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We construct nuclear energy density functionals in terms of derivatives of densities up to sixth, next-to-next-
to-next-to-leading order (N3LO). A phenomenological functional built in this way conforms to the ideas of
the density matrix expansion and is rooted in the expansions characteristic to effective theories. It builds on
the standard functionals related to the contact and Skyrme forces, which constitute the zero-order (LO) and
second-order (NLO) expansions, respectively. At N3LO, the full functional with density-independent coupling
constants, and with the isospin degree of freedom taken into account, contains 376 terms, whereas the functionals
restricted by Galilean and gauge symmetries contain 100 and 42 terms, respectively. For functionals additionally
restricted by the spherical, space-inversion, and time-reversal symmetries, the corresponding numbers of terms
are equal to 100, 60, and 22, respectively.
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I. INTRODUCTION

The Skyrme force was introduced into nuclear physics more
than half a century ago [1,2] and it is still a concept that is
widely used in methods aimed at determining properties of nu-
clei irrespective of their mass number and isospin. However, at
present we understand this concept in a significantly different
way than it was originally proposed. Indeed, instead of using
this force as an effective interaction within the Hartree-Fock
(HF) approximation, we rather focus on the underlying Skyrme
energy density functional (EDF), without direct references to
the effective interaction or HF approximation.

In electronic systems, the use of functionals of density is
motivated by formal results originating from the Hohenberg-
Kohn [3] and Kohn-Sham theorems [4], whereby exact ground-
state energies of many-fermion systems can be obtained
by minimizing a certain exact functional of the one-body
density. This led to numerous extensions and applications,
now collectively known under the name of density functional
theory (DFT) [5–7].

The fact that properties of electronic systems are governed
by the well-known Coulomb interaction allows for derivations
of functionals from first principles, by which token this
approach can proudly be called a theory. For nuclear systems,
the luxury of knowing the exact interaction is not there, so
the analogous approaches developed in this domain of physics
carry the name of EDF methods.

In this article we construct a phenomenological nuclear
EDF based on strategies that are proper for effective theories
[8]. Guiding principles [9] are based on (i) appropriate
choice of effective fields, (ii) building effective Lagrangian or
Hamiltonian densities restricted only by symmetry principles,
and (iii) employing ideas of power counting. In the low-energy
nuclear structure, correct fields can probably be associated
with nonlocal one-body nuclear densities. Then, functionals
of densities acquire the meaning of effective Hamiltonian
densities. Although a formal construction of power-counting
schemes is not yet available, ideas based on the density matrix
expansion (DME) [10–16] (see also a recent example of an
application to electronic systems in Ref. [17]) can be used to

propose expansions in terms of moments of effective nuclear
interactions, or equivalently, in orders of derivatives acting on
the one-body densities. This is precisely the strategy we are
going to follow in the present study.

Effective field theories (EFTs) were recently extensively
applied in analyzing properties of nuclear systems. Here we
are not able to give an even shortest possible review of this
rapidly developing area of physics, but let us mention two
specific examples.

First, the nucleon-nucleon (NN ) scattering properties
were very successfully described by employing the effective
nucleon-pion Lagrangian at next-to-next-to-next-to-leading
order (N3LO) (see Ref. [18] and references cited therein).
This showed that the EFT expansion is capable of grasping the
main features of nuclear interactions at low energies, without
explicitly invoking microscopic foundations in terms of, for
example, heavy meson exchanges.

Second, methods using the harmonic-oscillator effective
operators have been developed up to N3LO to be em-
ployed within the shell-model approaches [19]. There, the
N3LO expansion was explicitly expressed in the form of
pseudopotentials that contain derivatives up to sixth order.
Evidently, such pseudopotentials are exact equivalents of
higher order Skyrme-like forces. When averaged within the
HF approximation, they would lead to EDFs depending on
derivatives of densities up to sixth order. This allows us to
label our approach with the traditional name of the N3LO
expansion too.

There is also a recent significant effort in deriving nuclear
EDFs directly from low-energy QCD within chiral perturba-
tion theory (see, e.g., Refs. [20–22]). This may potentially
provide new important insight into the precise structure of
terms in the EDF, whereas at present we are bound to proceed
phenomenologically, with only the symmetry constraints
available, as is done in the present study.

In all rigorous EFT expansions, one strives to achieve
convergence in describing physical observables by going to
higher and higher orders of expansion. This is best illustrated
by the so-called Lepage plots [19,23], where for theories cut
at different orders, relative errors of observables are plotted
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as functions of energy. In nuclear EDF methods, this kind
of convergence test is never performed—simply because the
functionals beyond the second order (NLO) of the standard
Skyrme type had never been constructed or studied. The
present study constitutes the first step toward this goal.

Our paper is organized as follows. In Sec. II we define
the basic building blocks for our construction, and then we
construct local densities up to N3LO. In Sec. III we construct
terms in the EDF up to N3LO and evaluate constraints imposed
by Galilean and gauge symmetries. In Sec. IV we derive
results for the case of conserved spherical, space-inversion, and
time-reversal symmetries. After formulating conclusions of
the present study in Sec. V, in Appendix A we discuss general
symmetry properties of the energy density, in Appendix B we
present details of the adopted choice of the phase convention,
and in Appendix C we list results pertaining to the Galilean
and gauge symmetries.

II. CONSTRUCTION OF LOCAL DENSITIES

A. Building blocks

Let ρ(rσ, r ′σ ′) denote the one-body density matrix in
space-spin coordinates. In what follows, to simplify the
notation, we omit the isospin degree of freedom, because in
the particle-hole channel all densities appear in the isoscalar
and isovector forms [24], and generalization to proton-neutron
systems does not present any problem. Within this assumption,
the EDF we consider has the form

E =
∫

d3rHE(r), (1)

where the energy density HE(r) can be represented as a sum
of the kinetic and potential energies,

HE(r) = h̄2

2m
τ0 + H(r). (2)

In the present study, we focus on the potential energy density
H(r) only.

First, using the Pauli matrices σa , where index a = {x, y, z}
enumerates the Cartesian components of a vector, the density
matrix is separated into the standard scalar and vector parts
[25],

ρ(rσ, r ′σ ′) = 1

2
ρ(r, r ′)δσσ ′ + 1

2

∑
a

〈σ |σa|σ ′〉sa(r, r ′), (3)

where

ρ(r, r ′) =
∑

σ

ρ(rσ, r ′σ ), (4)

s(r, r ′) =
∑
σσ ′

ρ(rσ, r ′σ ′)〈σ ′|σ |σ 〉. (5)

These two nonlocal densities will be used as building blocks
of the functional together with the derivative operator ∇ and
the relative momentum operator k,

k = 1

2i
(∇ − ∇′). (6)

To most easily satisfy the constraints imposed by the rotational
invariance, in our method, the building blocks are represented

as spherical tensor operators [26] i.e., ρλµ(r, r ′) for λ = 0 and
sλµ(r, r ′),∇λµ, and kλµ for λ = 1]. In this notation, λ is the
rank of the tensor and µ = −λ, . . . ,+λ is its tensor compo-
nent. In the present study we use the following definitions of
the building blocks in the spherical representation:

ρ00(r, r ′) = ρ(r, r ′), (7)

s1,µ={−1,0,1}(r, r ′) = −i

{
1√
2

[sx(r, r ′) − isy(r, r ′)], sz(r, r ′),

−1√
2

[sx(r, r ′) + isy(r, r ′)]
}
, (8)

∇1,µ={−1,0,1} = −i

{
1√
2

(∇x − i∇y),

∇z,
−1√

2
(∇x + i∇y)

}
, (9)

k1,µ={−1,0,1} = −i

{
1√
2

(kx − iky),

kz,
−1√

2
(kx + iky)

}
. (10)

In what follows, we most often omit indices and arguments of
these spherical tensors and we simply write ρ, s,∇, and k to
lighten the notation.

In principle, arbitrary phase factors could be used in front
of the spherical tensors. In Appendix B, we discuss possible
choices of such phase conventions and determine the particular
ones selected in Eqs. (7)–(10). These phase conventions, which
are not the standard ones, are used throughout the paper and
define the phase properties of all other objects that we construct
by using these building blocks.

B. Higher order derivative operators

We begin by constructing all possible higher order and
higher rank tensor operators from powers of the derivative ∇1µ,
where µ = −1, 0,+1 are the spin-projection components of
the vector (rank-1) operator ∇. It is obvious that all possible
nth-order powers of the derivative can be written as sums of
terms ∇1µ1 · · · ∇1µn

. Therefore, any (n + 1)th-order power is
simply obtained by multiplying some nth-order power by a
sum of ∇1µ operators. Then, powers of a given rank can be
obtained iteratively by vector coupling.

In the second order, the two nabla operators can be
coupled to angular momenta 0 and 2. The coupling to angular
momentum 0, [∇∇]0 = �/

√
3, corresponds to the Laplacian

operator. Furthermore, the coupling to angular momentum
2, [∇∇]2, gives the second-order, rank-2 derivative operator.
The rank-1 coupling, [∇∇]1 = 0, vanishes because the deriva-
tives commute. Similarly, in each one higher order, a rank-L
symmetric operator can be coupled with ∇ only to L − 1
and L + 1. Hence, all the nth-order powers have the form
of �(n−L)/2 multiplied by the Lth-order rank-L (stretched)
coupled operators for L = n, n − 2, . . . , (1)0. Then, up to
N3LO, one obtains the 16 different operators DnL listed in
Table I. Any arbitrary tensor formed by coupled operators ∇
can always be rewritten as a sum of operators DnL through the
repeated use of the 6j symbols.
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TABLE I. Derivative operators DnL up to N3LO as expressed
through spherical tensor representation of the operator ∇.

No. Tensor DnL Order n Rank L

1 1 0 0
2 ∇ 1 1
3 [∇∇]0 2 0
4 [∇∇]2 2 2
5 [∇∇]0∇ 3 1
6 [∇[∇∇]2]3 3 3
7 [∇∇]2

0 4 0
8 [∇∇]0[∇∇]2 4 2
9 [∇[∇[∇∇]2]3]4 4 4

10 [∇∇]2
0∇ 5 1

11 [∇∇]0[∇[∇∇]2]3 5 3
12 [∇[∇[∇[∇∇]2]3]4]5 5 5
13 [∇∇]3

0 6 0
14 [∇∇]2

0[∇∇]2 6 2
15 [∇∇]0[∇[∇[∇∇]2]3]4 6 4
16 [∇[∇[∇[∇[∇∇]2]3]4]5]6 6 6

Exactly in the same way, we define 16 different operators
KnL, which are spherical tensors built of the relative momen-
tum operators k coupled up to N3LO (i.e., for n � 6 and L � 6).
In the remainder of this section, we only discuss operators DnL;
all the results mutatis mutandis also pertain to operators KnL.

The stretched coupled operators DLL for n = L,

DLL = [∇ · · · [∇[∇∇]2]3 · · ·]L, (11)

play a central role in our derivations that follow. They cor-
respond to irreducible, symmetric, traceless Cartesian tensors
built of the derivative ∇. They have 2L + 1 tensor components
DLLM numbered by the quantum number M = −L, . . . , L,
which we most often do not show explicitly in the following.
Moreover, since terms in the EDF up to N3LO depend only
on operators DLL and KLL up to fourth order, L � 4 (see
Sec. III A), in the following we do not discuss stretched
coupled operators of fifth or sixth orders.

Equivalently, derivative operators DLL can be written in
the Cartesian representation, in which their components are
numbered by L Cartesian indices, DLL,a1...aL

, ai = x, y, z. The
order of these indices does not matter (since they are totally
symmetric tensors) and all traces vanish:∑

a

DLL,aaa3...aL
= 0. (12)

The Cartesian components DLL,a1...aL
can be calculated by

using the detracer operator defined in Sec. 5 of Ref. [27]. Up
to fourth order they read as follows:

D00 = 1, (13)

D11,a1 = ∇a1 , (14)

D22,a1a2 = ∇a1∇a2 − 1
3δa1a2�, (15)

D33,a1a2a3 = ∇a1∇a2∇a3

− 1
5�

(∇a1δa2a3 + ∇a2δa1a3 + ∇a3δa1a2

)
, (16)

D44,a1a2a3a4 = ∇a1∇a2∇a3∇a4 − 1
7�

(∇a1∇a2δa3a4

+∇a1∇a3δa2a4 + ∇a1∇a4δa2a3 + ∇a2∇a3δa1a4

+∇a2∇a4δa1a3 + ∇a3∇a4δa1a2

)
+ 1

5·7�2
(
δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3

)
.

(17)

We note here in passing that we could have equally
well used the Cartesian derivative operators with traces not
subtracted out, that is,

D00 = 1, (18)

D11,a1 = ∇a1 , (19)

D22,a1a2 = ∇a1∇a2 , (20)

D33,a1a2a3 = ∇a1∇a2∇a3 , (21)

D44,a1a2a3a4 = ∇a1∇a2∇a3∇a4 . (22)

Representations (13)–(17) and (18)–(22) are equivalent in
the sense that each operator DLL,a1...aL

is evidently a linear
combination of operators �(L−L′)/2DL′L′,a1...aL′ for L′ = L,

L − 2, . . . , (1)0.
In principle, one could replace the spherical representations

of derivative operators shown in Table I by their Cartesian
counterparts [Eqs. (13)–(17) or (18)–(22)] and work entirely
in the Cartesian representation. However, in our opinion,
the use of the spherical representation is superior and more
economical. Moreover, whenever calculation of the Carte-
sian derivatives is more suitable, we may express spherical
components of the derivative operators through the Cartesian
derivatives, as shown in Table II. An example of using the
Cartesian representation of Eqs. (18)–(22) is given in Sec. IV.

TABLE II. Spherical components of the derivative operators
DnLM expressed through the Cartesian derivatives. Expressions for
negative components can be obtained as DnL,−M = (−1)L−MD∗

nLM

[see Eqs. (B20) and (B22)].

DnLM Cartesian derivatives

D110 −i∂z

D111 i 1√
2
(∂x + i∂y)

D200
1√
3
�

D220
1√
6

(
∂2

x + ∂2
y − 2∂2

z

)
D221 (∂x + i∂y)∂z

D222 − 1
2 (∂x + i∂y)2

D330 i 1√
10

∂z

(
−3∂2

x − 3∂2
y + 2∂2

z

)

D331 i 1
2

√
3

10 (∂x + i∂y)
(
∂2

x + ∂2
y − 4∂2

z

)
D332 i 1

2

√
3(∂x + i∂y)2∂z

D333 −i 1
2
√

2
(∂x + i∂y)3

D440
1

2
√

70

(
3∂4

x + 6
(
∂2

y − 4∂2
z

)
∂2

x + 3∂4
y + 8∂4

z − 24∂2
y ∂

2
z

)

D441
1√
14

(∂x + i∂y)∂z

(
3∂2

x + 3∂2
y − 4∂2

z

)

D442 − 1
2
√

7
(∂x + i∂y)2

(
∂2

x + ∂2
y − 6∂2

z

)
D443 − 1√

2
(∂x + i∂y)3∂z

D444
1
4 (∂x + i∂y)4
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TABLE III. Local primary densities [Eq. (23)] up to N3LO built
from the scalar nonlocal density ρ(r, r ′) (v = 0). To simplify the
notation the limit of r ′ = r is not shown explicitly. Stars (�) mark
densities that enter the EDF up to N3LO. Bullets (•) mark densities
that enter the EDF up to N3LO for conserved spherical, space-
inversion, and time-reversal symmetries (see Sec. IV). The last two
columns show the T and P parities defined in Eqs. (25) and (26),
respectively. Time-even densities are shown in bold face.

No. ρnLvJ = density n L v J T P

1 � • ρ0000 = [ρ]0 0 0 0 0 1 1
2 � ρ1101 = [kρ]1 1 1 0 1 −1 −1
3 � • ρ2000 = [[kk]0ρ]0 2 0 0 0 1 1
4 � • ρ2202 = [[kk]2ρ]2 2 2 0 2 1 1
5 � ρ3101 = [[kk]0kρ]1 3 1 0 1 −1 −1
6 � ρ3303 = [[k[kk]2]3ρ]3 3 3 0 3 −1 −1
7 � • ρ4000 = [[kk]2

0ρ]0 4 0 0 0 1 1
8 � • ρ4202 = [[kk]0[kk]2ρ]2 4 2 0 2 1 1
9 ρ4404 = [[k[k[kk]2]3]4ρ]4 4 4 0 4 1 1

10 � ρ5101 = [[kk]2
0kρ]1 5 1 0 1 −1 −1

11 ρ5303 = [[kk]0[k[kk]2]3ρ]3 5 3 0 3 −1 −1
12 ρ5505 = [[k[k[k[kk]2]3]4]5ρ]5 5 5 0 5 −1 −1
13 � • ρ6000 = [[kk]3

0ρ]0 6 0 0 0 1 1
14 ρ6202 = [[kk]2

0[kk]2ρ]2 6 2 0 2 1 1
15 ρ6404 = [[kk]0[k[k[kk]2]3]4ρ]4 6 4 0 4 1 1
16 ρ6606 = [[k[k[k[k[kk]2]3]4]5]6ρ]6 6 6 0 6 1 1

C. Local densities

Local densities are formed by acting several times on
the scalar and vector nonlocal densities with the relative
momentum operator k and taking the limit of r ′ = r . By using
the spherical representation, the possible coupled k tensors
[Eq. (10)] (up to sixth order in derivatives) KnL are those
given in Table I (where ∇ is replaced with k).

Acting with KnL on the scalar nonlocal density ρ(r, r ′)
gives 16 different local densities up to N3LO (one for every
term in Table I). These are listed in Table III. When acting
with KnL on the vector nonlocal densities s(r, r ′), one has
to construct all possible ways of coupling the k tensors with
the vector density. Obviously, each of the 4 scalar (L = 0)
derivative operators gives one local density, and each of the
12 nonscalar (L > 0) derivative operators gives three local
densities. Altogether, from the vector density one obtains 40
local densities up to N3LO. These are listed in Table IV.

Finally, all local densities can be denoted by four integers
nLvJ as

ρnLvJ (r) = {[KnLρv(r, r ′)]J }r ′=r , (23)

where the nth-order and rank-L relative derivative operator
KnL acts on the scalar (v = 0) or vector (v = 1) nonlocal
density, and ranks L and v are then vector coupled to J . We call
these local densities primary densities. The tensor components
corresponding to the total rank J are not explicitly shown.

One can also act on each of the local densities with
derivative operators DmI of Table I, and then couple ranks
I and J to the total rank Q, that is,

ρmI,nLvJ,Q(r) = [DmIρnLvJ (r)]Q. (24)

TABLE IV. Same as in Table III but for densities built from the
vector nonlocal density s(r, r ′) (v = 1).

No. ρnLvJ = density n L v J T P

17 � ρ0011 = [s]1 0 0 1 1 −1 1
18 � ρ1110 = [ks]0 1 1 1 0 1 −1
19 � • ρ1111 = [ks]1 1 1 1 1 1 −1
20 � ρ1112 = [ks]2 1 1 1 2 1 −1
21 � ρ2011 = [[kk]0s]1 2 0 1 1 −1 1
22 � ρ2211 = [[kk]2s]1 2 2 1 1 −1 1
23 � ρ2212 = [[kk]2s]2 2 2 1 2 −1 1
24 � ρ2213 = [[kk]2s]3 2 2 1 3 −1 1
25 � ρ3110 = [[kk]0ks]0 3 1 1 0 1 −1
26 � • ρ3111 = [[kk]0ks]1 3 1 1 1 1 −1
27 � ρ3112 = [[kk]0ks]2 3 1 1 2 1 −1
28 � ρ3312 = [[k[kk]2]3s]2 3 3 1 2 1 −1
29 � • ρ3313 = [[k[kk]2]3s]3 3 3 1 3 1 −1
30 � ρ3314 = [[k[kk]2]3s]4 3 3 1 4 1 −1
31 � ρ4011 = [[kk]2

0s]1 4 0 1 1 −1 1
32 � ρ4211 = [[kk]0[kk]2s]1 4 2 1 1 −1 1
33 � ρ4212 = [[kk]0[kk]2s]2 4 2 1 2 −1 1
34 � ρ4213 = [[kk]0[kk]2s]3 4 2 1 3 −1 1
35 � ρ4413 = [[k[k[kk]2]3]4s]3 4 4 1 3 −1 1
36 ρ4414 = [[k[k[kk]2]3]4s]4 4 4 1 4 −1 1
37 ρ4415 = [[k[k[kk]2]3]4s]5 4 4 1 5 −1 1
38 � ρ5110 = [[kk]2

0ks]0 5 1 1 0 1 −1
39 � • ρ5111 = [[kk]2

0ks]1 5 1 1 1 1 −1
40 � ρ5112 = [[kk]2

0ks]2 5 1 1 2 1 −1
41 � ρ5312 = [[kk]0[k[kk]2]3s]2 5 3 1 2 1 −1
42 ρ5313 = [[kk]0[k[kk]2]3s]3 5 3 1 3 1 −1
43 ρ5314 = [[kk]0[k[kk]2]3s]4 5 3 1 4 1 −1
44 ρ5514 = [[k[k[k[kk]2]3]4]5s]4 5 5 1 4 1 −1
45 ρ5515 = [[k[k[k[kk]2]3]4]5s]5 5 5 1 5 1 −1
46 ρ5516 = [[k[k[k[kk]2]3]4]5s]6 5 5 1 6 1 −1
47 � ρ6011 = [[kk]3

0s]1 6 0 1 1 −1 1
48 � ρ6211 = [[kk]2

0[kk]2s]1 6 2 1 1 −1 1
49 ρ6212 = [[kk]2

0[kk]2s]2 6 2 1 2 −1 1
50 ρ6213 = [[kk]2

0[kk]2s]3 6 2 1 3 −1 1
51 ρ6413 = [[kk]0[k[k[kk]2]3]4s]3 6 4 1 3 −1 1
52 ρ6414 = [[kk]0[k[k[kk]2]3]4s]4 6 4 1 4 −1 1
53 ρ6415 = [[kk]0[k[k[kk]2]3]4s]5 6 4 1 5 −1 1
54 ρ6615 = [[k[k[k[k[kk]2]3]4]5]6s]5 6 6 1 5 −1 1
55 ρ6616 = [[k[k[k[k[kk]2]3]4]5]6s]6 6 6 1 6 −1 1
56 ρ6617 = [[k[k[k[k[kk]2]3]4]5]6s]7 6 6 1 7 −1 1

For m > 0, we call these local densities secondary densities.
We do not explicitly list them, because they can be obtained in a
straightforward way from the primary densities corresponding
to m = 0, ρnLvJ = ρ00,InLvJ,J , which are listed in Tables III
and IV.

In Tables III and IV, for completeness we also show the
time-reversal (T ) and space-inversion (P ) parities defined as

T = (−1)n+v, (25)

P = (−1)n. (26)

These definitions are based on the analysis of symmetry
properties, which we present in Appendix A. To better
visualize the time-reversal properties of the local densities,
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in Tables III and IV the time-even densities are shown in bold
face.

These local densities we constructed are complex. Tak-
ing the complex conjugations gives relations derived in
Appendix B:

ρ∗
mI,nLvJ,Q,M = (−1)Q−MρmI,nLvJ,Q,−M, (27)

where the tensor components, denoted M , are shown explicitly.
These relations allow for expressing positive tensor compo-
nents through negative ones or vice versa. Therefore, complete
information is contained in non-negative or nonpositive tensor
components only. The M = 0 components are either real (for
even Q) or imaginary (for odd Q), and hence 2Q + 1 real
functions always suffice to describe a given local density of
rank Q. Moreover, all scalar densities are real, which was the
basis of choosing this particular phase convention, as described
in Appendix B.

III. CONSTRUCTION OF THE ENERGY DENSITY

A. Terms in the energy density

Terms in the EDF we construct here are required to be
quadratic in densities, invariant with respect to time reversal
(Sec. A1), and covariant with respect to space inversion and
rotations (Sec. A2). All terms up to the N3LO in derivatives
fulfilling these restrictions are constructed in the following.

Using the notation of Eq. (24), we can write a general term
in the energy density in the form

T
m′I ′,n′L′v′J ′
mI,nLvJ,Q (r) = [ρm′I ′,n′L′v′J ′,Q(r)ρmI,nLvJ,Q(r)]0, (28)

where both densities must have the same rank Q to be coupled
to a scalar. Moreover, their time-reversal and space-inversion
parities (T and P ) must be the same. Again, at N3LO only
terms with m′ + n′ + m + n � 6 are allowed. Then, the total
energy density reads

H(r) =
∑

m′I ′ ,n′L′v′J ′
mI,nLvJ,Q

C
m′I ′,n′L′v′J ′
mI,nLvJ,Q T

m′I ′,n′L′v′J ′
mI,nLvJ,Q (r), (29)

where C
m′I ′,n′L′v′J ′
mI,nLvJ,Q are coupling constants and the summation

runs over all allowed indices.
Had we considered the case of coupling constants de-

pending on density, all terms in Eq. (28) would have been
independent of one another (up to a possible exchange of the
two densities). Table V lists the numbers of such independent
terms, and they are also plotted in Fig. 1.

In the present study, we concentrate on the case of density-
independent coupling constants, in which case one can perform
integrations by parts, so that the derivative operators Dm′I ′ are
transferred from one density to the other. That this can always
be done is obvious by the fact that the coupled derivative
operators Dm′I ′ can always be expressed as sums of products of
uncoupled derivatives ∇1µ or ∇a . As a result of the integration
by parts, the integral in Eq. (28) can now be written as a sum
of terms, where each term has the form

T n′L′v′J ′
mI,nLvJ (r) = [ρn′L′v′J ′ (r)[DmIρnLvJ (r)]J ′]0, (30)

TABLE V. Number of terms defined in Eq. (28) of different
orders in the EDF up to N3LO. The numbers of terms depending
on the time-even and time-odd densities are given separately. The
last two columns give the number of terms when the Galilean or
gauge invariance is assumed, respectively (see Sec. III B). To take
into account both isospin channels, the number of terms should be
multiplied by a factor of 2.

Order T even T odd Total Galilean Gauge

0 1 1 2 2 2
2 8 10 18 12 12
4 53 61 114 45 29
6 250 274 524 129 54

N3LO 312 346 658 188 97

where ranks I and J are coupled to J ′. Here, at N3LO
(i) only terms with n′ + m + n � 6 are allowed, (ii) both
densities must have the same time-reversal parity T , and (iii)
their space-inversion parities must differ by factors (−1)I .
Finally, to avoid double-counting one takes only terms with
n′ < n, and for n′ = n only those with L′ < L, and for L′ = L

only those with v′ < v, and for v′ = v only those with J ′ � J .
Then, the total energy density reads

H(r) =
∑

n′L′v′J ′
mI,nLvJ,J ′

Cn′L′v′J ′
mI,nLvJ T n′L′v′J ′

mI,nLvJ (r), (31)

where Cn′L′v′J ′
mI,nLvJ are coupling constants and the summation

again runs over all allowed indices. As we did for the
local densities before, to better visualize the time-reversal
characteristics of terms in the EDF, the coupling constants
Cn′L′v′J ′

mI,nLvJ corresponding to terms that depend on time-even
densities are shown in bold face.

Based on the results obtained in Secs. A1 and A2, and on
Eqs. (25) and (26), we see that time-reversal invariance and
space-inversion covariance require that

(−1)n
′+v′+n+v = 1, (32)

(−1)n
′+m+n = 1, (33)
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FIG. 1. (Color online) Number of terms in Eqs. (28) and (30)
shown in Tables V and VI, respectively, plotted on a logarithmic
scale as a function of the order in derivatives.
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TABLE VI. Same as in Table V, but for number of terms defined
in Eq. (30).

Order T even T odd Total Galilean Gauge

0 1 1 2 2 2
2 6 6 12 7 7
4 22 23 45 15 6
6 64 65 129 26 6

N3LO 93 95 188 50 21

respectively. This means that integers v′ + v, n′ + n, and m

must be simultaneously either even or odd. The numbers of
all such allowed terms are given in Table VI and are plotted in
Fig. 1. The space-inversion covariance [Eq. (33)] requires that
for all terms the total orders in derivatives are even numbers,
which defines our classification of the EDF up to LO (0), NLO
(2), NNLO (4), and N3LO (6).

In Appendix B, we present terms in the EDF up to NLO
(i.e., for zero and second orders; see Table XXII). The EDF at
NLO is exactly equivalent to the standard Skyrme functional
[28,29], generalized to include all time-odd terms [24,25,30].
In both representations the functional depends, in general, on
14 coupling constants, and both sets are related by simple
expressions given in Eqs. (B6)–(B19).

In Tables VII–XVIII, we list all 45 and 129 terms in the
EDF that are of fourth and sixth order, respectively. Together
with 14 terms at NLO, listed in Table XXII, this constitutes
the full list of 188 terms in the EDF at N3LO.

After the complete list of terms in the EDF at N3LO is
constructed, one can check that not all of the local densities
listed in Tables III and IV appear in the final EDF at N3LO.
This is because it is not possible to couple all these densities to
scalars, and simultaneously fulfill the conditions of Eqs. (32)
and (33), without obtaining more than total sixth order in
derivatives. It turns out that out of the 56 local densities at
N3LO, which are listed in Tables III and IV, only 35 occur in
the final EDF at N3LO. In Tables III and IV such densities
are marked with stars (�). Table XIX gives their numbers
determined separately at each order.

TABLE VII. Terms in the EDF [Eq. (30)] that are of fourth order,
depend on time-even densities, and are built from the scalar nonlocal
density ρ(r, r ′). Coupling constants corresponding to terms that
depend on time-even densities are shown in bold face. Bullets
(•) mark coupling constants corresponding to terms that do not
vanish for conserved spherical, space-inversion, and time-reversal
symmetries (see Sec. IV).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

1 • C0000
40,0000 [ρ]0 [∇∇]2

0 [ρ]0

2 • C0000
20,2000 [ρ]0 [∇∇]0 [[kk]0ρ]0

3 • C0000
22,2202 [ρ]0 [∇∇]2 [[kk]2ρ]2

4 • C0000
00,4000 [ρ]0 1 [[kk]2

0ρ]0

5 • C2000
00,2000 [[kk]0ρ]0 1 [[kk]0ρ]0

6 • C2202
00,2202 [[kk]2ρ]2 1 [[kk]2ρ]2

TABLE VIII. Same as in Table VII but for terms that are built
from the vector nonlocal density s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

7 C1110
20,1110 [ks]0 [∇∇]0 [ks]0

8 C1110
22,1112 [ks]0 [∇∇]2 [ks]2

9 C1110
00,3110 [ks]0 1 [[kk]0ks]0

10 • C1111
20,1111 [ks]1 [∇∇]0 [ks]1

11 • C1111
22,1111 [ks]1 [∇∇]2 [ks]1

12 C1111
22,1112 [ks]1 [∇∇]2 [ks]2

13 • C1111
00,3111 [ks]1 1 [[kk]0ks]1

14 C1112
20,1112 [ks]2 [∇∇]0 [ks]2

15 C1112
22,1112 [ks]2 [∇∇]2 [ks]2

16 C1112
00,3112 [ks]2 1 [[kk]0ks]2

17 C1112
00,3312 [ks]2 1 [[k[kk]2]3s]2

B. Galilean and gauge invariance

In the previous Sec. III A, the functional has been required
to be consistent with time reversal invariance, invariance under
space reflections, and rotational invariance. These constraints
arise from symmetries of the NN interaction (see, e.g.,
Refs. [31,32]). Our previous derivations were much easier
to perform in a general form, without imposing any other
additional symmetry conditions. In this section, we treat such
additional constraints coming from imposing Galilean and
gauge invariance.

The assumption of Galilean instead of Lorentz invariance
goes hand in hand with using the Schrödinger equation as
a starting point and relies on the assumption that relativistic
effects are negligible. This symmetry ensures that the collec-
tive translational mass, calculated within the time-dependent
HF or random-phase approximations, is correctly equal to
the total mass, M = Am. Therefore, in principle, Galilean
invariance should always be imposed. However, in many
phenomenological approaches, such as the noninteracting or
interacting shell model, Galilean symmetry is not considered,
because the translational motion is not within the scope of such
models. The question of whether Galilean symmetry must be
imposed in phenomenological models is not yet resolved, and
in the present study we keep this question open.

For a local interaction, v(r ′
1, r ′

2, r1, r2) = δ(r ′
1 −

r1)δ(r ′
2 − r2)v(r1, r2), the HF interaction energy is invariant

with respect to the local gauge [33]. Therefore, for the total

TABLE IX. Same as in Table VII but for terms that are built
from the scalar nonlocal density ρ(r, r ′) and vector nonlocal density
s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

18 • C0000
31,1111 [ρ]0 [∇∇]0∇ [ks]1

19 • C0000
11,3111 [ρ]0 ∇ [[kk]0ks]1

20 • C2000
11,1111 [[kk]0ρ]0 ∇ [ks]1

21 • C2202
11,1111 [[kk]2ρ]2 ∇ [ks]1

22 C2202
11,1112 [[kk]2ρ]2 ∇ [ks]2
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TABLE X. Terms in the EDF [Eq. (30)] that are of fourth order,
depend on time-odd densities, and are built from the scalar nonlocal
density ρ(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

23 C1101
20,1101 [kρ]1 [∇∇]0 [kρ]1

24 C1101
22,1101 [kρ]1 [∇∇]2 [kρ]1

25 C1101
00,3101 [kρ]1 1 [[kk]0kρ]1

energy (1) obtained within the EDF method, one may also
consider constraints resulting from assuming local gauge
invariance. As mentioned, this symmetry is only fulfilled
when the forces involved are local. An example of a local
approximation is the well-known local one-pion-exchange
(OPE) potential, which is only an approximate representation
of the correct nonlocal OPE Feynman amplitude [34]. This
approximation is good as long as the relative momenta of
interacting particles are about the same in the initial and
final states (see Fig. 10 in Ref. [34]). Some of the fitted NN

potentials such as the Argonne V18, Nijm-II, and Reid93
use this local approximation whereas others (CD-Bonn) use
the full nonlocal OPE amplitude [34]. The most important
nonlocal term is the two-body spin-orbit interaction [32],
which violates the assumption of gauge invariance. However,
in this case a gauge-invariant spin-orbit term (used in the
Skyrme and Gogny forces) can be obtained in the short-range
limit [32,33,35].

For the EDF derived in this work it is, however, the
symmetries of effective forces rather than bare forces that
should be considered. One of the methods to obtain an
effective NN force from the bare NN force is the unitary
correlation operator method (UCOM) [36]. The use of the
UCOM, however, leads to a nonlocal effective interaction even
if the bare interaction would have been a local one.

TABLE XI. Same as in Table X but for terms that are built from
the vector nonlocal density s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

26 C0011
40,0011 [s]1 [∇∇]2

0 [s]1

27 C0011
42,0011 [s]1 [∇∇]0[∇∇]2 [s]1

28 C0011
20,2011 [s]1 [∇∇]0 [[kk]0s]1

29 C0011
22,2011 [s]1 [∇∇]2 [[kk]0s]1

30 C0011
20,2211 [s]1 [∇∇]0 [[kk]2s]1

31 C0011
22,2211 [s]1 [∇∇]2 [[kk]2s]1

32 C0011
22,2212 [s]1 [∇∇]2 [[kk]2s]2

33 C0011
22,2213 [s]1 [∇∇]2 [[kk]2s]3

34 C0011
00,4011 [s]1 1 [[kk]2

0s]1

35 C0011
00,4211 [s]1 1 [[kk]0[kk]2s]1

36 C2011
00,2011 [[kk]0s]1 1 [[kk]0s]1

37 C2011
00,2211 [[kk]0s]1 1 [[kk]2s]1

38 C2211
00,2211 [[kk]2s]1 1 [[kk]2s]1

39 C2212
00,2212 [[kk]2s]2 1 [[kk]2s]2

40 C2213
00,2213 [[kk]2s]3 1 [[kk]2s]3

TABLE XII. Same as in Table X but for terms that are built
from the scalar nonlocal density ρ(r, r ′) and vector nonlocal density
s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

41 C1101
31,0011 [kρ]1 [∇∇]0∇ [s]1

42 C1101
11,2011 [kρ]1 ∇ [[kk]0s]1

43 C1101
11,2211 [kρ]1 ∇ [[kk]2s]1

44 C1101
11,2212 [kρ]1 ∇ [[kk]2s]2

45 C3101
11,0011 [[kk]0kρ]1 ∇ [s]1

But rather than discussing to which extent gauge symmetry
is conserved or broken in nuclei we aim to provide a theoretical
framework where different choices can be accommodated.
Because several successful phenomenological forces (e.g.,
Skyrme and Gogny [33]) are invariant under the gauge
transformation, this symmetry constitutes a natural starting
point in the search of improved EDFs. To which extent gauge
symmetry is violated for effective renormalized interactions is
a question that can be investigated by comparing models using
preserved and broken symmetries (see, e.g., Ref. [37]).

1. Local gauge transformations of the nonlocal densities

The gauge-transformed nonlocal densities read [24,25,33]

ρ ′(r, r ′) = ei[φ(r)−φ(r ′)]ρ(r, r ′), (34)

s′(r, r ′) = ei[φ(r)−φ(r ′)]s(r, r ′). (35)

Since the local gauge transformations form a U(1) group,
invariance with respect to transformations that are of the first

TABLE XIII. Terms in the EDF [Eq. (30)] that are of sixth order,
depend on time-even densities, and are built from the scalar nonlocal
density ρ(r, r ′). Coupling constants corresponding to terms that
depend on time-even densities are shown in bold face. Bullets (•)
mark coupling constants corresponding to terms that do not vanish for
conserved spherical, space-inversion, and time-reversal symmetries
(see Sec. IV).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

1 • C0000
60,0000 [ρ]0 [∇∇]3

0 [ρ]0

2 • C0000
40,2000 [ρ]0 [∇∇]2

0 [[kk]0ρ]0

3 • C0000
42,2202 [ρ]0 [∇∇]0[∇∇]2 [[kk]2ρ]2

4 • C0000
20,4000 [ρ]0 [∇∇]0 [[kk]2

0ρ]0

5 • C0000
22,4202 [ρ]0 [∇∇]2 [[kk]0[kk]2ρ]2

6 • C0000
00,6000 [ρ]0 1 [[kk]3

0ρ]0

7 • C2000
20,2000 [[kk]0ρ]0 [∇∇]0 [[kk]0ρ]0

8 • C2000
22,2202 [[kk]0ρ]0 [∇∇]2 [[kk]2ρ]2

9 • C2000
00,4000 [[kk]0ρ]0 1 [[kk]2

0ρ]0

10 • C2202
20,2202 [[kk]2ρ]2 [∇∇]0 [[kk]2ρ]2

11 • C2202
22,2202 [[kk]2ρ]2 [∇∇]2 [[kk]2ρ]2

12 • C2202
00,4202 [[kk]2ρ]2 1 [[kk]0[kk]2ρ]2
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TABLE XIV. Same as in Table XIII but for terms that are built
from the vector nonlocal density s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

13 C1110
40,1110 [ks]0 [∇∇]2

0 [ks]0

14 C1110
42,1112 [ks]0 [∇∇]0[∇∇]2 [ks]2

15 C1110
20,3110 [ks]0 [∇∇]0 [[kk]0ks]0

16 C1110
22,3112 [ks]0 [∇∇]2 [[kk]0ks]2

17 C1110
22,3312 [ks]0 [∇∇]2 [[k[kk]2]3s]2

18 C1110
00,5110 [ks]0 1 [[kk]2

0ks]0

19 • C1111
40,1111 [ks]1 [∇∇]2

0 [ks]1

20 • C1111
42,1111 [ks]1 [∇∇]0[∇∇]2 [ks]1

21 C1111
42,1112 [ks]1 [∇∇]0[∇∇]2 [ks]2

22 • C1111
20,3111 [ks]1 [∇∇]0 [[kk]0ks]1

23 • C1111
22,3111 [ks]1 [∇∇]2 [[kk]0ks]1

24 C1111
22,3112 [ks]1 [∇∇]2 [[kk]0ks]2

25 C1111
22,3312 [ks]1 [∇∇]2 [[k[kk]2]3s]2

26 • C1111
22,3313 [ks]1 [∇∇]2 [[k[kk]2]3s]3

27 • C1111
00,5111 [ks]1 1 [[kk]2

0ks]1

28 C1112
40,1112 [ks]2 [∇∇]2

0 [ks]2

29 C1112
42,1112 [ks]2 [∇∇]0[∇∇]2 [ks]2

30 C1112
44,1112 [ks]2 [∇[∇[∇∇]2]3]4 [ks]2

31 C1112
22,3110 [ks]2 [∇∇]2 [[kk]0ks]0

32 C1112
22,3111 [ks]2 [∇∇]2 [[kk]0ks]1

33 C1112
20,3112 [ks]2 [∇∇]0 [[kk]0ks]2

34 C1112
22,3112 [ks]2 [∇∇]2 [[kk]0ks]2

35 C1112
20,3312 [ks]2 [∇∇]0 [[k[kk]2]3s]2

36 C1112
22,3312 [ks]2 [∇∇]2 [[k[kk]2]3s]2

37 C1112
22,3313 [ks]2 [∇∇]2 [[k[kk]2]3s]3

38 C1112
22,3314 [ks]2 [∇∇]2 [[k[kk]2]3s]4

39 C1112
00,5112 [ks]2 1 [[kk]2

0ks]2

40 C1112
00,5312 [ks]2 1 [[kk]0[k[kk]2]3s]2

41 C3110
00,3110 [[kk]0ks]0 1 [[kk]0ks]0

42 • C3111
00,3111 [[kk]0ks]1 1 [[kk]0ks]1

43 C3112
00,3112 [[kk]0ks]2 1 [[kk]0ks]2

44 C3112
00,3312 [[kk]0ks]2 1 [[k[kk]2]3s]2

45 C3312
00,3312 [[k[kk]2]3s]2 1 [[k[kk]2]3s]2

46 • C3313
00,3313 [[k[kk]2]3s]3 1 [[k[kk]2]3s]3

47 C3314
00,3314 [[k[kk]2]3s]4 1 [[k[kk]2]3s]4

order in gauge angles, [1 + iG]ρ(r, r ′), where

G(r, r ′) = φ(r) − φ(r ′), (36)

is enough to ensure full gauge invariance. By Taylor-expanding
the exponential functions in Eqs. (34) and (35) after they are
inserted in the functional one may, of course, also prove this
fact explicitly.

One specific type of gauge transformation is the Galilean
transformation, for which the gauge angles depend linearly
on positions [i.e., G(r, r ′) = p · (r − r ′)/h̄], and which cor-
responds to a transformation to a reference frame that moves
with velocity p/m. For this transformation, only first-order

TABLE XV. Same as in Table XIII but for terms that are built
from the scalar nonlocal density ρ(r, r ′) and vector nonlocal density
s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

48 • C0000
51,1111 [ρ]0 [∇∇]2

0∇ [ks]1

49 • C0000
31,3111 [ρ]0 [∇∇]0∇ [[kk]0ks]1

50 • C0000
33,3313 [ρ]0 [∇[∇∇]2]3 [[k[kk]2]3s]3

51 • C0000
11,5111 [ρ]0 ∇ [[kk]2

0ks]1

52 • C2000
31,1111 [[kk]0ρ]0 [∇∇]0∇ [ks]1

53 • C2000
11,3111 [[kk]0ρ]0 ∇ [[kk]0ks]1

54 • C2202
31,1111 [[kk]2ρ]2 [∇∇]0∇ [ks]1

55 • C2202
33,1111 [[kk]2ρ]2 [∇[∇∇]2]3 [ks]1

56 C2202
31,1112 [[kk]2ρ]2 [∇∇]0∇ [ks]2

57 C2202
33,1112 [[kk]2ρ]2 [∇[∇∇]2]3 [ks]2

58 • C2202
11,3111 [[kk]2ρ]2 ∇ [[kk]0ks]1

59 C2202
11,3112 [[kk]2ρ]2 ∇ [[kk]0ks]2

60 C2202
11,3312 [[kk]2ρ]2 ∇ [[k[kk]2]3s]2

61 • C2202
11,3313 [[kk]2ρ]2 ∇ [[k[kk]2]3s]3

62 • C4000
11,1111 [[kk]2

0ρ]0 ∇ [ks]1

63 • C4202
11,1111 [[kk]0[kk]2ρ]2 ∇ [ks]1

64 C4202
11,1112 [[kk]0[kk]2ρ]2 ∇ [ks]2

derivatives of G survive, which makes Galilean invariance
less restrictive than the full gauge invariance.

2. Local gauge transformations of the local densities

Let indices β, γ, . . . = 1, . . . , 35 label primary local den-
sities ρnLvJ [Eq. (23)] listed with stars (�) in Tables III
and IV, which enter the EDF at N3LO, as shown in Eqs. (30)
and (31). Using this notation, we can write the linearized gauge
transformation of one of the local densities as

ρ ′
β(r) = {[KnL(1 + iG(r, r ′))ρv(r, r ′)]J }r=r ′

= ρβ(r) + {[KnLiG(r, r ′)ρv(r, r ′)]J }r=r ′

= ρβ(r) + ρG
β (r), (37)

TABLE XVI. Terms in the EDF [Eq. (30)] that are of sixth order,
depend on time-odd densities, and are built from the scalar nonlocal
density ρ(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

65 C1101
40,1101 [kρ]1 [∇∇]2

0 [kρ]1

66 C1101
42,1101 [kρ]1 [∇∇]0[∇∇]2 [kρ]1

67 C1101
20,3101 [kρ]1 [∇∇]0 [[kk]0kρ]1

68 C1101
22,3101 [kρ]1 [∇∇]2 [[kk]0kρ]1

69 C1101
22,3303 [kρ]1 [∇∇]2 [[k[kk]2]3ρ]3

70 C1101
00,5101 [kρ]1 1 [[kk]2

0kρ]1

71 C3101
00,3101 [[kk]0kρ]1 1 [[kk]0kρ]1

72 C3303
00,3303 [[k[kk]2]3ρ]3 1 [[k[kk]2]3ρ]3
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TABLE XVII. Same as in Table XVI but for terms that are built
from the vector nonlocal density s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

73 C0011
60,0011 [s]1 [∇∇]3

0 [s]1

74 C0011
62,0011 [s]1 [∇∇]2

0[∇∇]2 [s]1

75 C0011
40,2011 [s]1 [∇∇]2

0 [[kk]0s]1

76 C0011
42,2011 [s]1 [∇∇]0[∇∇]2 [[kk]0s]1

77 C0011
40,2211 [s]1 [∇∇]2

0 [[kk]2s]1

78 C0011
42,2211 [s]1 [∇∇]0[∇∇]2 [[kk]2s]1

79 C0011
42,2212 [s]1 [∇∇]0[∇∇]2 [[kk]2s]2

80 C0011
42,2213 [s]1 [∇∇]0[∇∇]2 [[kk]2s]3

81 C0011
44,2213 [s]1 [∇[∇[∇∇]2]3]4 [[kk]2s]3

82 C0011
20,4011 [s]1 [∇∇]0 [[kk]2

0s]1

83 C0011
22,4011 [s]1 [∇∇]2 [[kk]2

0s]1

84 C0011
20,4211 [s]1 [∇∇]0 [[kk]0[kk]2s]1

85 C0011
22,4211 [s]1 [∇∇]2 [[kk]0[kk]2s]1

86 C0011
22,4212 [s]1 [∇∇]2 [[kk]0[kk]2s]2

87 C0011
22,4213 [s]1 [∇∇]2 [[kk]0[kk]2s]3

88 C0011
22,4413 [s]1 [∇∇]2 [[k[k[kk]2]3]4s]3

89 C0011
00,6011 [s]1 1 [[kk]3

0s]1

90 C0011
00,6211 [s]1 1 [[kk]2

0[kk]2s]1

91 C2011
20,2011 [[kk]0s]1 [∇∇]0 [[kk]0s]1

92 C2011
22,2011 [[kk]0s]1 [∇∇]2 [[kk]0s]1

93 C2011
20,2211 [[kk]0s]1 [∇∇]0 [[kk]2s]1

94 C2011
22,2211 [[kk]0s]1 [∇∇]2 [[kk]2s]1

95 C2011
22,2212 [[kk]0s]1 [∇∇]2 [[kk]2s]2

96 C2011
22,2213 [[kk]0s]1 [∇∇]2 [[kk]2s]3

97 C2011
00,4011 [[kk]0s]1 1 [[kk]2

0s]1

98 C2011
00,4211 [[kk]0s]1 1 [[kk]0[kk]2s]1

99 C2211
20,2211 [[kk]2s]1 [∇∇]0 [[kk]2s]1

100 C2211
22,2211 [[kk]2s]1 [∇∇]2 [[kk]2s]1

101 C2211
22,2212 [[kk]2s]1 [∇∇]2 [[kk]2s]2

102 C2211
22,2213 [[kk]2s]1 [∇∇]2 [[kk]2s]3

103 C2211
00,4011 [[kk]2s]1 1 [[kk]2

0s]1

104 C2211
00,4211 [[kk]2s]1 1 [[kk]0[kk]2s]1

105 C2212
20,2212 [[kk]2s]2 [∇∇]0 [[kk]2s]2

106 C2212
22,2212 [[kk]2s]2 [∇∇]2 [[kk]2s]2

107 C2212
22,2213 [[kk]2s]2 [∇∇]2 [[kk]2s]3

108 C2212
00,4212 [[kk]2s]2 1 [[kk]0[kk]2s]2

109 C2213
20,2213 [[kk]2s]3 [∇∇]0 [[kk]2s]3

110 C2213
22,2213 [[kk]2s]3 [∇∇]2 [[kk]2s]3

111 C2213
00,4213 [[kk]2s]3 1 [[kk]0[kk]2s]3

112 C2213
00,4413 [[kk]2s]3 1 [[k[k[kk]2]3]4s]3

where the first term is the untransformed local density and the
second term is the part affected by the gauge transformation.

As an illustration, let us begin by considering the simpler
case of Galilean transformation, and look at the term with
n = 2, where only two relative momentum operators k appear.
Operator k can be written as kρ + kG, with the first term acting
only on ρv(r, r ′) and the second term acting only on G(r, r ′).

TABLE XVIII. Same as in Table XVI but for terms that are built
from the scalar nonlocal density ρ(r, r ′) and vector nonlocal density
s(r, r ′).

No. Cn′L′v′J ′
mI,nLvJ ρn′L′v′J ′ DmI ρnLvJ

113 C1101
51,0011 [kρ]1 [∇∇]2

0∇ [s]1

114 C1101
31,2011 [kρ]1 [∇∇]0∇ [[kk]0s]1

115 C1101
31,2211 [kρ]1 [∇∇]0∇ [[kk]2s]1

116 C1101
31,2212 [kρ]1 [∇∇]0∇ [[kk]2s]2

117 C1101
33,2212 [kρ]1 [∇[∇∇]2]3 [[kk]2s]2

118 C1101
33,2213 [kρ]1 [∇[∇∇]2]3 [[kk]2s]3

119 C1101
11,4011 [kρ]1 ∇ [[kk]2

0s]1

120 C1101
11,4211 [kρ]1 ∇ [[kk]0[kk]2s]1

121 C1101
11,4212 [kρ]1 ∇ [[kk]0[kk]2s]2

122 C3101
31,0011 [[kk]0kρ]1 [∇∇]0∇ [s]1

123 C3101
11,2011 [[kk]0kρ]1 ∇ [[kk]0s]1

124 C3101
11,2211 [[kk]0kρ]1 ∇ [[kk]2s]1

125 C3101
11,2212 [[kk]0kρ]1 ∇ [[kk]2s]2

126 C3303
33,0011 [[k[kk]2]3ρ]3 [∇[∇∇]2]3 [s]1

127 C3303
11,2212 [[k[kk]2]3ρ]3 ∇ [[kk]2s]2

128 C3303
11,2213 [[k[kk]2]3ρ]3 ∇ [[kk]2s]3

129 C5101
11,0011 [[kk]2

0kρ]1 ∇ [s]1

Then we have

K2L = [kk]L = [kρkρ]L + 2[kρkG]L + [kGkG]L. (38)

When this is inserted into the expression for ρG
β , the last

term can be dropped since only the first-order derivatives
of G(r, r ′) survive for the Galilean transformation, and the
first term disappears when one takes the limit of r = r ′ since
G(r, r) = 0. Thus in this case we obtain

ρG
β (r) = i{2[[kρkG]lG(r, r ′)ρv(r, r ′)]J , }r=r ′

= i
∑
J ′

cJ ′ [{[kρρv]J ′ }r=r ′(∇φ)(r)]J , (39)

TABLE XIX. Number of local densities ρnLvJ [Eq. (23)] of
different orders, which enter into the EDF up to N3LO. The number
of local densities constructed from the scalar ρ(r, r ′) or vector
s(r, r ′) nonlocal densities and the number of time-even and time-odd
local densities are given separately. In Tables III and IV these
densities are marked with stars (�).

Order From ρ From s T even T odd Total

0 1 1 1 1 2

1 1 3 3 1 4

2 2 4 2 4 6

3 2 6 6 2 8

4 2 5 2 5 7

5 1 4 4 1 5

6 1 2 1 2 3

Total 10 25 19 16 35
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where the second equation results from the vector recoupling.
[Note that G(r, r ′) is a scalar and (∇φ)(r) is a vector.] The cJ ′

are the ensuing numerical coefficients.
This example illustrates the main features of the derivation,

namely, (i) for the Galilean transformations only terms with
first-order derivatives of G(r, r ′) occur in the final expression
for ρG

β , (ii) local densities appearing in the sum are of one
order less in derivatives than the density being transformed,
and (iii) the tensor order is preserved so that a local density
is transformed into a sum of densities that can couple with a
vector to the same tensor order. This leads to the ansatz for the
Galilean transformation,

ρG
β (r) = i

∑
γ

c(β, γ )[ργ (r)(∇φ)(r)]J , (40)

where c(β, γ ) are numerical coefficients. Similarly, for the full
gauge transformation the corresponding ansatz reads

ρG
β (r) = i

∑
γmI

cmI (β, γ )[ργ (r)[DmIφ]I (r)]J . (41)

In both cases, the numerical coefficients can be found by using
the method outlined here, combined with a repeated use of the
6j symbols.

However, instead of using this method, it turned out to
be more efficient to proceed in another way. First, by using
symbolic programming [38], we constructed the transformed
densities ρG

β (r) explicitly in terms of derivatives of the
density matrices and the gauge angle. Then, from the resulting
expression the ansatz [Eq. (40) or (41)] was subtracted, which
gave equations for the numerical coefficients by requesting
that these differences must be identically equal to zero.
Because these equations must hold for all density matrices
and gauge angles, we could randomly assume arbitrary values
for these quantities and their derivatives. In this way, all
linearly independent equations for the coefficients could be
obtained and solved analytically, again by using symbolic
programming. The solutions were then double-checked by
using the full forms of the densities.

3. Galilean- or gauge-invariant EDF

A Galilean- or gauge-invariant EDF is the one that does
not change upon inserting Galilean- or gauge-transformed
densities [Eq. (37)] into the energy density of Eq. (31). Since
terms quadratic in G(r, r ′) can be dropped, the condition for
the Galilean or gauge invariance reads∫

d3r
∑

C
β

mI,γ

([
ρG

β (r)[DmIργ (r)]J ′
]

0

+ [
ρβ(r)

[
DmIρ

G
γ (r)

]
J ′

]
0

) = 0, (42)

where C
β

mI,γ is a short-hand notation for the coupling constants

Cn′L′v′J ′
mI,nLvJ , and the sum runs over all the terms in the energy

density.
The task now is to group together all proportional terms

in Eq. (42). In doing so, we do not aim at obtaining an
invariant energy density but an invariant EDF and total energy.
Therefore, after the densities of Eq. (40) or (41) are inserted

into Eq. (42), all terms must be integrated by parts to obtain
some standard form, where terms equal through integration by
parts become identical.

Finally, Eq. (42) can be transformed into a sum of
independent terms by using recoupling. In this expression each
term is multiplied by a specific linear combination of coupling
constants Cn′L′v′J ′

mI,nLvJ . The Galilean or gauge invariance of the
EDF then means that these linear combinations must all vanish.
This gives a set of linear equations that must be fulfilled for an
invariant EDF. However, if a given coupling constant appears
in none of these linear equations, the corresponding term of the
EDF is invariant on its own, and the corresponding coupling
constant is not restricted by the Galilean or gauge symmetry.
Moreover, for some coupling constants the only solution can
be the value of zero, and then the corresponding term cannot
appear in the invariant energy density.

Among all the remaining coupling constants, we may
always select a subset of those that we will call the dependent
ones and express them as linear combinations of the other
ones, which we will call the independent ones. This procedure
is highly nonunique and can be realized in very many different
ways, However, when the dependent coupling constants as
a function of the independent ones are inserted back into
the energy density [Eq. (31)], linear combinations of terms
appearing at each independent coupling constant will all be
invariant with respect to the Galilean or gauge transformations.

Then, the energy density of Eq. (31) takes the form

H(r) =
∑

n′L′v′J ′
mI,nLvJ,J ′

Cn′L′v′J ′
mI,nLvJ Gn′L′v′J ′

mI,nLvJ (r), (43)

where the sum runs over indices that correspond to unre-
stricted and independent coupling constants, which we jointly
call free coupling constants. For a term in Eq. (43) that
corresponds to an unrestricted coupling constant, we have
Gn′L′v′J ′

mI,nLvJ (r) = T n′L′v′J ′
mI,nLvJ (r); that is, one term in the energy

density of Eq. (31) is Galilean or gauge invariant. For a term in
Eq. (43) that corresponds to an independent coupling constant,
Gn′L′v′J ′

mI,nLvJ (r) is equal to a specific linear combination of terms
T from the original energy density [Eq. (31)]. These linear
combinations are listed in Appendix C.

We performed the analysis along these lines for energy
densities of orders 0, 2, 4, and 6, and the obtained results are
listed in Appendix C. Derivations were performed by using
symbolic programming [38] and employed the technique of
forming linear equations by randomly assigning values to local
densities and their derivatives, which we also used here. The
numbers of linearly independent Galilean- or gauge-invariant
terms are listed in Tables V and VI and are plotted in Fig. 1.

It turns out that only at orders 0 and 2 (i.e., for the standard
Skyrme functional) are all Galilean-invariant combinations of
terms also gauge invariant. At orders 4 and 6, there are only
6 gauge-invariant terms available, whereas the numbers of
Galilean-invariant terms equal 15 and 26, respectively. This
is much less than the total numbers of terms at these orders,
which are equal to 45 and 129, respectively. Altogether, at
N3LO we obtain the EDF parametrized in general by 188
coupling constants, and by 50 or 21 coupling constants if
Galilean or gauge invariance is assumed. If isoscalar and
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isovector channels are included, all these numbers must be
multiplied by a factor of 2.

IV. ENERGY DENSITY AT N3LO WITH CONSERVED
SPHERICAL, SPACE-INVERSION, AND

TIME-REVERSAL SYMMETRIES

In this section, we apply the results obtained so far to the
simplest case of spherical even-even nuclei [28], where one
can assume that the spherical symmetry, along with the space
inversion and time reversal symmetries, are simultaneously
conserved. In this case, all primary densities ρnLvJ [Eq. (23)],
which we listed in Tables III and IV, must have the form [39]

ρnLvJ (r) = RJJ (r)ρnLvJ (|r|), (44)

where

RJJ (r) = [r[r . . . , [rr]2, . . . , ]J−2]J (45)

is the J th-order, rank-J stretched coupled tensor built from
the position vector r in exactly the same way as the derivative
operators DnL of Table I are built from the derivative ∇ in the
spherical representation [Eq. (9)], and ρnLvJ (|r|) is a scalar
function depending only on the length |r| of the position
vector r .

Indeed, owing to the generalized Cayley-Hamilton (GCH)
theorem, a rank-J tensor function of a rank-k tensor must
be a linear combination of all independent rank-J tensors
built from that rank-k tensor, with scalar coefficients. In
the GCH theorem, tensors that differ by scalar factors are
not independent. In our case, only one independent rank-J
function RJJ (r) can be built from the rank-1 tensor (position
vector r), which gives Eq. (44). The spherical symmetry
assumed here is essential for this argument to work, because
many more independent rank-J tensors can be built when other
“material” tensors (such as, e.g., the quadrupole deformation
tensor) are available.

The spherical form of ρnLvJ (r) [Eq. (44)] requires that the
following selection rule be obeyed:

P = (−1)J , (46)

where P = (−1)n is the space-inversion parity defined in
Eq. (26). For the time-even densities (T = 1), the selection
rule of Eq. (46) does not impose any new restriction on local
densities built from ρ(r, r ′) (v = 0) (see Table III). However,
for local densities built from s(r, r ′) (v = 1) (see Table IV),
only the densities with L = J are allowed.

In Tables III and IV, all densities allowed by the conserved
spherical, space-inversion, and time-reversal symmetries are
marked with bullets (•). One can see that they correspond to
quantum numbers LvJ being equal to 000 or 202 [for densities
built from ρ(r, r ′)] and 111 or 313 [for densities built from
s(r, r ′)]. Then, it is easy to select all allowed terms in the
energy density—in Tables VII–XVIII and XXII these are also
marked with bullets (•). The numbers of such terms are listed
in Table XX together with those obtained by imposing, in
addition, Galilean or gauge invariance.

All results for the EDF restricted by the spherical, space-
inversion, and time-reversal symmetries can now be extracted

TABLE XX. Number of terms defined in Eq. (30) of different
orders in the EDF up to N3LO, evaluated for the conserved spherical,
space-inversion, and time-reversal symmetries. The last two columns
give the number of terms when the Galilean or gauge invariance
is assumed, respectively (see Sec. III B). To take into account both
isospin channels, the number of terms should be multiplied by a factor
of 2.

Order Total Galilean Gauge

0 1 1 1
2 4 4 4
4 13 9 3
6 32 16 3

N3LO 50 30 11

from the general results presented in Secs. II and III and
Appendices B and C. However, in the remainder of this section
we give an example of how these results can be translated
into those based on the Cartesian representations of derivative
operators [Eqs. (18)–(22)]. Indeed, in this representation, all
nonzero densities can be defined as

R0 = ρ, (47)

R2 = k2ρ, (48)
↔
R2ab = kakbρ, (49)

R4 = k4ρ, (50)
↔
R4ab = k2kakbρ, (51)

R6 = k6ρ, (52)

and

J1a = (k × s)a, (53)

J3a = k2(k × s)a, (54)
↔
J3abc = kakb(k × s)c + kbkc(k × s)a

+ kcka(k × s)b, (55)

J5a = k4(k × s)a, (56)

where

k2 =
∑

a

kaka, (57)

and the Cartesian indices are defined as a, b, c = x, y, z. To
lighten the notation, in these definitions we have omitted the
arguments of local densities r and limits of r ′ = r .

The six local densities [Eqs. (47)–(52)] are the Cartesian
analogs of densities marked in Table III with bullets (•), and
the four local densities [Eqs. (53)–(56)] are analogs of those
marked in Table IV. However, one should note that rank-2
densities

↔
R2ab and

↔
R4ab are not proportional to ρ2202 and ρ4202,

respectively, and the rank-3 density
↔
J3abc is not proportional to

ρ3313. This is because they are defined in terms of the derivative
operators [Eqs. (18)–(22)], where appropriate traces have not
been subtracted out. Nevertheless, linear relations between the
densities in Eqs. (47)–(56) and their spherical-representation
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counterparts ρnLvJ can easily be worked out and will not be
presented here.

Note also that the scalar densities R2 and R4 can be
expressed as the corresponding sums of the rank-2 densities↔
R2ab and

↔
R4ab, and the vector density J3a as that of

↔
J3abc.

However, based on the results obtained in the spherical
representation, we know that they have to be treated separately
to give separate terms in the energy density.

Again, based on the results obtained in the spherical
representation, we can write the N3LO energy density as a sum
of contributions from zero, second, fourth, and sixth orders:

H = H0 + H2 + H4 + H6, (58)

where

H0 = C0
00R0R0, (59)

H2 = C0
20R0�R0 + C0

02R0R2 + C0
11R0∇ · J1,+C1

01 J2
1,

(60)

Energy densities H0 and H2 correspond, of course, to the stan-
dard Skyrme functional [24,33] with C0

00 = Cρ,C0
20 = C�ρ +

1
4Cτ , C0

02 = Cτ , C0
11 = C∇J , and C1

01 = CJ1. At fourth and
sixth orders, these energy densities read

H4 = C0
40R0�

2R0 + C0
22R0�R2 + C0

04R0R4 + C2
02R2R2

+D0
22R0

∑
ab

∇a∇b

↔
R2ab + D2

02

∑
ab

↔
R2ab

↔
R2ab

+C1
21 J1 · �J1 + C1

03 J1 · J3 + D1
21 J1 · ∇ (∇ · J1)

+C0
31R0� (∇ · J1) + C0

13R0 (∇ · J3)

+C2
11R2 (∇ · J1) + D2

11

∑
ab

↔
R2ab∇a J1b, (61)

H6 = C0
60R0�

3R0 + C0
42R0�

2R2 + C0
24R0�R4

+C0
06R0R6 + C2

22R2�R2 + C2
04R2R4

+D0
42R0�

∑
ab

∇a∇b

↔
R2ab + D0

24R0

∑
ab

∇a∇b

↔
R4ab

+D2
22R2

∑
ab

∇a∇b

↔
R2ab + E2

22

∑
ab

↔
R2ab�

↔
R2ab

+F 2
22

∑
abc

↔
R2ab∇a∇c

↔
R2cb + E2

04

∑
ab

↔
R2ab

↔
R4ab

+C1
41 J1 · �2 J1 + C1

23 J1 · �J3

+C1
05 J1 · J5 + C3

03 J3 · J3

+D1
41 J1 · �∇(∇ · J1) + D1

23 J1 · ∇(∇ · J3)

+E1
23

∑
abc

J1a∇b∇c

↔
J3abc + D3

03

∑
abc

↔
J3abc

↔
J3abc

+C0
51R0�

2(∇ · J1) + C0
33R0�(∇ · J3)

+C0
15R0(∇ · J5) + C2

31R2�(∇ · J1)

+C2
13R2(∇ · J3) + C4

11R4(∇ · J1)

+D0
33R0

∑
abc

∇a∇b∇c

↔
J3abc

+D2
13

∑
abc

↔
R2ab∇c

↔
J3abc + D2

31

∑
ab

↔
R2ab�∇a J1b

+E2
13

∑
ab

↔
R2ab∇a J3b + D4

11

∑
ab

↔
R4ab∇a J1b

+E2
31

∑
ab

↔
R2ab∇a∇b(∇ · J1). (62)

These energy densities are given in terms of the coupling
constants Cn′

mn,D
n′
mn,E

n′
mn, and Fn′

mn. The indices correspond
to orders of derivatives indicated in the same way as for the
spherical-representation coupling constants Cn′L′v′J ′

mI,nLvJ . Linear
relations between both sets of coupling constants can easily be
derived and are not reported here.

V. CONCLUSIONS

In the present study, we constructed nuclear energy density
functionals in terms of derivatives of densities up to sixth or-
der. This constitutes the next-to-next-to-next-to-leading order
(N3LO) expansion of the functional, whereby, in this scheme,
the contact and standard Skyrme forces provide the zero-order
(LO) and second-order (NLO) expansions, respectively. The
higher order terms were built to provide tools for testing
convergence properties of methods based on energy density
functionals, within the spirit of effective field theories.

At N3LO, depending on several options of using the energy
density functionals, the numbers of free coupling constants
are as follows. If one would like to include the density
dependence of all the coupling constants (an option that is not
advocated here), one would have to use 658 different terms
in the functional. Full functionals with density-independent
coupling constants contain 188 terms, whereas functionals
restricted by Galilean and gauge symmetries contain 50 and
21 terms, respectively. If both isoscalar and isovector channels
are included, all these numbers must be multiplied by a factor
of 2.

At the present stage of searching for precise, spectroscopic-
quality nuclear functionals, extensions beyond the standard
Skyrme NLO form are mandatory (see the analysis in
Ref. [40]). These may include richer density dependencies
[41,42], higher order derivative terms. as constructed in the
present study, terms of higher powers in densities, richer forms
of functional dependence beyond simple power expansions,
and possibly many other modifications.

Further studies of higher order energy density functionals
requires constructing appropriate codes to solve self-consistent
equations. Although this is a complicated problem, various
techniques have already been developed that can be used here.
First, expressions for mean fields must be derived by using the
standard methods presented (e.g., those in Refs. [24,25,43]).
Obviously, such mean fields will involve derivative operators
up to sixth order, so the connection with the one-body
Schrödinger equation, discussed,for example, in Ref. [28], will
be lost. Nevertheless, all basis-expansions methods can still be
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used and their implementation will not be essentiallly different
than what was done up to now at NLO. Work along these lines
is now in progress.
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APPENDIX A: SYMMETRIES

Within the HF approximation, symmetry properties of
the interaction carry over to symmetry properties of the
total HF energy. This means that whenever the interaction
is invariant with respect to a symmetry group, the total HF
energy is invariant with respect to transforming densities (or
density matrices, in general) by the same symmetry group.
However, the well-known phenomenon of spontaneous sym-
metry breaking [32] may render densities and energy density
themselves not invariant with respect to the symmetry group
in question. We must, therefore, consider energy densities for
symmetry-breaking densities.

This is best illustrated by the EDF derived for the Skyrme
interaction [25,28]. The standard derivation treats the time-
reversal and isospin symmetries in a different way than space
symmetries (space inversion and other point symmetries or
space rotation) [24,25,33]. Indeed, for the time reversal, the
nonlocal densities are first split into the time-even and time-odd
parts as

ρ(r, r ′) = ρ+(r, r ′) + ρ−(r, r ′), (A1)

s(r, r ′) = s+(r, r ′) + s−(r, r ′), (A2)

where

ρ±(r, r ′) = 1
2 [ρ(r, r ′) ± ρT (r, r ′)], (A3)

s±(r, r ′) = 1
2 [s(r, r ′) ± sT (r, r ′)], (A4)

such that

ρT
±(r, r ′) = ±ρ±(r, r ′), (A5)

sT
±(r, r ′) = ±s±(r, r ′). (A6)

The superscript T here means that the nonlocal densities are
calculated for the time-reversed many-body states.

Then, in the derivation of the HF energy density, only
squares of the time-even and time-odd densities appear,
because the time-reversal symmetry of the interaction prevents
the cross terms from contributing. As a consequence, the
energy density itself is time-even. Similarly, for the isospin
symmetry, the densities are first split into the isoscalar and
isovector parts, for which no cross terms contribute, and the
obtained energy density is an isoscalar. In what follows, we
call this kind of derivation “derivation after separation of
symmetries,” which implies that the symmetry-breaking terms
are absent in the energy density.

The derivation after separation of symmetries can be
illustrated by considering the simplest term of the Skyrme
interaction—just the contact force:

Vδ(r1, r2) = t0δ(r1 − r2). (A7)

The energy density reads

Hδ(r) = 1
2 t0ρ

2(r) − 1
2 t0s2(r) (A8)

(where we neglected the isospin degree of freedom, so only
one type of particle is considered). This energy density is
invariant with respect to the time reversal of local densities,
ρT (r) = ρ(r) and sT (r) = −s(r).

Here, the coupling constant multiplying the time-even
density, Cρ = 1

2 t0, is not independent of the coupling constant
multiplying the time-odd density, Cs = − 1

2 t0. This fact is not
related to the time-reversal symmetry but results from the
vanishing range of the contact force. Proper treatment of the
finite-range corrections render these two coupling constants
independent of one another. [15,16]. Irrespective of zero or
finite range, the isovector and isoscalar coupling constants are
also independent of one another [24,33].

For space symmetries, the standard derivation proceeds in
another way; namely, the energy density is determined directly
for the broken-symmetry HF state. For the space-inversion
symmetry, for example, this means that both parity-even and
parity-odd densities,

ρP=±1(r) = 1
2 [ρ(r) ± ρP (r)] = 1

2 [ρ(r) ± ρ(−r)], (A9)

sP=±1(r) = 1
2 [s(r) ± sP (r)] = 1

2 [s(r) ± s(−r)], (A10)

appear in ρ(r) and s(r) in the energy density of Eq. (A8),

ρ(r) = ρP=+1(r) + ρP=−1(r), (A11)

s(r) = sP=+1(r) + sP=−1(r). (A12)

The superscript P here means that the nonlocal and local
densities are calculated for the space-inversed many-body
states. We call this kind of derivation “derivation before
separation of symmetries,” which implies that the symmetry-
breaking terms are then explicitly present in the energy density.
If the symmetry is broken, which in the case of space inversion
corresponds to ρP=−1(r) �= 0 or sP=−1(r) �= 0, then the energy
density is not invariant with respect to space inversion.

The total energy, that is, the integral of the energy density
[Eq. (1)] is, of course, invariant with respect to space
inversion, because the integration then picks up only the
space-inversion-invariant parts of the integrand. Therefore,
the energy densities derived before and after separation of
symmetries are not equal, but they are equivalent. In the case
of the space-inversion symmetry, the energy density [Eq. (A8)]
derived after separation of symmetries reads

H′
δ(r) = 1

2 t0ρ
2
P=+1

(r) + 1
2 t0ρ

2
P=−1

(r)

− 1
2 t0s2

P=+1
(r) − 1

2 t0s2
P=−1

(r). (A13)

This energy density is invariant with respect to space inversion
and the coupling constants multiplying densities of opposite
parities are not independent of one another (see also the
discussion in Ref. [30]).
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The same principle applies to other broken spatial sym-
metries. For example, for the broken rotational symmetry, the
density can be split into the sum of terms belonging to different
irreducible representations of the rotational group, which in
this case corresponds to the standard multipole series [44]

ρ(r) =
∑
λµ

ρλµ(r), (A14)

for

ρλµ(r) = ρλµ(r)Y ∗
λµ(θ, φ), (A15)

where the multipole densities, given by

ρλµ(r) =
∫

dθdφρ(r)Yλµ(θ, φ), (A16)

depend only on the radial coordinate r . Then, the first
term in the energy density [Eq. (A8)], which is derived
before separation of rotational symmetries, and which is not
rotationally invariant, is equivalent to the following energy
density derived after separation of rotational symmetries:

Hρ(r) = 1

2
t0

∑
λ

√
2λ + 1[ρλ(r)ρλ(r)]0. (A17)

(See Ref. [45] for an example application of this series.)
This energy density is rotationally invariant and the coupling
constants multiplying different multipole densities are again
not independent of one another.

We have presented a detailed analysis of the problem to
arm ourselves with proper tools for discussing construction of
EDFs in situations where there is no underlying interaction.
Then, the only consideration is the requirement of invariance
of the total energy with respect to all symmetries usually
conserved by nuclear interactions. We proceed with such
a construction in two different ways as described in the
following.

A. Symmetry-invariant energy density

Based on the derivation after separation of symmetries,
which we just introduced, it is clear that we can proceed
by separating densities into irreducible representations of all
required symmetries and then building the energy density by
taking scalar products separately in each of the representations.
Such a construction gives a symmetry-invariant energy density
of

HS(r) = H(r), (A18)

where HS(r) denotes the energy density calculated for a
many-body state transformed by the symmetry operator S.
This guarantees the invariance of the EDF and total energy
[Eq. (1)] with respect to all considered symmetries. Such a
strategy would also allow for using arbitrary (and unrelated
to one another) coupling constants in each of the irreducible
representations.

However, in practical applications, such a strategy has not
yet been fully implemented—neither at N3LO, for which the
present study is the first attempt in the literature, nor at NLO,
which corresponds to the standard Skyrme functionals (see

Sec. III A). Only the time reversal and isospin symmetries
were up to now treated in this way, and in the following we
are going to follow the same path.

For the time reversal, all local densities discussed in
Sec. II C are either time-even or time-odd. Indeed, this simply
follows from the facts [25] that

ρT (r, r ′) = ρ∗(r, r ′) = ρ(r ′, r),
(A19)

sT (r, r ′) = −s∗(r, r ′) = −s(r ′, r),

which give the time-even and time-odd parts in Eqs. (A3)
and (A4) as

ρ+(r, r ′) = ρ∗
+(r, r ′) = ρ+(r ′, r),

ρ−(r, r ′) = −ρ∗
−(r, r ′) = −ρ−(r ′, r),

(A20)
s+(r, r ′) = −s∗

+(r, r ′) = −s+(r ′, r),

s−(r, r ′) = s∗
−(r, r ′) = s−(r ′, r);

that is, ρ+(r, r ′) and s−(r, r ′) are real symmetric functions
and ρ−(r, r ′) and s+(r, r ′) are imaginary antisymmetric
functions. Moreover, the relative momentum operator k
[Eq. (6)], which defines derivative operators KnL, is imaginary
and antisymmetric with respect to exchanging variables r and
r ′. Altogether, it is easy to see that T parities of primary
densities ρnLvJ (r) [Eq. (23)] are equal to (−1)n+v [see Eq. (25)
and columns denoted by T in Tables III and IV]. Similarly,
T parities of secondary densities ρmI,nLvJ,Q(r) [Eq. (24)]
are also equal to (−1)n+v . Construction of the T -invariant
energy density [Eq. (A18)] can now be realized by multiplying
densities that have identical T parities.

B. Symmetry-covariant energy density

Treatment of space symmetries in the construction of EDFs
is another matter entirely. Here, we base our considerations
on the derivation before separation of symmetries, which we
introduced earlier, and on the fact that invariance of the energy
density itself is not a prerequisite for the invariance of the
EDF. In fact, the EDF and total energy [Eq. (1)] are invariant
with respect to symmetry S also when the energy density is
covariant with S; that is,

HS(r) = H(S+rS), (A21)

where S+rS denotes the space point transformed by symmetry
S (see also the discussion in Ref. [32]). Indeed, because the
space integrals are invariant, we have∫

d3rH(S+rS) =
∫

d3rH(r), (A22)

which guarantees invariance of the EDF and total energy.
For the space-inversion symmetry, we have

HP (r) ≡ H[ρP (rσ, r ′σ ′)]
= H[ρ(−rσ,−r ′σ ′)], (A23)

H(P +rP ) ≡ H(−r), (A24)

and the covariance condition [Eq. (A21)] reads

H[ρ(−rσ,−r ′σ ′)] = H(−r). (A25)
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It is now essential to realize that the arguments of the density
matrix, ρ(−rσ,−r ′σ ′) on which the energy densities in
Eq. (A25) depends, are the same on both sides of Eq. (A25).
The covariance condition then tests only the parity of all other
operators that may appear in the definition of local densities.
Therefore, to each primary density ρnLvJ (r) [Eq. (23)] we
may attribute P parity corresponding to the P parity of the
operator KnL only, which is equal to (−1)n [see Eq. (26) and
columns denoted by P in Tables III and IV]. This attribution
is performed regardless of space-inversion properties of the
nonlocal densities, i.e., regardless of whether the parity of the
many-body state is conserved or broken. Similarly, P parities
of secondary densities ρmI,nLvJ,Q(r) [Eq. (24)] are equal to
(−1)n+m. Construction of the P -covariant energy density [Eq.
(A21)] can now be realized by multiplying densities that have
identical P parities.

Construction of a rotationally covariant energy density can
be performed in an entirely analogous way. We must only
ensure that all tensor operators used in constructing all terms
of the energy density are always coupled to total angular mo-
mentum (rank) zero. This coupling proceeds regardless of any
transformation properties of nonlocal densities with respect to
rotation, because again, their rotated space arguments appear
on both sides of the covariance condition [Eq. (A21)].

It is obvious that this is the correct procedure to follow when
the rotational symmetry is not broken and nonlocal densities
ρ(r, r ′) and s(r, r ′) are scalar and vector functions of their
arguments, respectively. In fact, this is how we refer to these
densities throughout the entire paper, seemingly forgetting
that the rotational symmetry can be broken and that these
functions can then have no good tensor properties with respect
to rotation. Nevertheless, in view of the covariance condition
[Eq. (A21)], these rotational properties of broken-symmetry
nonlocal densities are irrelevant for the construction of the
energy density.

APPENDIX B: PHASE CONVENTIONS

In the present study, we use four elementary building
blocks to construct the EDF, namely, the scalar and vector
nonlocal densities, ρ(r, r ′) and s(r, r ′), along with the total
derivative ∇ and relative momentum k [Eq. (6)]. Spherical
representations of the building blocks can be defined by using
standard convention of spherical tensors [26] as

ρ00(r, r ′) = pρρ(r, r ′), (B1)

s1,µ={−1,0,1}(r, r ′) = ps

{
1√
2

[sx(r, r ′)

− isy(r, r ′)], sz(r, r ′),
−1√

2
[sx(r, r ′) + isy(r, r ′)]

}
, (B2)

∇1,µ={−1,0,1} = p∇

{
1√
2

(∇x − i∇y),

∇z,
−1√

2
(∇x + i∇y)

}
, (B3)

k1,µ={−1,0,1} = pk

{
1√
2

(kx − iky), kz,

−1√
2

(kx + iky)

}
, (B4)

where pρ, ps, p∇ , and pk are arbitrary phase factors, with
|pρ | = |ps | = |p∇| = |pk| = 1. These phase factors define the
phase convention of the building blocks and can be used to
achieve specific phase properties of densities and terms in the
EDF, as discussed in this Appendix.

To motivate the best suitable choice of the phase convention,
in Tables XXI and XXII we present relations between the
spherical and Cartesian representations of densities and terms
in the EDF, respectively. All NLO densities in the Cartesian
representation, which are listed in Table XXI, are real. It is
then clear that the phase convention, which would render all
NLO densities in the spherical representation real, does not
exist. However, for the phase factors pρ, ps, p∇ , and pk equal
to ±1 or ±i, in the spherical representation all NLO densities
and terms in the EDF are either real or imaginary.

Among many options of choosing the phase convention, in
the present study we set

pρ = +1, ps = −i, p∇ = −i, and pk = −i. (B5)

This choice is unique in the fact that all scalar densities and
all terms in the EDF are then characterized by phase factors
+1 connecting the spherical and Cartesian representations (see
the last columns in Tables XXI and XXII). This allows for the
closest possible relationships between the two representations,
which may facilitate the use of the spherical representation as
introduced in the present study. In particular, relations between
coupling constants up to NLO (Table XXII) and standard
coupling constants in the Cartesian representation [24] then
read, for terms depending on time-even densities,

C0000
00,0000 = Cρ, (B6)

C0000
20,0000 =

√
3

(
C�ρ + 1

4Cτ
)
, (B7)

C0000
00,2000 =

√
3Cτ , (B8)

C1110
00,1110 = 3CJ0, (B9)

C1111
00,1111 =

√
12CJ1, (B10)

C1112
00,1112 =

√
5CJ2, (B11)

C0000
11,1111 =

√
6C∇J , (B12)

and for terms depending on time-odd densities,

C0011
00,0011 =

√
3Cs, (B13)

C1101
00,1101 =

√
3Cj , (B14)

C0011
20,0011 = 3

(
C�s + 1

4CT
) + 1

4CF − C∇s , (B15)

C0011
22,0011 =

√
5

(
1
4CF − C∇s

)
, (B16)

C0011
00,2011 = 3CT + CF , (B17)

C0011
00,2211 =

√
5CF , (B18)

C1101
00,0011 =

√
6C∇j . (B19)
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TABLE XXI. Spherical and Cartesian representations of local densities [Eq. (24)] up to NLO. Only scalar densities
and the µ = 0 components of vector densities are shown. The numbers in the first column refer to the primary densities
[Eq. (23)] shown in Tables III and IV. The last column shows factors preceding densities in the Cartesian representation
evaluated for the phase conventions of Eq. (B5). Time-even densities are shown in bold face.

No. ρmI,nLvJ,Qµ Cartesian representation [24,25,30] Phase

1 ρ00,0000,00 = [ρ]00 = pρ ρ +1
ρ11,0000,10 = [∇ρ]10 = p∇pρ ∇zρ −i

ρ20,0000,00 = [[∇∇]0ρ]00 = −p2
∇pρ

1√
3
�ρ +1

2 ρ00,1101,10 = [kρ]10 = pkpρ jz −i

ρ11,1101,00 = [∇[kρ]1]00 = −p∇pkpρ
1√
3
∇ · j +1

ρ11,1101,10 = [∇[kρ]1]10 = ip∇pkpρ
1√
2
(∇ × j )z −i

3 ρ00,2000,00 = [[kk]0ρ]00 = −p2
kpρ

1√
3

(
τ − 1

4 �ρ
) +1

17 ρ00,0011,10 = [s]10 = ps sz −i

ρ11,0011,00 = [∇s]00 = −p∇ps
1√
3
∇ · s +1

ρ11,0011,10 = [∇s]10 = ip∇ps
1√
2
(∇ × s)z −i

ρ20,0011,10 = [[∇∇]0s]10 = −p2
∇ps

1√
3
�sz −i

ρ22,0011,10 = [[∇∇]2s]10 = −p2
∇ps

1√
15

(3∇z∇ · s − �sz) −i

18 ρ00,1110,00 = [ks]00 = −pkps
1√
3
J (0) +1

ρ11,1110,10 = [∇[ks]0]10 = −p∇pkps
1√
3
∇zJ

(0) −i

19 ρ00,1111,10 = [ks]10 = ipkps
1√
2
Jz −i

ρ11,1111,00 = [∇[ks]1]00 = −ip∇pkps
1√
6
∇ · J +1

ρ11,1111,10 = [∇[ks]1]10 = −p∇pkps
1
2 (∇ × J)z −i

21 ρ00,2011,10 = [[kk]0s]10 = −p2
kps

1√
3

(
Tz − 1

4 �sz

) −i

22 ρ00,2211,10 = [[kk]2s]10 = −p2
kps

1√
15

(
3Fz − 3

4 ∇z∇ · s − Tz + 1
4 �sz

) −i

At the same time, all vector densities in Table XXI and
vector operators in Eqs. (B2)–(B4) are consistently character-
ized by phase factors −i connecting the spherical and Cartesian
representations.

Phase conventions (B5) also lead to very simple phase
properties, which our spherical tensors have with respect
to complex conjugation. Indeed, spherical tensors (B1)–(B4)
obey standard transformation rules under complex conjugation
[26],

A∗
λµ = PA(−1)λ−µAλ,−µ, (B20)

where PA = ±1. For nonlocal densities [Eqs. (B1) and (B2)],
Eq. (B20) holds separately for their time-even and time-odd
parts, split as in Eqs. (A1) and (A2). Using Eqs. (A20) we then
have

Pρ+ = +p2
ρ, Pρ− = −p2

ρ,

Ps+ = +p2
s , Ps− = −p2

s , (B21)

P∇ = −p2
∇, Pk = p2

k ,

which for the phase convention of Eq. (B5) reads

Pρ+ = +1, Pρ− = −1, Ps+ = −1,
(B22)

Ps− = +1, P∇ = +1, Pk = −1.

The standard rule of Eq. (B20) propagates through the
angular momentum coupling; that is, if signs PA and PA′

characterize tensors Aλ and A′
λ′ , respectively, then the coupled

tensor,

A′′
λ′′µ′′ = [AλA

′
λ′]λ′′µ′′ =

∑
µµ′

C
λ′′µ′′
λµλ′µ′AλµA′

λ′µ′, (B23)

is characterized by the product of signs, PA′′ = PAPA′ .
Therefore, coupled higher order densities [Eq. (24)] are
characterized by signs

PρmI,nLvJ,Q
= P m

∇ P n
k PvT , (B24)

where v = 0 or 1 denotes the scalar or vector density, ρ or s,
respectively, and T = +1 or T = −1 denotes the time-even
or time-odd density. However, the symmetry conditions of
Eq. (A20) require that powers of the k derivative determine
the time-reversal symmetry of each local density, so that T =
(−1)n+v . From Eqs. (B21) we then obtain

PρmI,nLvJ,Q
= (−1)m+n+vp2m

∇ p2n
k p2

v, (B25)

which for the phase convention of Eq. (B5) reads

PρmI,nLvJ,Q
= +1 (B26)

for all densities. Therefore, the phase convention of Eq. (B5)
ensures that scalar densities and all terms in the EDF are always
real.

APPENDIX C: RESULTS FOR THE GALILEAN- OR
GAUGE-INVARIANT ENERGY DENSITY FUNCTIONAL

As discussed in Sec. III B3, when the Galilean or gauge
invariance is imposed on the EDF, this induces specific con-
straints on the coupling constants and terms of the functional.
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TABLE XXII. Spherical and Cartesian representations of terms in the EDF [Eq. (30)] up to NLO. The last column shows
factors preceding terms in the Cartesian representation evaluated using the phase conventions of Eq. (B5). Integration by parts was
used to transform s · ∇∇ · s into −(∇ · s)2, which is the term used previously in Refs. [24,30]. Coupling constants corresponding
to terms that depend on time-even densities are shown in bold face. Bullets (•) mark coupling constants corresponding to terms
that do not vanish for conserved spherical, space-inversion, and time-reversal symmetries (see Sec. IV).

No. Cn′L′v′J ′
mI,nLvJ [ρn′L′v′J ′ [DmIρnLvJ ]J ′ ]0 Cartesian representation Phase

1 • C0000
00,0000 [ρρ]0 = p2

ρ ρ2 +1

2 C0011
00,0011 [ss]0 = −p2

s
1√
3

s2 +1

3 • C0000
20,0000 [ρ[[∇∇]0ρ]0]0 = −p2

∇p2
ρ

1√
3
ρ�ρ +1

4 • C0000
00,2000 [ρ[[kk]0ρ]0]0 = −p2

kp
2
ρ

1√
3

(
ρτ − 1

4 ρ�ρ
) +1

5 C1110
00,1110 [[ks]0[ks]0]0 = p2

kp
2
s

1
3 (J (0))2 +1

6 • C1111
00,1111 [[ks]1[ks]1]0 = p2

kp
2
s

1√
12

J2 +1

7 C1112
00,1112 [[ks]2[ks]2]0 = p2

kp
2
s

1√
5

∑
ab J

(2)
ab J

(2)
ab +1

8 • C0000
11,1111 [ρ[∇[ks]1]0]0 = −ip∇pkpspρ

1√
6
ρ∇ · J +1

9 C1101
00,1101 [[kρ]1[kρ]1]0 = −p2

kp
2
ρ

1√
3

j 2 +1

10 C0011
20,0011 [s[[∇∇]0s]1]0 = p2

∇p2
s

1
3 s�s +1

11 C0011
22,0011 [s[[∇∇]2s]1]0 = p2

∇p2
s

−1√
5

(
(∇ · s)2 + 1

3 s�s
) +1

12 C0011
00,2011 [s[[kk]0s]1]0 = p2

kp
2
s

1
3

(
s · T − 1

4 s�s
) +1

13 C0011
00,2211 [s[[kk]2s]1]0 = p2

kp
2
s

1√
5

(
s · F + 1

4 (∇ · s)2 − 1
3 s · T + 1

12 s�s
) +1

14 C1101
11,0011 [[kρ]1[∇s]1]0 = −ip∇pkpspρ

1√
6

j · ∇ × s +1

We pointed out that there can be three disconnected classes
of terms in the EDF with related properties of the coupling
constants:

(i) Terms that are invariant with respect to the Galilean or
gauge transformation, and, therefore, the corresponding
coupling constants are not restricted by the imposed
symmetries.

(ii) Terms that cannot appear in the energy density when the
Galilean or gauge symmetry is imposed, and, therefore,
the corresponding coupling constants must be equal to
zero.

(iii) Terms that can appear in the energy density only in
certain specific linear combinations with other terms.
This means that the coupling constants corresponding
to these terms must obey specific linear conditions. We
then distinguish
(a) independent coupling constants, which multiply

invariant combinations of terms and therefore have
values that are not restricted by the imposed symme-
tries, and

(b) dependent coupling constants, which are equal to
specific linear combinations of independent cou-
pling constants and therefore have values that are
in this way restricted by the imposed symmetries.

Division into the sets of independent and dependent
coupling constants is not unique, and in the following, in
each case, we present only one specific choice thereof.

In Table XXIII we show numbers of unrestricted, vanishing,
independent, and dependent coupling constants that appear
at a given order when either Galilean or gauge symmetry is
imposed. In what follows, we use the name of a free coupling

constant to denote either the unrestricted or independent one.
Indeed, in the Galilean- or gauge-invariant energy density
[Eq. (43)], these two groups of coupling constants become
free parameters.

In the following we simultaneously discuss the Galilean
and gauge symmetries. In doing so, we use the fact that the
Galilean symmetry is a special case of the gauge symmetry,
and, therefore, the latter may impose more restrictions on
the EDF than the former. At NLO, this is not the case, and
the Galilean and gauge symmetries impose, in fact, identical
restrictions on the EDF [25,33]. However, at higher orders,
restrictions imposed by the Galilean and gauge symmetries
are very different.

Both zero-order terms in the EDF, which correspond to the
contact interaction, are Galilean and gauge invariant; that is,
these symmetries do not restrict the form of the EDF at LO. In
the next three sections we give results for second, fourth, and
sixth orders, respectively.

TABLE XXIII. Number of unrestricted, vanishing, independent,
and dependent coupling constants in the EDF at zero, second, fourth,
and sixth orders. Left and right columns correspond to the Galilean
and gauge symmetries imposed, respectively.

Order Galilean Gauge

0 2 4 6 0 2 4 6

Unrestricted 2 3 3 3 2 3 3 3
Vanishing 0 0 0 0 0 0 27 100
Independent 0 4 12 23 0 4 3 3
Dependent 0 5 30 103 0 5 12 23
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C. Second order

At second order, we obtain the same restrictions of the
EDF as those already identified for the Skyrme functional (see
Ref. [24] for a complete list thereof). Then, five dependent
coupling constants are equal to specific linear combinations of
four independent ones:

C0000
00,2000 = −C1101

00,1101, (C1)

C1110
00,1110 = −1

3
C0011

00,2011 − 1

3

√
5C0011

00,2211, (C2)

C1111
00,1111 = 1

2

√
5

3
C0011

00,2211 − 1√
3
C0011

00,2011, (C3)

C1112
00,1112 = −1

3

√
5C0011

00,2011 − 1

6
C0011

00,2211, (C4)

C0000
11,1111 = C1101

11,0011. (C5)

These relations are obtained by imposing either Galilean
or gauge invariance. In Eqs. (C1)–(C5), coupling constants
corresponding to terms that depend on time-even densities are
marked by using the bold-face font. The same convention also
applies in the following.

At this order, the Galilean- or gauge-invariant energy
density of Eq. (43) is composed of three terms corresponding
to unrestricted coupling constants,

G0000
20,0000 = T 0000

20,0000, (C6)

G0011
20,0011 = T 0011

20,0011, (C7)

G0011
22,0011 = T 0011

22,0011, (C8)

and of four terms corresponding to the independent coupling
constants,

G1101
00,1101 = T 1101

00,1101 − T 0000
00,2000, (C9)

G1101
11,0011 = T 1101

11,0011 + T 0000
11,1111, (C10)

G0011
00,2011 = −1

3
T 1110

00,1110 − 1√
3

T 1111
00,1111

− 1

3

√
5T 1112

00,1112 + T 0011
00,2011, (C11)

G0011
00,2211 = −1

3

√
5T 1110

00,1110 + 1

2

√
5

3
T 1111

00,1111

− 1

6
T 1112

00,1112 + T 0011
00,2211. (C12)

Again, terms that depend on time-even densities are marked
by using the bold-face font. Altogether, seven free cou-
pling constants (three unrestricted and four independent)
define the Galilean- or gauge-invariant EDF at second order
(cf. Table VI).

D. Fourth order

At fourth order, imposing either Galilean or gauge symme-
try forces 12 dependent coupling constants to be specific linear
combinations of 3 independent ones:

C0000
00,4000 = 3

2
√

5
C2202

00,2202, (C13)

C2000
00,2000 = 1

2

√
5C2202

00,2202, (C14)

C1101
00,3101 = − 6√

5
C2202

00,2202, (C15)

C1110
00,3110 = −2

√
3

5
C2212

00,2212 − 7√
5
C0011

00,4211, (C16)

C1111
00,3111 = − 6√

5
C2212

00,2212, (C17)

C1112
00,3112 = −2

√
3C2212

00,2212 − 14

5
C0011

00,4211, (C18)

C1112
00,3312 = −2

√
7

15
C0011

00,4211, (C19)

C0011
00,4011 = 3

2

√
3

5
C2212

00,2212 + 7

4
√

5
C0011

00,4211, (C20)

C2011
00,2011 = 1

2

√
15C2212

00,2212 + 7

12

√
5C0011

00,4211, (C21)

C2011
00,2211 = 7

3
C0011

00,4211, (C22)

C2211
00,2211 =

√
3

5
C2212

00,2212 + 7

3
√

5
C0011

00,4211, (C23)

C2213
00,2213 =

√
7

5
C2212

00,2212 + 1

2

√
21

5
C0011

00,4211. (C24)

At this order, there are three stand-alone Galilean- and gauge-
invariant terms,

G0000
40,0000 = T 0000

40,0000, (C25)

G0011
40,0011 = T 0011

40,0011, (C26)

G0011
42,0011 = T 0011

42,0011, (C27)

and three Galilean- and gauge-invariant linear combinations
of terms, corresponding to the three independent coupling
constants,

G2202
00,2202 = 1

2

√
5T 2000

00,2000 + T 2202
00,2202

− 6√
5
T 1101

00,3101 + 3

2
√

5
T 0000

00,4000, (C28)

G0011
00,4211 = 7

12

√
5T 2011

00,2011 − 7√
5

T 1110
00,3110 − 14

5
T 1112

00,3112

− 2

√
7

15
T 1112

00,3312 + 7

4
√

5
T 0011

00,4011 + T 0011
00,4211

+ 7

3
T 2011

00,2211 + 7

3
√

5
T 2211

00,2211 + 1

2

√
21

5
T 2213

00,2213,

(C29)

G2212
00,2212 = 1

2

√
15T 2011

00,2011 +
√

3

5
T 2211

00,2211 − 2

√
3

5
T 1110

00,3110

− 6√
5

T 1111
00,3111 − 2

√
3T 1112

00,3112

+ 3

2

√
3

5
T 0011

00,4011 + T 2212
00,2212 +

√
7

5
T 2213

00,2213. (C30)
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Altogether, these six free coupling constants (three unrestricted
and three independent) occur in both the Galilean- and gauge-
invariant EDF at fourth order (cf. Table VI).

Apart from these 6 free and 12 dependent coupling
constants, the gauge invariance requires that all the remaining
27 coupling constants are equal to zero. These 27 constants
are allowed to be nonzero if the Galilean symmetry is imposed
instead of the full gauge invariance. Then, there are 18
dependent coupling constants that are forced to be linear
combinations of 9 independent ones:

C0000
20,2000 = −C1101

20,1101, (C31)

C0000
22,2202 = −C1101

22,1101, (C32)

C1110
20,1110 = −1

3
C0011

20,2011 − 1

3

√
5C0011

20,2211, (C33)

C1110
22,1112 = −C1111

22,1112 − 2√
7

C1112
22,1112 − 2

√
15

7
C0011

22,2213,

(C34)

C1111
20,1111 = 1

2

√
5

3
C0011

20,2211 − 1√
3
C0011

20,2011, (C35)

C1111
22,1111 = − 1√

3
C1111

22,1112 − 3

√
3

7
C1112

22,1112 − 2

√
5

7
C0011

22,2213,

(C36)

C1112
20,1112 = −1

3

√
5C0011

20,2011 − 1

6
C0011

20,2211, (C37)

C0011
22,2011 = 2

3
C1111

22,1112 − 2√
7

C1112
22,1112 +

√
5

21
C0011

22,2213, (C38)

C0011
22,2211 = 1

6

√
5C1111

22,1112 +
√

5

7
C1112

22,1112 + 8√
21

C0011
22,2213,

(C39)

C0011
22,2212 = 1

2

√
3C1111

22,1112 + 3

√
3

7
C1112

22,1112 + 2

√
5

7
C0011

22,2213,

(C40)

C0000
31,1111 = C1101

31,0011, (C41)

C0000
11,3111 = −

√
3

5
C1101

11,2212, (C42)

C2000
11,1111 = −

√
5

3
C1101

11,2212, (C43)

C2202
11,1111 = 1√

3
C1101

11,2212, (C44)

C2202
11,1112 = C1101

11,2212, (C45)

C1101
11,2011 = −

√
5

3
C1101

11,2212, (C46)

C1101
11,2211 = 1√

3
C1101

11,2212, (C47)

C3101
11,0011 = −

√
3

5
C1101

11,2212. (C48)

Finally, we list nine combinations of terms that are invariant
with respect to the Galilean symmetry and correspond to the
independent coupling constants:

G1111
22,1112 = − 1√

3
T 1111

22,1111 − T 1110
22,1112 + T 1111

22,1112 + 2

3
T 0011

22,2011

+ 1

6

√
5T 0011

22,2211 + 1

2

√
3T 0011

22,2212, (C49)

G1112
22,1112 = −3

√
3

7
T 1111

22,1111 − 2√
7

T 1110
22,1112 + T 1112

22,1112

− 2√
7
T 0011

22,2011 +
√

5

7
T 0011

22,2211 + 3

√
3

7
T 0011

22,2212,

(C50)

G1101
20,1101 = T 1101

20,1101 − T 0000
20,2000, (C51)

G1101
22,1101 = T 1101

22,1101 − T 0000
22,2202, (C52)

G1101
31,0011 = T 1101

31,0011 + T 0000
31,1111, (C53)

G1101
11,2212 = −

√
5

3
T 2000

11,1111 + 1√
3

T 2202
11,1111 + T 2202

11,1112

−
√

5

3
T 1101

11,2011 + 1√
3
T 1101

11,2211

−
√

3

5
T 0000

11,3111 + T 1101
11,2212 −

√
3

5
T 3101

11,0011, (C54)

G0011
20,2011 = −1

3
T 1110

20,1110 − 1√
3

T 1111
20,1111

− 1

3

√
5T 1112

20,1112 + T 0011
20,2011, (C55)

G0011
20,2211 = −1

3

√
5T 1110

20,1110 + 1

2

√
5

3
T 1111

20,1111

− 1

6
T 1112

20,1112 + T 0011
20,2211, (C56)

G0011
22,2213 = −2

√
5

7
T 1111

22,1111 − 2

√
15

7
T 1110

22,1112 +
√

5

21
T 0011

22,2011

+ 8√
21

T 0011
22,2211 + 2

√
5

7
T 0011

22,2212 + T 0011
22,2213. (C57)

E. Sixth order

An entirely analogous pattern of terms and coupling
constants appears at sixth order. Imposing either Galilean or
gauge symmetry forces 23 dependent coupling constants to be
specific linear combinations of 3 independent ones:

C0000
00,6000 = −3

4

√
3

7
C3303

00,3303, (C58)

C2000
00,4000 = −3

4

√
21C3303

00,3303, (C59)

C2202
00,4202 = −3

√
15

7
C3303

00,3303, (C60)

C1101
00,5101 = 9

2

√
3

7
C3303

00,3303, (C61)
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C3101
00,3101 = 9

10

√
21C3303

00,3303, (C62)

C1110
00,5110 = −1

2

√
3

5
C2212

00,4212 − 9√
5
C0011

00,6211, (C63)

C1111
00,5111 = − 3

2
√

5
C2212

00,4212, (C64)

C1112
00,5112 = −1

2

√
3C2212

00,4212 − 18

5
C0011

00,6211, (C65)

C1112
00,5312 = −4

√
7

15
C0011

00,6211, (C66)

C3110
00,3110 = − 7

10

√
3

5
C2212

00,4212 − 63

5
√

5
C0011

00,6211, (C67)

C3111
00,3111 = − 21

10
√

5
C2212

00,4212, (C68)

C3112
00,3112 = − 7

10

√
3C2212

00,4212 − 126

25
C0011

00,6211, (C69)

C3112
00,3312 = −12

5

√
21

5
C0011

00,6211, (C70)

C3312
00,3312 = − 1

3
√

3
C2212

00,4212 − 6

5
C0011

00,6211, (C71)

C3313
00,3313 = −1

3

√
7

15
C2212

00,4212, (C72)

C3314
00,3314 = − 1√

15
C2212

00,4212 − 8

3
√

5
C0011

00,6211, (C73)

C0011
00,6011 = 1

4

√
3

5
C2212

00,4212 + 3

2
√

5
C0011

00,6211, (C74)

C2011
00,4011 = 7

4

√
3

5
C2212

00,4212 + 21

2
√

5
C0011

00,6211, (C75)

C2011
00,4211 = 6C0011

00,6211, (C76)

C2211
00,4011 = 21

5
C0011

00,6211, (C77)

C2211
00,4211 =

√
3

5
C2212

00,4212 + 12√
5
C0011

00,6211, (C78)

C2213
00,4213 =

√
7

5
C2212

00,4212 + 18

√
3

35
C0011

00,6211, (C79)

C2213
00,4413 = 4√

5
C0011

00,6211. (C80)

At this order, there are three stand-alone Galilean- and gauge-
invariant terms,

G0000
60,0000 = T 0000

60,0000, (C81)

G0011
60,0011 = T 0011

60,0011, (C82)

G0011
62,0011 = T 0011

62,0011, (C83)

and three Galilean- and gauge-invariant linear combinations
of terms, corresponding to the three independent coupling

constants,

G3303
00,3303 = 9

10

√
21T 3101

00,3101 + T 3303
00,3303 − 3

4

√
21T 2000

00,4000

−3

√
15

7
T 2202

00,4202 + 9

2

√
3

7
T 1101

00,5101 − 3

4

√
3

7
T 0000

00,6000,

(C84)

G0011
00,6211 = − 63

5
√

5
T 3110

00,3110 − 126

25
T 3112

00,3112 − 12

5

√
21

5
T 3112

00,3312

− 9√
5

T 1110
00,5110 − 18

5
T 1112

00,5112 − 4

√
7

15
T 1112

00,5312

− 6

5
T 3312

00,3312 − 8

3
√

5
T 3314

00,3314 + 21

2
√

5
T 2011

00,4011

+ 6T 2011
00,4211 + 3

2
√

5
T 0011

00,6011 + T 0011
00,6211 + 21

5
T 2211

00,4011

+ 12√
5
T 2211

00,4211 + 18

√
3

35
T 2213

00,4213 + 4√
5
T 2213

00,4413,

(C85)

G2212
00,4212 = − 7

10

√
3

5
T 3110

00,3110 − 21

10
√

5
T 3111

00,3111

− 7

10

√
3T 3112

00,3112 − 1

2

√
3

5
T 1110

00,5110 − 3

2
√

5
T 1111

00,5111

− 1

2

√
3T 1112

00,5112 − 1

3
√

3
T 3312

00,3312 − 1

3

√
7

15
T 3313

00,3313

− 1√
15

T 3314
00,3314 + 7

4

√
3

5
T 2011

00,4011 +
√

3

5
T 2211

00,4211

+ 1

4

√
3

5
T 0011

00,6011 + T 2212
00,4212 +

√
7

5
T 2213

00,4213. (C86)

Altogether, six free coupling constants (three unrestricted and
three independent) occur in both the Galilean- and gauge-
invariant EDF at sixth order (cf. Table VI).

Apart from the 6 free and 23 dependent coupling constants,
at sixth order the gauge invariance requires that all the
remaining 100 coupling constants are equal to zero. These 100
constants are allowed to be nonzero if the Galilean symmetry
is imposed instead of the full gauge invariance. Then, there are
80 dependent coupling constants that are forced to be linear
combinations of 20 independent ones:

C0000
40,2000 = −C1101

40,1101, (C87)

C0000
42,2202 = −C1101

42,1101, (C88)

C0000
20,4000 = 3

2
√

5
C2202

20,2202, (C89)

C0000
22,4202 = −1

2

√
15

7
C1101

22,3303, (C90)

C2000
20,2000 = 1

2

√
5C2202

20,2202, (C91)

C2000
22,2202 = −1

2

√
35

3
C1101

22,3303, (C92)
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C2202
22,2202 = −1

2

√
5

3
C1101

22,3303, (C93)

C1101
20,3101 = − 6√

5
C2202

20,2202, (C94)

C1101
22,3101 =

√
21

5
C1101

22,3303, (C95)

C1110
40,1110 = 1√

5
C1112

40,1112 − 3

2
√

5
C0011

40,2211, (C96)

C1110
20,3110 = −4

5
C2011

20,2011 − 2√
5
C2011

20,2211, (C97)

C1110
22,3312 = 6√

35
C2011

22,2212 +
√

5

21
C1110

22,3112

+ 2

3

√
5

21
C1111

22,3112 − 2
√

2C1111
22,3313, (C98)

C1111
40,1111 =

√
3

5
C1112

40,1112 +
√

3

5
C0011

40,2211, (C99)

C1111
42,1112 = 2

√
3C1111

42,1111 + 2
√

3C0011
42,2212, (C100)

C1111
20,3111 =

√
3

5
C2011

20,2211 − 4

5

√
3C2011

20,2011, (C101)

C1111
22,3111 = 1√

3
C1111

22,3112 − 6

5
C2011

22,2212, (C102)

C1111
22,3312 = 6√

35
C2011

22,2212 − 2
√

2C1111
22,3313, (C103)

C1112
42,1112 = 1√

7
C1110

42,1112 −
√

3

7
C1111

42,1111, (C104)

C1112
44,1112 = −C0011

44,2213, (C105)

C1112
22,3110 = C1110

22,3112, (C106)

C1112
22,3111 = −C1111

22,3112, (C107)

C1112
20,3112 = − 4√

5
C2011

20,2011 − 1

5
C2011

20,2211, (C108)

C1112
22,3112 = 6

5

√
3

7
C2011

22,2212 + 2√
7

C1110
22,3112 − 1√

7
C1111

22,3112,

(C109)

C1112
20,3312 = −2

√
3

35
C2011

20,2211, (C110)

C1112
22,3312 = 2

7
√

5
C2011

22,2212 + 2

7

√
5

3
C1110

22,3112

+ 4

21

√
5

3
C1111

22,3112 − 2

√
2

7
C1111

22,3313, (C111)

C1112
22,3313 = 1√

2
C1111

22,3313 − 4√
35

C2011
22,2212, (C112)

C1112
22,3314 = 4

7
√

15
C2011

22,2212 + 4

21

√
5C1110

22,3112

+ 8

63

√
5C1111

22,3112 − 1√
42

C1111
22,3313, (C113)

C0011
40,2011 = − 3√

5
C1112

40,1112 − 1

2
√

5
C0011

40,2211, (C114)

C0011
42,2011 = 4√

3
C1111

42,1111 − 1

2
C1110

42,1112 +
√

3C0011
42,2212, (C115)

C0011
42,2211 = − 4√

15
C1111

42,1111 − 1√
5

C1110
42,1112 −

√
3

5
C0011

42,2212,

(C116)

C0011
42,2213 = − 6√

35
C1111

42,1111 − 3

2

√
3

35
C1110

42,1112 −
√

7

5
C0011

42,2212,

(C117)

C0011
20,4011 = 3

5
C2011

20,2011, (C118)

C0011
22,4011 = − 1

10

√
3C2011

22,2212 − 1

4
C1110

22,3112 + 1

3
C1111

22,3112,

(C119)

C0011
20,4211 = 3

7
C2011

20,2211, (C120)

C0011
22,4211 = 1

7

√
3

5
C2011

22,2212 − 1

7

√
5C1110

22,3112 − 2

21

√
5C1111

22,3112,

(C121)

C0011
22,4212 = 3

7
C2011

22,2212, (C122)

C0011
22,4213 = − 3

7
√

35
C2011

22,2212 − 3

14

√
15

7
C1110

22,3112

− 1

7

√
15

7
C1111

22,3112, (C123)

C0011
22,4413 = −2

7

√
5

3
C2011

22,2212 − 1

21

√
5C1110

22,3112

− 2

63

√
5C1111

22,3112 +
√

7

6
C1111

22,3313, (C124)

C2011
22,2011 = − 1

2
√

3
C2011

22,2212 − 5

12
C1110

22,3112 + 5

9
C1111

22,3112,

(C125)

C2011
22,2211 = 1√

15
C2011

22,2212 − 1

3

√
5C1110

22,3112 − 2

9

√
5C1111

22,3112,

(C126)

C2011
22,2213 = − 1√

35
C2011

22,2212 − 1

2

√
15

7
C1110

22,3112 −
√

5

21
C1111

22,3112,

(C127)

C2211
20,2211 = 2

5
C2011

20,2011 + 1

2
√

5
C2011

20,2211, (C128)

C2211
22,2211 = − 43

25
√

3
C2011

22,2212 − 1

3
C1110

22,3112

− 17

90
C1111

22,3112 + 9

5

√
21

10
C1111

22,3313, (C129)

C2211
22,2212 = 4

5
√

5
C2011

22,2212 + 1√
15

C1111
22,3112 − 3

5

√
14C1111

22,3313,

(C130)
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C2211
22,2213 = − 4

25
√

7
C2011

22,2212 −
√

3

7
C1110

22,3112

+ 4

5
√

21
C1111

22,3112 + 3

5

√
2

5
C1111

22,3313, (C131)

C2212
20,2212 = 2√

15
C2011

20,2011 − 1

2
√

3
C2011

20,2211, (C132)

C2212
22,2212 = 1

5

√
7C2011

22,2212 − 1

6

√
7

3
C1111

22,3112 − 3√
10

C1111
22,3313,

(C133)

C2212
22,2213 = −2

5

√
2

35
C2011

22,2212 − 2

3

√
14

15
C1111

22,3112 + 3

5
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C0000
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Finally, we list 20 combinations of terms that are invariant
with respect to the Galilean symmetry and correspond to the
independent coupling constants:
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