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We systematically investigate the α-decay and spontaneous fission half-lives for heavy and superheavy nuclei
with proton number Z � 90. The α-decay half-lives are obtained by the deformed version of the density-dependent
cluster model (DDCM). In the DDCM, the microscopic potential between the α particle and the daughter nucleus
is evaluated numerically from the double-folding model with the M3Y interaction. The influence of the core
deformation on the double-folding potential is also properly taken into account by the multipole expansion
method. The spontaneous fission half-lives of nuclei from 232Th to 286114 are calculated with the parabolic
potential approximation by taking nuclear structure effects into account. The agreement between theoretical
results and the newly observed data is satisfactory for both α emitters and spontaneous fission nuclei. The
competition between α decay and spontaneous fission is analyzed in detail and the branching ratios of these two
decay modes are predicted for the unknown cases.
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I. INTRODUCTION

It is well known that α decay is an important decay
mode for unstable nuclei heavier than the doubly magic
nucleus 100Sn. Experiments have shown that there are more
than 400 nuclei in the nuclide chart exhibiting the α-decay
phenomenon [1]. Alpha decay is considered to be a very
powerful tool to investigate the nuclear structure properties
of unstable nuclei, especially those approaching the β-stable
line and the proton-drip line. More importantly, α decay is also
a reliable way to identify the newly synthesized superheavy
elements, which is now a hot topic in nuclear physics [2–8]. In
addition to α decay, spontaneous fission is another prominent
decay type energetically feasible for heavy and superheavy
nuclei with proton number Z � 90. It was first predicted
by Bohr and Wheeler in 1939 [9] and subsequently observed
by Flerov and Petrjak one year later [10]. Since the discovery
of spontaneous fission of 238U, a number of actinide nuclei
with this type of radioactive decay have been reported in
experiments [11]. Recently, the spontaneous fission half-lives
of several superheavy nuclei have also been measured by
different laboratories [12–17]. Actually, spontaneous fission is
also an important limiting factor that determines the stability
of newly synthesized superheavy nuclei.

Theoretically, α decay and spontaneous fission share the
same underlying mechanism in physics, i.e., the quantum
tunneling effect. Extensive studies have been performed to
calculate the half-lives of α emitters in the whole nuclide
chart, including the superheavy mass region [18–41]. Usually,
the α-decay process is considered as an α cluster penetrates the
Coulomb barrier after its formation in the parent nucleus. The
absolute α-decay width is mainly determined by the product
of the α-cluster formation and penetration probabilities.
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Generally, the α-cluster preformation factor does not change
dramatically for most open-shell nuclei and the penetration
factor can be well defined by using various effective α-core
interactions. As compared to α decay, the situation of spon-
taneous fission is much more complex and there are large
uncertainties existing in the fission process, such as the mass
and charge numbers of the two fragments, the number of
emitted neutrons, and the released energy, etc. [42]. Thus the
full microscopic treatment of such a multidimensional system
is extremely difficult.

The aim of this work is to perform detailed studies on
both α-decay and spontaneous fission half-lives for heavy and
superheavy nuclei. First, we present a new approach for the
spontaneous fission half-lives by using the parabolic potential
approximation. The most important nuclear structure effects
are taken into account in our calculations, such as the strong
interaction, the Coulomb interaction, and the isospin effect.
By using the new formula derived from the parabolic potential
approximation, we systematically calculate the spontaneous
fission half-lives of nuclei in the mass region from 232Th
to 286114. We also perform a systematic calculation on the
α-decay half-lives of nuclei with proton number Z � 90
by the deformed version of the density-dependent cluster
model (DDCM). In the DDCM, the microscopic potential
between the α particle and the daughter nucleus is evaluated
numerically from the double-folding model with the famous
M3Y interaction [43]. The penetration probability of the α

particle through the deformed Coulomb barrier is obtained by a
careful averaging procedure along different orientation angles.
The value of the preformation factor in the DDCM is con-
sistent with both the experimental facts and the microscopic
calculations. For both α decay and spontaneous fission, the
agreement between experimental data and theoretical results
is discussed in detail. The competition between these two
decay modes is also systematically analyzed. The predicted
branching ratios of both α decay and spontaneous fission are

0556-2813/2008/78(4)/044329(8) 044329-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.044329


CHANG XU, ZHONGZHOU REN, AND YANQING GUO PHYSICAL REVIEW C 78, 044329 (2008)

given for the unknown cases, which are very helpful for future
experiments.

The outline of this article is as follows. In the first and
second parts of Sec. II, we present the detailed formulas
of the calculations of α-decay and spontaneous fission half-
lives, respectively. The numerical results and corresponding
discussions are given in Sec. III. Section IV is a brief summary.

II. THEORETICAL FRAMEWORK

A. α decay

First, we briefly introduce the framework of the DDCM
[37]. In the DDCM, the α cluster is considered to penetrate
the deformed Coulomb barrier after its formation in the
parent nucleus. The α-decay width is mainly determined
by the product of the α-cluster preformation factor and the
penetration probability. The latter one is very sensitive to
the details of the α-core interaction, which is the sum of the
nuclear potential, the Coulomb potential, and the centrifugal
potential [37]

VTotal(R, θ ) = VN(R, θ ) + VC(R, θ ) + h̄2

2µ

(
� + 1

2

)2

R2
, (1)

where R is the separation between the mass center of the α

particle and the mass center of the core, θ is the orientation
angle of the α particle with respect to the symmetry axis of the
daughter nucleus, � is the angular momentum carried by the α

particle, and µ is the reduced mass of the α-core system. The
nuclear potential is obtained from the double-folding integral
of the renormalized M3Y nucleon-nucleon potential with the
matter density distributions of the α particle and the daughter
nucleus [43]. The Coulomb potential is also obtained from the
well-established double-folding model by including the effect
of finite size of the α cluster [44]. We assume a spherical α

particle interacts with an axially symmetric deformed daughter
nucleus. The mass density distribution of the spherical α

particle is taken as the widely used Gaussian form [43]. The
mass density distribution of the daughter nucleus is a deformed
Fermi distribution with standard parameters [37],

ρ2(r2, θ ) = ρ0

{
1 + exp

[
r2 − R0[1 + βY20(θ )]

a

]}
, (2)

where R0 = 1.07A1/3
d fm, a = 0.54 fm, and β is the deforma-

tion parameter corresponding to the daughter nucleus. In the
DDCM, the double-folding potential can be evaluated by the
sum of different multipole components,

VN or C(R, θ ) =
∑

l=0,2,4...

V l
N or C(R, θ ), (3)

and the multipole component of the double-folding potential
can be written as [45,46]

V l
N or C(R, θ )

= 2

π
[(2l + 1)/4π ]1/2

×
∫ ∞

0
dk k2jl(kR)ρ̃1(k)ρ̃2

(l)(k)ṽ(k)Pl(cos θ ), (4)

where ρ̃1(k) is the Fourier transformation of the density
distribution of the α particle and ρ̃2

(l)(k) is the intrinsic
form factor corresponding to the daughter nucleus. ṽ(k) is
the Fourier transformation of the effective M3Y nucleon-
nucleon interaction or the proton-proton Coulomb interaction.
Pl(cos θ ) is the Legendre function of degree l. The M3Y
nucleon-nucleon interaction is given by two direct terms with
different ranges, and by an exchange term with a δ interaction
[47–49]

v(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00δ(s)

(5)
J00 = −276(1 − 0.005 Eα/Aα),

where the quantity |s| is the distance between a nucleon in the
core and a nucleon in the α particle (s = R + r2 − r1). Eα is the
α-decay energy and Aα is the mass number of the α particle.
The depth of the nuclear potential is determined separately
for each decay to generate a quasibound state by employing
the Bohr-Sommerfeld condition. Once the α-core potential
has been determined, the polar-angle-dependent penetration
probability of α decay in the deformed version of the DDCM
is given by [37]

Pθ = exp

[
−2

∫ R3(θ)

R2(θ)

√
2µ

h̄2 |Qα − VTotal(R, θ )| dR

]
, (6)

where R2(θ ) and R3(θ ) are the second and third classical
turning points for a certain orientation angle θ . The total
penetration probability PTotal is obtained by averaging Pθ in
all directions [37]

PTotal = 1

2

∫ π

0
Pθ sin(θ )dθ. (7)

Finally, the α-decay width in the deformed version of the
DDCM is given by [37]

� = Pα F
h̄2

4µ

1

2

∫ π

0
Pθ sin(θ )dθ, (8)

where F is the normalization factor and Pα is the α-cluster
preformation factor in the parent nucleus. The width is then
related to the half-life by the well-known relationship T1/2 =
h̄ ln 2/�.

B. Spontaneous fission

In principle, the spontaneous fission process is a purely
quantum tunneling effect in physics [50,51]. However, there
are great difficulties associated with solving such a multidi-
mensional penetration problem microscopically [42]. Usually,
one can simplify this problem by using the one-dimensional
WKB approximation, in which the penetration probability
through the Coulomb barrier is given by

Psf = exp

[
−2

∫ R3

R2

√
2µ

h̄2 [V (R) − Qsf]dR

]
, (9)

where V (R) is the sum of potentials between the two fission
fragments and Qsf is the total energy released in the fission
process. Here we consider a barrier with the shape of the
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inverted parabolic potential and V (R) is written as

V (R) = Vtop − C

2
(R − R0)2, (10)

where Vtop is the height of the Coulomb barrier and C and
R0 are the parameters. By preforming the integral of Eq. (9)
with the inverted parabolic potential, the exact expression
for the penetration probability Psf of spontaneous fission can
be obtained analytically (the so-called Hill-Wheeler formula)
[42],

Psf = exp

[
−2π (Vtop − Qsf)

h̄ωf

]
, (11)

where ωf equals
√

C
µ

and the value of h̄ωf is usually taken
as 1.0 MeV. The spontaneous fission half-life T1/2 is closely
related to the product of frequency factor n and the penetration
factor Psf , which can be written as

T1/2 = ln 2

n · Psf
= const · exp

[
2π (Vtop − Qsf)

h̄ωf

]

= exp

[
2πc0

h̄ωf

]
· exp

[
2π (Vtop − Qsf)

h̄ωf

]
, (12)

where the penetration probability Psf is expected to be the
dominant factor in determining the half-lives of spontaneous
fission. The frequency factor n is usually chosen as a constant
in calculations. We assume that the height of the Coulomb
barrier Vtop is mainly determined by several important structure
properties of spontaneous fission nuclei. The first one is the
attractive strong forces between all nucleons, which bind these
nucleons together and prevent the nucleus from fissioning into
two small fragments. Obviously its total contribution to the
stability of nuclei is proportional to the mass number A. The
second one is the repulsive Coulomb forces that compete with
the attractive strong forces. The magnitude of this term is
proportional to Z2 if we assume the mother nucleus splits into
two fragments with equal proton numbers. Actually, a higher
order correction of the Coulomb term (∝ Z4) is also needed to
describe the transition from asymmetric charge distributions to
symmetric charge distributions for different fission nuclei [42].
Third, the isospin effect (N − Z)2 is also very important for
the calculations of spontaneous fission half-lives and this term
is taken into account in our calculations

Vtop = Vnuclear + Vcoulomb + Visospin


Vnuclear ∝ A

Vcoulomb ∝ Z1Z2 = Z
2 · Z

2 = Z2/4
Visospin ∝ (N − Z)2.

(13)

Thus the total expression of Vtop is given by

Vtop = c1A + c2Z
2 + c3Z

4 + c4(N − Z)2. (14)

It should be noted that the physical meaning of each term
in Eq. (14) is very clear and the parameters are obtained
from the fit to the experimental spontaneous fission half-lives
of 45 even-even nuclei from 232Th to 286114. The values
of the parameters are c0 = −195.09227, c1 = 3.10156, c2 =
−0.04386, c3 = 1.40301 × 10−6, and c4 = −0.03199.

The systematics of the energy released in fission is directly
taken from the nuclear textbook and we do not modify the

FIG. 1. Fission barriers for the 230−238U isotopes from the double-
folding potential and the inverted parabolic potential.

values of parameters.

Qsf = 0.13323
Z2

A1/3
− 11.64. (15)

By substituting Vtop and Qsf into Eq. (12), the new expression
of spontaneous fission half-lives is given by

T1/2 = ln 2

n · Psf
= exp

{
2π

[
c0 + c1A + c2Z

2 + c3Z
4

+ c4(N − Z)2 −
(

0.13323
Z2

A1/3
− 11.64

)]}
. (16)

III. NUMERICAL RESULTS AND DISCUSSIONS

Before we present the detailed theoretical results, it is
very interesting to compare the fission barriers from the
double-folding potential and the inverted parabolic potential.
We choose two representative isotopic chains to illustrate their
differences, i.e., the uranium and californium isotopes. In
Figs. 1 and 2, we plot the corresponding fission barriers for

FIG. 2. Fission barriers for the 242−252Cf isotopes from the double-
folding potential and the inverted parabolic potential.
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TABLE I. Logarithm of spontaneous fission half-lives of nuclei with proton number Z = 90–114
(in years).

Fission Z N TExpt. TTheo. Fission Z N TExpt. TTheo.

232Th 90 142 21.08 21.88 250Fm 100 150 −0.10 −1.57
234U 92 142 16.18 16.03 252Fm 100 152 2.10 −0.92
236U 92 144 16.40 16.56 254Fm 100 154 −0.20 0.98
238U 92 146 15.91 16.38 256Fm 100 156 −3.48 −1.76
236Pu 94 142 9.18 9.71 252No 102 150 −6.54 −6.04
238Pu 94 144 10.68 10.99 254No 102 152 −3.04 −4.65
240Pu 94 146 11.06 11.55 256No 102 154 −4.77 −3.97
242Pu 94 148 10.83 11.40 254Rf 104 150 −12.14 −10.62
244Pu 94 150 10.82 10.54 256Rf 104 152 −9.71 −8.48
240Cm 96 144 6.28 5.02 258Rf 104 154 −9.35 −7.06
242Cm 96 146 6.85 6.33 260Rf 104 156 −9.2 −6.36
244Cm 96 148 7.12 6.92 262Rf 104 158 −7.18 −6.36
246Cm 96 150 7.26 6.80 258Sg 106 152 −10.04 −12.34
248Cm 96 152 6.62 5.96 260Sg 106 154 −9.65 −10.17
250Cm 96 154 4.05 4.41 262Sg 106 156 −9.32 −8.72
242Cf 98 144 −1.33 −1.27 264Sg 106 158 −8.93 −7.98
246Cf 98 148 3.26 2.12 266Sg 106 160 −7.86 −7.96
248Cf 98 150 4.51 2.74 264Hs 108 156 −10.2 −11.02
250Cf 98 152 4.23 2.65 270Ds 110 160 −8.6 −9.46
252Cf 98 154 1.93 1.84 282112 112 170 −10.58 −9.39
254Cf 98 156 −0.78 0.32 284112 112 172 −8.5 −11.43
246Fm 100 146 −6.60 −5.01 286114 114 172 −8.08 −7.12
248Fm 100 148 −2.94 −2.93

the nuclei 230−238U and 242−252Cf, respectively. We note that
the fission barriers of the double-folding model are calculated
by assuming the two final heavy fragments have almost equal
numbers of protons and neutrons, e.g., 230U → 114Pd + 116Pd.
For the inverted parabolic potential, the fission barriers are well
defined by the formula (c′

0 + c1A + c2Z
2 + c3Z

4 + c4(N −
Z)2) − C

2 (R − R0)2, where the barrier assault frequency is
taken as n = 2.5 × 1020 [42]. From Figs. 1 and 2, we can
see that the two kinds of fission barriers differ in height and
width from each other. As we know, the spontaneous fission
half-lives are mainly dependent on the area between the curve
of the barrier and the line of fission energy where the range of
integral is from the second turning point to the third turning
point. For the 230−238U and 242−252Cf isotopes, the effective
barrier area of the double-folding potential is slightly larger
than that of the inverted parabolic model, which may result
in a change of the penetration factor by a few orders of
magnitude. The microscopic calculations of fission barriers
from the double-folding potential are rather difficult because
of the uncertainties in the mass and charge numbers of the two
fragments. At the same time, it is also very difficult to treat the
emitted neutrons in the fission process within the framework of
the double-folding potential. By considering the complexity in
the fission process, we thus propose a simple approach for the
spontaneous fission half-lives by using the parabolic potential.

We have systematically calculated the spontaneous fission
half-lives of nuclei in all mass regions from 232Th to 286114
by using the new expression [Eq. (16)]. The detailed results
are listed in Table I. In Table I, the first column denotes the
spontaneous fission nuclei. The second and third columns are

the proton and neutron numbers of nuclei, respectively. The
logarithms of experimental and theoretical spontaneous fission
half-lives (in years) are listed in the fourth and fifth columns. In
Table I, we can see that the experimental spontaneous fission
half-lives approximately decrease with the increasing of proton
numbers. It is easy to find that the variation of the experimental
spontaneous fission half-lives is as high as 1021.08/10−12.14

∼ 1032. Thus it is an extremely difficult task to reproduce
the experimental data accurately. However, we can see from
Table I that the theoretical spontaneous fission half-lives gener-
ally agree well with the experimental results. For many nuclei,
the experimental half-lives are reproduced within a factor of 5.
For only a few nuclei, the deviation between the experimental
and theoretical half-lives is larger than a factor of 102. The
maximum deviation occurs for the spontaneous fission nucleus
252Fm (log10(T Expt.

1/2 /T Theo.
1/2 ) = 3.0). Such a large deviation is

obviously due to the influence of the subshell effect in N =
152. This shows that the shell effect is also of vital importance
to spontaneous fission nuclei. Our formula can be used to
extract the detailed information of subshell closures of the su-
perheavy mass region in further studies. Here the logarithm of
average deviations of a total of 45 spontaneous fission nuclei is
S = 
i=45

i=1 |log10T
Expt.

1/2 (i) − log10T
Theo.

1/2 (i)|/45 = 0.98, which
correspondences to a factor of 10. This level of agreement
is very satisfactory because the spontaneous fission is much
more complex than other decay modes such as light cluster
radioactivities.

We also performed systematic calculations on the α-decay
partial half-lives of heavy and superheavy nuclei using the
deformed version of the density-dependent cluster model
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FIG. 3. (Color online) Decay
modes of heavy and superheavy
nuclei from Th to Ds.

(Th–Ds). In the DDCM, nuclear and Coulomb potentials are
microscopically determined in which the input parameters,
such as the radius and the diffuseness, are all taken from
the classical nuclear textbooks [37]. The depth of the nuclear
potential λ is adjusted to reproduce the experimental α-decay
energy by applying the Bohr-Sommerfeld condition [37]. The
α-cluster preformation factor Pα = 0.38 is used for even-
even nuclei, which agrees with both the experimental facts
and the microscopic calculations [20,23]. The experimental
α-decay energies are used in calculations of the DDCM.
The small effect of the electron shielding correction on the
decay energy Qα is also included in a standard way [37]. The
influence of deformation on α-decay half-lives is taken into
account by using theoretical quadrupole deformation from the
macroscopic-microscopic model (MM) [52]. The magnitude
of α-decay half-lives varies in a wide range and is very sensitive
to the α-decay energies. The agreement between experiment
and DDCM was found to be quite good for most nuclei (see
Ref. [37] for details). The partial α-decay half-lives of 30
even-even nuclei are predicted by using the theoretical α-decay
energies [1].

On the basis of the above calculations, we now discuss
the competition between α-decay and spontaneous fission
decay modes. In Table II, we list the detailed results for
both α decay and spontaneous fission of nuclei from Th
to Ds. The first column denotes the nuclei. The calculated
α-decay partial half-lives are listed in column 2. The symbol
∗ represents the cases in which the experimental α-decay
energies are unavailable. The predicted values are used in
calculations, which are taken from the NUBASE table of
Audi and co-workers [1]. In column 3, the theoretical partial
half-lives of spontaneous fission are calculated by our new
formula [Eq. (16)]. The experimental and theoretical branching
ratios of α decay are given in columns 4 and 5. The last two
columns are the experimental and theoretical branching ratios
of spontaneous fission, respectively.

We can also see from Table II that the experimental branch-
ing ratio of spontaneous fission is very small for lighter actinide
nuclei. For example, the intensity of spontaneous fission is only

1.20 × 10−9% for 232Th, while its α-decay branching ratio is
as large as ∼100%. Thus the spontaneous fission process is
only barely detectable in competition with the more prevalent
α-decay mode for these nuclei. However, this is not the case for
nuclei with proton number Z � 100. The spontaneous fission
begins to compete favorably with the α-particle emission.
For some heavy artificial nuclei, spontaneous fission becomes
the predominant mode that determines the stability of nuclei.
Moreover, the isospin effect (N − Z) is also clearly shown
in the experimental branching ratios of heavy and superheavy
nuclei. Let us take the uranium isotopic chain (Z = 92) as
an example. The spontaneous fission branching ratio of U
isotopes increases from <1.0 × 10−10% to 5.50 × 10−5% with
the increasing of the neutron number. The same situation also
exists for other isotopic chains. Thus the isospin effect is
important in the analysis of branching ratios for α decay and
spontaneous fission.

Although the experimental branching ratios vary by several
orders of magnitude for the isotopic chains, we can see
from Table II that the calculated branching ratios of both
α decay and spontaneous fission follow the experimental
data well. For most cases, the values of the theoretical
branching ratios are very close to the experiment results. For
example, the uranium isotopic chain (230U–238U) is predicted
to mainly undergo α-particle emission (100%), and this agrees
with the experimental facts very well. More importantly, the
experimental spontaneous fission branching ratios are also sat-
isfactorily reproduced at the same time. Such good agreement
is unexpected because one needs to calculate both the α-decay
and the spontaneous fission half-lives of these nuclei very
accurately. In general, the theoretical branching ratios of both
α decay and spontaneous fission are in accordance with the
available experiment results with only a few exceptions. It
should be noted that the exceptional cases are very helpful in
the study of the nuclear structure properties of spontaneous
fission nuclei. For instance, the theoretical branching ratios
of “doubly magic nucleus” 270Hs are in disagreement with
the experimental data. It is concluded that the spontaneous
fission half-life of 270Hs is underestimated by our new formula.
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TABLE II. Competition between α-decay and spontaneous fission decay modes for nuclei from Th to Ds.

A Tα(Cal)(s) Tsf (Cal)(s) Bα(Exp) Bα(Cal) Bsf (Exp) Bsf (Cal)

232Th 1.2 × 1018 2.4 × 1029 100% 100% 1.20 × 10−9% 5.03 × 10−10%
230U 4.3 × 106 2.1 × 1020 100% 100% < 1.0 × 10−10% 2.07 × 10−12%
232U 5.1 × 109 1.9 × 1022 100% 100% 3.00 × 10−12% 2.68 × 10−11%
234U 1.4 × 1013 3.4 × 1023 100% 100% 1.60 × 10−9% 4.23 × 10−9%
236U 1.4 × 1015 1.2 × 1024 100% 100% 9.40 × 10−8% 1.24 × 10−7%
238U 3.3 × 1017 7.6 × 1023 100% 100% 5.50 × 10−5% 4.27 × 10−5%
236Pu 1.2 × 108 1.6 × 1017 100% 100% 1.90 × 10−7% 7.44 × 10−8%
238Pu 3.4 × 109 3.1 × 1018 100% 100% 1.90 × 10−7% 1.09 × 10−7%
240Pu 3.2 × 1011 1.1 × 1019 100% 100% 5.70 × 10−6% 2.85 × 10−6%
242Pu 1.8 × 1013 7.9 × 1018 100% 100% 5.50 × 10−4% 2.20 × 10−4%
244Pu 2.9 × 1015 1.1 × 1018 99.88% 99.74% 0.12% 0.26%
240Cm 2.1 × 106 3.3 × 1012 >99.50% 100% 3.90 × 10−6% 6.39 × 10−5%
242Cm 1.5 × 107 6.7 × 1013 100% 100% 6.20 × 10−6% 2.21 × 10−5%
244Cm 5.4 × 108 2.6 × 1014 100% 100% 1.40 × 10−4% 2.04 × 10−4%
246Cm 1.3 × 1011 2.0 × 1014 99.97% 99.93% 0.03% 0.07%
248Cm 1.1 × 1013 2.9 × 1013 91.61% 71.91% 8.39% 28.09%
250Cm 8.6 × 1012 8.2 × 1011 18.00% 8.67% 74% 91.33%
242Cf 3.0 × 102 1.7 × 106 80.00% 99.98% �0.01% 1.78 × 10−2%
244Cf 1.4 × 103 1.9 × 108 ≤100% 100% ?% 7.20 × 10−4%
246Cf 1.1 × 105 4.2 × 109 100% 100% 2.50 × 10−4% 2.60 × 10−3%
248Cf 1.9 × 107 1.7 × 1010 100% 99.89% 2.90 × 10−3% 1.07 × 10−1%
250Cf 2.5 × 108 1.4 × 1010 99.92% 98.22% 0.08% 1.78%
252Cf 8.3 × 107 2.2 × 109 96.91% 96.34% 3.09% 3.66%
254Cf 2.8 × 109 6.6 × 107 0.31% 2.28% 99.69% 97.72%
256Cf 3.2 × 1011∗ 3.8 × 105 ?% 1.18 × 10−4% 100% 100%
246Fm 1.6 × 100 3.1 × 102 92.00% 99.48% 8% 0.52%
248Fm 2.5 × 101 3.7 × 104 93.00% 99.93% 0.1% 0.07%
250Fm 1.0 × 103 8.6 × 105 >90% 99.88% 6.90 × 10−3% 0.12%
252Fm 3.7 × 104 3.8 × 106 100% 99.04% 2.30 × 10−3% 0.96%
254Fm 7.4 × 103 3.3 × 106 99.94% 99.78% 0.06% 0.22%
256Fm 1.1 × 105 5.5 × 105 8.10% 83.43% 91.6% 16.57%
258Fm 4.8 × 106∗ 1.8 × 104 ?% 0.37% �100% 99.63%
260Fm 1.1 × 109∗ 1.1 × 102 ?% 9.98 × 10−6% 100% 100%
250No 1.3 × 10−1∗ 2.2 × 10−1 ?% 63.20% �100% 36.80%
252No 2.1 × 100 2.8 × 101 58.00% 93.24% 19% 6.76%
254No 2.3 × 101 7.0 × 102 90.00% 96.90% 0.17% 3.10%
256No 1.3 × 100 3.4 × 103 99.47% 99.96% 0.53% 0.04%
258No 3.5 × 101 3.1 × 103 ?% 98.87% �100% 1.13%
260No 1.5 × 103∗ 5.5 × 102 ?% 26.39% 100% 73.61%
262No 3.7 × 105∗ 1.9 × 101 ?% 5.12 × 10−3% 100% 99.99%
264No 8.7 × 107∗ 1.3 × 10−1 ?% 1.44 × 10−7% ?% 100%
254Rf 3.5 × 10−2∗ 7.5 × 10−4 ?% 2.12% �100% 97.88%
256Rf 6.8 × 10−1 1.0 × 10−1 0.32% 13.22% 99.68% 86.78%
258Rf 6.5 × 10−2∗ 2.7 × 100 13.00% 97.67% 87% 2.33%
260Rf 7.3 × 10−1∗ 1.4 × 101 ?% 95.02% �100% 4.98%
262Rf 1.5 × 101∗ 1.4 × 101 ?% 47.68% �100% 52.32%
264Rf 2.2 × 102∗ 2.6 × 100 ?% 1.17% ?% 98.83%
266Rf 5.8 × 104∗ 9.5 × 10−2 ?% 1.64 × 10−4% ?% 100%
268Rf 2.9 × 102∗ 6.7 × 10−4 ?% 2.33 × 10−4% ?% 100%
258Sg 2.5 × 10−2∗ 1.5 × 10−5 ?% 0.06% �100% 99.94%
260Sg 4.5 × 10−3 2.1 × 10−3 50.% 32.15% 50% 67.85%
262Sg 3.4 × 10−2∗ 6.0 × 10−2 �22% 64.21% ?% 35.79%
264Sg 4.5 × 10−1∗ 3.3 × 10−1 ?% 41.84% ?% 58.16%
266Sg 8.2 × 100 3.4 × 10−1 �50% 4.01% �50% 95.99%
268Sg 1.7 × 102∗ 6.9 × 10−2 ?% 0.04% ?% 99.96%
270Sg 7.8 × 10−1∗ 2.7 × 10−3 ?% 0.35% ?% 99.65%
272Sg 3.2 × 102∗ 2.1 × 10−5 ?% 6.45 × 10−6% ?% 100%
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TABLE II. (Continued.)

A Tα(Cal)(s) Tsf (Cal)(s) Bα(Exp) Bα(Cal) Bsf (Exp) Bsf (Cal)

264Hs 5.4 × 10−4 3.0 × 10−4 50% 35.60% 50% 64.40%
266Hs 1.8 × 10−3 9.0 × 10−3 100% 83.30% ?% 16.70%
268Hs 2.3 × 10−2∗ 5.2 × 10−2 ?% 69.18% ?% 30.82%
270Hs 7.8 × 100 5.8 × 10−2 100% 0.74% ?% 99.26%
272Hs 5.9 × 10−3∗ 1.3 × 10−2 ?% 68.07% ?% 31.93%
274Hs 2.7 × 10−1∗ 5.2 × 10−4 ?% 0.20% ?% 99.80%
276Hs 4.2 × 101∗ 4.2 × 10−6 ?% 1.00 × 10−5% ?% 100%
268Ds 1.9 × 10−4∗ 3.4 × 10−4 ?% 64.27% ?% 35.73%
270Ds 6.4 × 10−5 1.1 × 10−2 100% 99.42% <0.2% 5.80 × 10−1%
272Ds 6.2 × 10−4∗ 6.8 × 10−2 ?% 99.09% ?% 0.91%
274Ds 2.0 × 10−5∗ 8.1 × 10−2 ?% 99.98% ?% 0.02%
276Ds 1.5 × 10−3∗ 1.9 × 10−2 ?% 92.78% ?% 7.22%
278Ds 5.3 × 10−2∗ 8.3 × 10−4 ?% 1.54% ?% 98.46%
280Ds 7.7 × 100∗ 7.1 × 10−6 ?% 9.25 × 10−5% 100% 100%

As we mentioned above, the spontaneous fission half-life of
252Fm with N = 152 is also underestimated by three orders
of magnitude, which is due to the absence of the shell effect
N = 152 in the calculations. Thus this disagreement shows
that the subshell closure N = 162 also plays an important role
in the spontaneous fission process. Further calculations should
include the influences of both N = 152 and N = 162 subshell
effects.

For heavier nuclei, the half-lives of α decay and sponta-
neous fission are difficult to measure and their intensities are
still unknown in experiment. This is not surprising because
there is often only one or two events of the decay during a long
time of observation for the heaviest nuclei. The branching
ratios of α decay and spontaneous fission of these nuclei are
marked with the symbol ? in the NUBASE table evaluated by
Audi and co-workers [1]. In Table II we list the predicted
values of branching ratios of these two decay modes for
the unknown cases. To show the results more clearly, we
also plot in Fig. 3 the possible decay modes of heavy and
superheavy nuclei (Th–Ds). In Fig. 3, the white box denotes
that α decay is the main decay mode of nuclei, and the blue
box represents that the spontaneous fission is the primary
decay mode. Again it is seen from Fig. 3 that the unstable
nuclei with proton number Z � 90 can undergo either α decay
or spontaneous fission. The spontaneous fission decay mode
becomes more and more important toward the heaviest side of
nuclide chart. The theoretical predictions are useful to estimate
the decay mode of newly synthesized superheavy elements
before experiment. Also it will be of great interest to compare
the theoretical values with the experiment data in the future.

IV. SUMMARY

To conclude, the α-decay and spontaneous fission partial
half-lives are systematically calculated for heavy and super-

heavy nuclei with proton number Z � 90. The α-decay half-
lives are obtained by the deformed version of the DDCM with
the microscopic double-folding potential. The spontaneous
fission half-lives of nuclei are calculated by the parabolic
potential approximation with the nuclear structure effects
included. A new expression for spontaneous fission half-lives
is derived analytically, which works well for the mass region
from 232Th to 286114. The physical meaning of each term in this
formula is very clear. This new formula can be used to extract
the detailed information of the subshell effects in further
studies. The competition between α-decay and spontaneous
fission decay modes is discussed in detail. It is found that
the spontaneous fission becomes more and more important
toward the heaviest side of the nuclide chart. Generally, the
agreement between experimental and theoretical results is
satisfactory for both α decay and spontaneous fission. For
the isotopic chains from Th to Fm, the agreement between
experimental and theoretical branching ratios is quite good.
For the heavier isotopic chains, the experimental branching
ratios are reproduced reasonably and the predicted branching
ratios are given for the unknown cases by using theoretical
decay energies. The branching ratios are very difficult to
estimate because one needs to calculate the half-lives of both
α decay and spontaneous fission very accurately. The present
theoretical predictions on the possible decay modes of heavy
and superheavy nuclei will be useful in future experiments.
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