEDGMENTS

The author wishes to thank Prof. M. Hjorth-Jensen, CMA,
for helpful discussions. This work was funded by CMA
through the Norwegian Research Council.

[1] D. Dean, T. Engeland, M. Hjorth-Jensen, M. Kartamyshev, and
E. Osnes, Prog. Part. Nucl. Phys. 53, 419 (2004).

[2] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and
A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).
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