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Partial dynamical symmetries in the j = 9/2 shell: Progress and puzzles
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We present new results concerning the properties of solvable states of four particles in a j = 9/2 shell which
have seniority v = 4 and angular momentum I = 4 or 6. In particular, based on properties of certain coefficients
of fractional parentage, we show that the number of pairs coupled to angular momentum I is equal to one for
these states. Similar results can be derived entirely analytically for four particles in a j = 7/2 shell.
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I. STATEMENT OF THE PROBLEM

It is known since long that a rotationally-invariant
Hamiltonian describing identical fermions in a single-j shell
has eigenstates with good seniority for any interaction between
the particles as long as j � 7/2. Proofs of this statement can
be found in the books of de-Shalit and Talmi [1] and Talmi [2].
This property of seniority conservation is no longer valid
for all eigenstates in a j = 9/2 shell but it turns out that
some selected eigenstates have good seniority for an arbitrary
interaction. More specifically, it was noted in Refs. [3,4]
that with the techniques used to calculate coefficients of
fractional parentage (CFPs) in Ref. [5] (i.e., the diagonalization
of the pairing interaction) the two v = 4 states with total
angular momentum I (denoted, e.g., as |j 4, 1, v = 4, I 〉 and
|j 4, 2, v = 4, I 〉) have the same energy, that is, they are
degenerate. Hence, any linear combination of the two which
we may define as

|j 4, a, v = 4, I 〉 = α|j 4, 1, v = 4, I 〉 + β|j 4, 2, v = 4, I 〉,
(1)

|j 4, b, v = 4, I 〉 = −β|j 4, 1, v = 4, I 〉 + α|j 4, 2, v = 4, I 〉,
would be equally valid as eigenstates. If, instead of a
pairing interaction, one diagonalizes an arbitrary but seniority-
conserving interaction (e.g., a δ interaction) then the two
states become well defined. Both states are eigenstates of any
interaction which conserves seniority. In addition, one of the
linear combinations, say |j 4, a, v = 4, I 〉, has the interesting
property that it cannot mix with the v = 2 state even if an
interaction is used that does not conserve seniority. Hence this
state satisfies the property

M2a ≡ 〈j 4, v = 2, I |V̂ |j 4, a, v = 4, I 〉 = 0, (2)

for an arbitrary interaction V̂ in the j = 9/2 shell. For
notational convenience the states |j 4, i, v = 4, I 〉 henceforth
shall be denoted in short as |j 4viI 〉, i = a, b.

The property (2) was proven numerically in Ref. [3] for four
particles in a j = 9/2 shell coupled to total angular momentum
I = 4 or I = 6. Subsequently, the states in question were
shown to be solvable (i.e., to have a simple closed energy
expression) in Ref. [8] by means of a symbolic computation in
Mathematica. The purpose of this paper is to provide analytic
proofs of some of these results based on generic properties
of CFPs discussed in the next section. Parts of these proofs

were already given by one of us [4] but are repeated here for
completeness.

II. RELATIONS BETWEEN COEFFICIENTS OF
FRACTIONAL PARENTAGE

Our analytic proofs are based on known special properties
of CFPs which are repeated here for completeness. First, we
note the following relation between v-to-(v + 1)-particle and
(v + 1)-to-(v + 2)-particle CFPs:

[jv+1(v + 1, α1J1)jJ |}jv+2vαJ ]

= (−1)J+j−J1

√
2(2J1 + 1)(v + 1)

(2J + 1)(v + 2)(2j + 1 − 2v)

× [jv(vαJ )jJ1|}jv+1v + 1, α1J1]. (3)

This relation has been derived in the books of de-Shalit and
Talmi [1] and Talmi [2]; for example, see Eq. (19.31) of
Ref. [2].

Second, we will use the equivalent of the Redmond
recursion relation [6] but for CFPs classified by the seniority
quantum number v and for which there are no redundancies.
This modified relation reads [7]

(n + 1)
∑
vs

[jn(v0J0)jIs |}jn+1vsIs] [jn(v1J1)jIs |}jn+1vsIs]

= δv0,v1δJ0,J1 + n(−1)J0+J1
√

(2J0 + 1)(2J1 + 1)

×
∑
v2J2

{
J2 j J1

Is j J0

}
[jn−1(v2J2)jJ0|}jnv0J0]

× [jn−1(v2J2)jJ1|}jnv1J1]. (4)

Note that the sum on the left-hand side of this identity runs
over all seniorities vs but that the total angular momentum Is

is fixed.

III. THE j = 9/2 SHELL

A. Analytic proofs

As noted above, for four identical particles in a j = 9/2
shell there are two v = 4 states with I = 4 or I = 6. They can
be written in terms of three-particle states in the usual way
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with three-to-four-particle CFPs,

|j 4viI 〉 =
∑
v3J3

[j 3(v3J3)jI |}j 4viI ] |j 3v3J3, j ; I 〉, (5)

where the state on the right-hand side results from the coupling
of the angular momentum J3 of the first three particles with the
last particle’s angular momentum j to total angular momentum
I . For vi = 4 the intermediate seniority of the first three
particles necessarily must be v3 = 3. We now focus on the
intermediate state with J3 = j . Given the expansion (1), the
following relation holds:

[j 3(v = 3, J = j )jI |}j 4vaI ]

= α[j 3(v = 3, J = j )jI |}j 4v1I ]

+β[j 3(v = 3, J = j )jI |}j 4v2I ]. (6)

We can always choose the coefficients α and β such that the
CFP on the left-hand side vanishes. In other words, we def ine

the special states |j 4vaI 〉(I = 4, 6) such that

[j 3(v = 3, J = j )jI |}j 4vaI ] = 0. (7)

Furthermore, using the proportionality relationship (3), we can
deduce the following property:

[j 4(vaI )jJ |}j 5, v = 3, J = j ] = 0. (8)

The result (8) will be crucial in the proof of the property (2) to
which we now turn.

In order to prove that the matrix element M2a of Eq. (2)
vanishes for any interaction, we must show that

M2a(λ) = 0, for λ = 0, 2, 4, 6, 8, (9)

where M2a(λ) is the matrix element for a single component V̂λ

of the interaction defined as

V̂ =
∑

λ

νλV̂λ, νλ ≡ 〈j 2; λ|V̂ |j 2; λ〉. (10)

We obtain an expression for M2a(λ) in two steps. First, we
eliminate one of the four particles and get an expression in
terms of three-particle matrix elements:

M2a(λ) = 2
∑

v3v
′
3J3

[j 3(v3J3)jI |}j 4, v = 2, I ]

× [j 3(v′
3J3)jI |}j 4vaI ] 〈j 3v3J3|V̂λ|j 3v′

3J3〉. (11)

The second CFP in the sum vanishes for J3 = j by construc-
tion and only the terms with v3 = v′

3 = 3, J3 �= j survive.
Therefore, the summation may henceforth be considered as
unrestricted in v3 = v′

3 and J3. The three-particle matrix
element in turn can be expressed in terms of a two-to-three-
particle CFP,

〈j 3v3J3|V̂λ|j 3v3J3〉 = 3[j 2(λ)jJ3|}j 3v3J3]2, (12)

which is obtained in closed form from the relation (4) for
n = 2,

[j 2(λ)jJ3|}j 3v3J3]2 = 1

3
+ 2

3
(2λ + 1)

{
J3 j λ

j j λ

}
. (13)

Putting everything together we obtain for the λ component of
the interaction

M2a(λ) = 6
∑
v3J3

[j 3(v3J3)jI |}j 4, v = 2, I ]

× [j 3(v3J3)jI |}j 4vaI ]

×
[

1

3
+ 2

3
(2λ + 1)

{
J3 j λ

j j λ

}]
. (14)

The first “ 1
3 ” term in the square brackets vanishes because

of orthogonality of the CFPs [1,2]. The second “ 2
3 ” term in

the square brackets can be evaluated for λ = I by use of the
Redmond relation (4) for n = 4 which gives

M2a(λ = I ) ≡ 〈j 4, v = 2, I |V̂λ=I |j 4vaI 〉
= 5

∑
vs

[j 4(v = 2, I )jIs |}j 5vs, Is = j ]

× [j 4(vaI )jIs |}j 5vs, Is = j ] = 0. (15)

The sum vanishes because the only term that contributes has
vs = 3 for which the second CFP is zero according to the
property (8).

We can use this fact to prove the result (2), that is, that the
mixing matrix M2a vanishes for a general interaction in the j =
9/2 shell. Recall that for identical particles there are five two-
body interaction matrix elements in this shell corresponding to
λ = 0, 2, 4, 6, and 8. Furthermore, there are four independent
seniority-conserving two-body operators and any linear com-
bination of them with arbitrary coefficients conserves seniority.
(The number of seniority-violating interactions is one less
than the number of J = j states for three identical particles
[1,2] and there are two three-particle states with J = 9/2 for
j = 9/2.) Four independent seniority-conserving interactions
are, for example, a constant interaction, a pairing interaction,
the two-body part of the Ĵ 2 operator, and the δ interaction. But
we have just found a seniority-violating interaction which does
not admix |j 4, v = 2, I 〉 and |j 4vaI 〉, namely the interaction
V̂λ=I . Hence, we can express the five two-body interaction
matrix elements in terms of these five interactions which will
not admix the |j 4, v = 2, I 〉 and |j 4vaI 〉 states. Indeed all
M2a(λ) vanish.

B. Further proofs

Let us consider the matrix element between the seniority-
four state |j 4vaI 〉 and the state |j 4vbI 〉 that is orthogonal to it.
For this matrix element we obtain the expression

Mab(λ = I ) ≡ 〈j 4vaI |V̂λ=I |j 4vbI 〉
= 5

∑
vs

[j 4(vaI )jIs |}j 5vs, Is = j ]

× [j 4(vbI )jIs |}j 5vs, Is = j ]. (16)

Although we do not have an analytic proof that this matrix
element is zero, we can examine the consequences of its
vanishing. The seniority quantum number vs in the sum
assumes the values 1, 3, and 5. For vs = 1 the CFP in Eq. (16)
is zero because one cannot obtain v = 1 from four particles
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with v = 4 coupled to a single particle. That the first CFP in the
sum (16) vanishes for vs = 3 was shown in Eq. (8). Hence, in
order for Mab(λ = I ) = 0 to be true, we must have that either
the CFP of the state a or that of the state b vanishes. This can
be verified by consulting tables of CFPs [1,5], putting in the
appropriate coefficients α and β to make the CFP (8) vanish,
and subsequently checking that with the same α and β the CFP
with v = 5 vanishes as well. In other words, we note from the
different tables for j = 9/2 that the following property holds
for the states |j 4, 1, v = 4, I 〉 and |j 4, 2, v = 4, I 〉 (where
1 and 2 to refer to an arbitrary labeling):

[j 4(1, v = 4, I )jJ |}j 5, v = 3, J = j ]

[j 4(2, v = 4, I )jJ |}j 5, v = 3, J = j ]

= [j 4(1, v = 4, I )jJ |}j 5, v = 5, J = j ]

[j 4(2, v = 4, I )jJ |}j 5, v = 5, J = j ]
, (17)

but we have no analytical proof of it. We note in passing that,
because of the relation (3), this is equivalent to the property

[j 4(1, v = 4, I )jJ |}j 5, v = 5, J = j ]

[j 4(2, v = 4, I )jJ |}j 5, v = 5, J = j ]

= [j 3(v = 3, J = j )jI |}j 4, 1, v = 4, I ]

[j 3(v = 3, J = j )jI |}j 4, 2, v = 4, I ]
. (18)

We conclude that 〈j 4vaI |V̂λ|j 4vbI 〉 = 0 for λ = I , but we note
that this has yet to be shown for a general interaction λ �= I .
It has been shown empirically in Ref. [3] that the special
state |j 4vaI 〉 is an eigenstate for any interaction—seniority
conserving or not. This means that there is no coupling of this
state with the other v = 4 state via any interaction but as yet
we have no analytic proof of this property.

Next we consider the energy of the |j 4vaI 〉 states. In
Ref. [8] closed energy expressions were obtained with use
of MATHEMATICA,

E[(9/2)4va, I = 4] = 68
33ν2 + ν4 + 13

15ν6 + 114
55 ν8,

(19)
E[(9/2)4va, I = 6] = 19

11ν2 + 12
13ν4 + ν6 + 336

143ν8.

With minor modifications of what has been done up to now,
we can explain why the coefficient of νλ=I is one. This in
fact means that the number of pairs with angular momentum
I is equal to one for these states. At this point we keep the
discussion for general j and I and assume that an analytic
expression is available for E[j 4vaI ] which is linear in the
two-body matrix elements νλ,

E[j 4vaI ] =
∑

λ

xλνλ, (20)

where the coefficients xλ depend implicitly on j and I . The
application of this relation for each component V̂λ of the
interaction leads to the identity xλ = 〈j 4vaI |V̂λ|j 4vaI 〉. Via
an argument analogous to the preceding discussion this matrix

element can be written as

xλ = 6
∑
v3J3

[j 3(v3J3)jI |}j 4vaI ]2

×
[

1

3
+ 2

3
(2λ + 1)

{
J3 j λ

j j λ

}]
. (21)

For λ = I the sum can be carried out:

xλ=I = 2 + 4(2λ + 1)
∑
v3J3

[j 3(v3J3)jI |}j 4vaI ]2

{
J3 j I

j j I

}

= 2 − 1 + 5
∑
vs

[j 4(vaI )jIs |}j 5vs, Is = j ]2, (22)

where use has been made of the normalization property of the
CFPs and the Redmond relation (4) for n = 4, in the first and
second step, respectively. With similar arguments as before
one can show that the sum in Eq. (22) vanishes, leading to the
final result

xλ=I = 〈
j 4vaI |V̂λ=I |j 4vaI

〉 = 1. (23)

In summary of this subsection, we have three results:
[j 4(vaI )jJ |}j 5, v = 5, J = j ] = 0, 〈j 4vaI |V̂λ = I |j 4vbI 〉= 0,
and 〈j 4vaI |V̂λ=I |j 4vaI 〉 = 1, and any two of them follow
from the third.

IV. THE j = 7/2 SHELL

These properties can be used to find the energy expressions
of the solvable states. To illustrate the procedure, we consider
four identical particles in the j = 7/2 shell in which case
there is at most a single v = 4 state for a given total angular
momentum I which again we denote as |j 4vaI 〉. The results
derived above for the j = 9/2 shell are equally valid for
j = 7/2. The property (15) is trivial since any interaction is
diagonal in seniority in this shell. The property (23) follows
from the fact that in the sum in Eq. (22) we necessarily have
vs = 1 since five particles in the j = 7/2 shell are equivalent
to three holes which must have seniority v = 1 for J = j . The
CFP therefore must vanish since a v = 1 five-particle state
cannot have four of the particles coupled to seniority four.

The result (23) can be put to good use as follows.
We assume that the energy of the |j 4vaI 〉 state can be
written as a linear expression (20) in the two-body matrix
elements νλ. The unknown coefficients xλ can be determined
by choosing different interactions (defined by the two-body
matrix elements νλ) for which the energy E[j 4vaI ] is known.
Four such interactions are available:

(i) The pairing interaction which is obtained for ν0 = 1 and
ν2 = ν4 = ν6 = 0 and yields the energy E[j 4vaI ] = 0.

(ii) The constant interaction which is obtained for ν0 =
ν2 = ν4 = ν6 = 1 and yields the energy E[j 4vaI ] = 6.

(iii) The two-body part of Ĵ 2 which is obtained for
νλ = λ(λ + 1) − 2j (j + 1) and yields the energy
E[j 4vaI ] = I (I + 1) − 4j (j + 1).

(iv) A single V̂λ=I component which is obtained for νλ=I =
1. According to the preceding discussion the energy is
E[j 4vaI ] = 1.
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For j = 7/2 and I = 2 or 4 we have thus a system of four
linear equations

x0 = 0,

x0 + x2 + x4 + x6 = 6,
(24)− 63

2 x0 − 51
2 x2 − 23

2 x4 + 21
2 x6 = I (I + 1) − 63,

xI = 1,

which can be solved for the unknown coefficients xλ to give
the expressions

E[(7/2)4, v = 4, I = 2] = ν2 + 42
11ν4 + 13

11ν6,
(25)

E[(7/2)4, v = 4, I = 4] = 7
3ν2 + ν4 + 8

3ν6,

which is also what is obtained via conventional techniques
based on CFPs.

V. CONCLUDING REMARK

We have reported on some progress in the understanding
of the peculiar occurrence of a partial dynamical symmetry in
the j = 9/2 shell and have shown it to be the consequence of
general properties of CFPs. The matter is not fully settled yet
since we still lack an analytic proof of the relation (17). Also,
although we have a simple derivation of energy expressions in
the j = 7/2 shell, this is not yet the case for the solvable states
in the j = 9/2 shell.
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