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Assessment of the importance of the pairing interaction in the continuum
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I. INTRODUCTION

The treatment of many-body systems including the contin-
uum part of the spectrum was first carried out by means of
the continuum shell model (CSM) long ago [1]. Since then the
CSM has been applied successfully in a number of situations
(e.g., to explain halo nuclei [2]) or recently to study a variety
of phenomena associated with the continuum [3]. By using the
basis provided by the CSM a BCS formulation was presented
in Ref. [4] and was later extended to the complex energy plane
[5,6]. The BCS application to processes where the continuum
plays an important role is justified. This has been shown in
Refs. [7,8], where calculated quantities associated with rele-
vant physical states as provided by a Hartree-Fock-Bogoliubov
theory with proper boundary conditions are well approximated
by the corresponding quantities evaluated within the BCS
approximation. We therefore will investigate in this paper the
importance of the proper continuum to the correlations induced
by the pairing interaction acting on systems lying close to
the continuum threshold or even immersed in the continuum
itself. To this end we will start by defining the single-particle
representation to be used in our calculations. In a second
step we will assess the importance of the pairing correlation
provided by bound and resonance states as compared to the
one corresponding to the nonresonant continuum.

Section II describes the representation, Sec. III shows how
the pairing interaction acts in the continuum, and a summary
and conclusions are provided in the last section.

II. BOX SINGLE-PARTICLE REPRESENTATION

One usually describes the continuum by means of a basis
set of states consisting of scattering waves (normalized to the
delta Dirac function) or by plane waves with box boundary
conditions. The advantage of the scattering waves is that one
can readily impose proper (outgoing) boundary conditions,
but for this one has to pay the price of dealing with functions
of diverging norm. Instead, the functions in the box are
normalized inside the box, but then one has somehow to

deduce the results provided by this basis in the limit when
the dimension of the box goes to infinity. We have found that
to derive clearly and without ambiguities the matrix elements
of the pairing interaction among continuum states, it is more
convenient to use the box representation. We therefore assume
that the normal single-particle states are the eigenvectors of a
Woods-Saxon potential, which are obtained by diagonalizing
the potential in the box representation [9,10].

Within this representation one can obtain the bound states
provided by the Woods-Saxon potential and the corresponding
resonances as induced by the centrifugal barrier (and since we
will deal only with neutrons there will be no Coulomb barrier).
As we will show in the following, the resonances thus obtained
are narrow. Wide resonances cannot be distinguished by the
diagonalization method irrespective of the representation used.
But all the resonances (i.e., the narrow as well as the wide
ones) are the complex solutions of the Schrödinger equation
with outgoing boundary conditions (Gamow states). The width
of the resonance can be considered to be minus twice the
imaginary part of the Gamow energy. But it is important
to notice that this width corresponds to particle decay. If
the system survives long enough in a given state then one
can apply stationary formalisms, as we are doing here with
the Gamow states. In this case all imaginary parts are small
and the corresponding probabilities, such as those we will
evaluate in the following, can be considered real numbers.
Otherwise the stationary approximation is not valid and the
probabilities become complex with large imaginary parts. One
can say that these imaginary parts are the result of treating a
time-dependent process within a time-independent formalism.
The box representation fails to reveal wide resonances (see the
following).

There is still another point that needs clarification. The
particle decay width provided by the imaginary part of the
Gamow energy is determined by the pure single-particle state
moving on the continuum part of the spectrum. Even if the cor-
responding resonance is narrow, the single-particle state can be
mixed with other configurations of more complicated character
(such as, e.g., two-particle, one-hole states), inducing a wide
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but meaningful resonance. That is, the single-particle state is
fragmented into many pieces, inducing a wide resonance [11].
This is what usually happens in real nuclei. What one then
measures is the particle-decay width of the fragments, as done,
for example, in Ref. [12]. A similar feature is encountered in
giant resonances, which are usually wide but whose observed
widths are mostly a result of the spreading of the collective
particle-hole resonance in many fragments. This spreading
width is of the order of a few MeV, which is to be compared
to the decay width of the order of a few tens of keV. The
decay width can also be evaluated by using a RPA formalism
in a basis consisting of Gamow states. One thus finds that
the imaginary parts of the probabilities corresponding to the
giant resonances are small whereas the imaginary parts of
the resonance energies agree well with the measured particle
decay width [13]. Wide resonances may also be important
as doorway states in compound systems provided that the
distance between neighboring resonances is large enough, as
discussed, for example, in Ref. [14]. However, here we are
dealing with single-particle resonances that have to live long
enough to be observed (i.e., they have to be narrow). Therefore
we consider that only narrow resonances are meaningful in this
work.

The outgoing solutions of the Schrödinger equation are also
the poles of the corresponding S matrix in the complex energy
plane. Therefore we will call “poles” the set of bound and
resonant states.

We will classify the states evaluated through the box
representation in two groups. In one group will be all the
nonresonant continuum states, which we will labeled with the
letter c; in the other will be all the bound and narrow resonant
states (i.e., the poles), which we will labeled with the letter
p. As a mean field we will choose a central plus spin-orbit
Woods-Saxon potential determined by the parameters V0 =
43.5 MeV, Vso = 13.5 MeV, r0 = 1.27 fm, and a = 0.7 fm.

The bound single-particle states provided by the diagonal-
ization of this potential for different values of R are presented
in Table I. The corresponding experimental data, taken from
Ref. [15], are also given (and differ very little from the ones
given in Ref. [16]). One sees in this table that the calculated
energies agree reasonably well with experiment as the radius
of the box increases.

To make our presentation as clear as possible we will show
with some detail the behavior of the resonances evaluated
within the box representation, although perhaps many of these
features are known [9,17].

In the continuum part of the spectrum (i.e., in the positive
energy region), the number of states below a certain energy
(cutoff energy) increases with the dimension of the box since
the box boundary condition implies that the energies corre-
sponding to a given partial wave are inversely proportional
to R [18]. As a result, one also finds that as R increases
the energy of the levels decreases. However, if the partial
wave carries an angular momentum large enough a narrow
resonance may appear. This would manifest itself such that
the corresponding level will remain at a rather constant energy
(plateau condition). This energy is the position of the narrow
resonance. We present these features in Fig. 1, where the
levels provided by the box corresponding to the partial wave
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FIG. 1. Energy evolution of the box levels corresponding to the
partial wave i13/2 as a function of the box radius R for the potential
given in the text. The dots correspond to the resonance (see also
Table II).

i13/2 are given for a cutoff energy of 20 MeV. One sees
that the level energies decrease (and the number of levels
increases) as R increases. However, at about 1.5 MeV the
first level remains at a rather constant energy throughout
the interval of R values presented in the figure. This is a
resonance. Since resonances appear as a result of the trapping
of the system by the centrifugal barrier, one expects that
the corresponding single-particle wave function Rnlj (r) should
be localized within a region extending to a radius d defined by
the barrier. We will thus define the localization L of a given
state as the probability of finding the system in that state within
the distance d, that is,

Lnlj =
∫ d

0
R2

nlj (r)r2dr. (1)

As was already mentioned, the Gamow energies are
complex quantities and their imaginary parts can be interpreted
as minus twice the width of the resonances. Therefore for
narrow resonances the imaginary parts of the energies are,
in absolute value, small, but also the imaginary parts of the
localization are small for narrow resonances.

The L values with d = 10 fm are shown in Table II for
the low lying poles in 132Sn. The Gamow states as well as the
corresponding states evaluated by using the box representation
are given. One thus sees that for the state i13/2 the Gamow
energy has a very small (in absolute value) imaginary part
and that the localization is practically unity (real). That is, this
is a narrow resonance, as expected by consideration of the
large centrifugal barrier associated with it. The corresponding
values of L provided by the box are larger than 99% for all
box dimensions, showing that narrow resonances are indeed
localized.

One sees in Fig. 2 that the evolution of the box states
corresponding to the resonance j15/2 depends on the box
radius. As one chooses larger values of R starting from R =
10 fm, the energy of the first level, which for small values
of R represents the resonance, will eventually diminish but
the resonance will still manifest itself since then the second
level will remain constant at the resonance energy. At even
larger box dimensions the energy of the second level will
also diminish and the third level will become the resonance.
This trend goes on for larger and larger R values since at the
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TABLE I. Bound single-particle states corresponding to neutrons outside 132Sn. The energies
are in MeV and the box radius R is in fm. The experimental data are from Ref. [15].

State Exp. R = 10 R = 15 R = 20 R = 25 R = 30

2f7/2 −2.450 −2.516 −2.471 −2.527 −2.504 −2.462
3p3/2 −1.596 −1.396 −1.389 −1.381 −1.405 −1.367
1h9/2 −0.889 −0.965 −0.954 −0.922 −1.018 −0.919
3p1/2 −0.794 −0.690 −0.731 −0.759 −0.737 −0.754
2f5/2 −0.445 −0.377 −0.262 −0.232 −0.193 −0.193
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FIG. 2. Energy evolution of the box levels corresponding to the
partial wave j15/2 as a function of the box dimension. The dots
correspond to the box resonances shown in Table II.
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FIG. 3. Energy evolution of the box levels corresponding to the
partial wave d5/2 as a function of the box dimension.

limit of R = ∞ the number of levels is also infinite. One thus
sees that up to about R = 17 fm the resonance corresponds to
the first (lowest) box state. From R = 17 fm to R = 24 fm
it is the second state that is the resonance, from R =
24 fm to R = 29 fm it is the third state, and at R = 30 fm
the resonance becomes the fourth state. That the dots in Fig. 2
correspond indeed to the resonance changing state as the box
size increases can be verified by looking at the localization.
Thus, we evaluated L at R = 20 fm for the first box state
j15/2 and found that its value is much smaller than the one
corresponding to the second state that according to Table II
is L = 0.905. The same occurs at other box dimensions; that
is, the localization corresponding to the resonance is always
much larger than the one corresponding to the nonresonant
states. However, this localization is approximately unity only
for very narrow resonances, indicating that narrow resonances
may be considered as quasibound states. An example of a
pole that cannot be considered a narrow resonance is shown in
Fig. 3, where no plateau is seen for the very wide state d5/2,
and all the box states have a very small localization.

One sees in Table II that for the very narrow resonance
i13/2 the localization is L = 0.991, and for the resonance i11/2,
which is 380 keV wide, L = 0.751. It thus becomes clear
that the reason for these different values of the localization
is that the box state representing the resonance corresponds to
the position of the resonance, which otherwise is distributed
throughout its width. In the box representation used here the
way to include the width is by decreasing the distance between
the box levels (i.e., by increasing the dimension of the box).
Using this procedure one verifies that there is a convergence
in the evaluated quantities when reaching a certain value of R,

TABLE II. Resonant neutron states in 132Sn evaluated through the box diagonalization as a function of the box radius R. The complex
energies in the second column were evaluated by using the computer code GAMOW [19]. Energies are given in MeV and the box radius is in
fm. The box state number (labeled by State) as well as the localization L [Eq. (1)] are also given.

State Gamow states R = 10 R = 15 R = 20 R = 30

Energy L Energy State L Energy State L Energy State L Energy State L

d5/2 1.249 − i2.030 (−0.099, −1.841) – – – – – – – – – – – –
i13/2 1.452 − i0.00002 (0.992, 0.000) 1.652 1 1. 1.508 1 0.993 1.506 1 0.992 1.518 1 0.991
g9/2 3.470 − i0.443 (0.893, −0.286) 5.423 2 1. 3.645 2 0.806 4.475 3 0.517 3.931 4 0.524
g7/2 5.500 − i1.818 (1.285, −0.679) – – – – – – – – – – – –
i11/2 7.780 − i0.190 (1.005, −0.065) 8.306 1 1. 7.688 1 0.897 7.818 2 0.905 7.981 3 0.751
j15/2 9.019 − i0.126 (0.981, −0.051) 9.611 1 1. 9.010 1 0.928 9.090 2 0.923 9.159 4 0.834
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which in box calculations is usually not larger than R = 30 fm
in medium and heavy nuclei. This is a procedure that we will
follow in the present paper.

We evaluated all poles expected in this nuclear region, not
only the states just discussed, by using the computer code
GAMOW [19]. We show in Table II the complex energies and
localizations thus calculated together with the corresponding
values provided by the box diagonalization for different box
radii. One sees in this table that the narrower a resonance is, the
closest to unity is the localization. However, wide resonances
have localizations that are complex with large imaginary parts,
which, therefore, cannot be interpreted as probabilities.

The state 1i13/2 is, according to its complex energy, a very
narrow resonance that lies at an energy of 1.452 MeV, which
is close to the value provided by the diagonalization for a box
radius larger than 15 fm. The Gamow state 1j15/2 is wider
and therefore the evolution of the state seen in Fig. 2 shows
that the plateau changes from one level to the next one as R

increases. However, the energy of the different plateaus thus
formed remains constant at about 9 MeV, in good agreement
with the real part of the corresponding Gamow energy.

It is interesting to analyze whether the wave function of
a narrow Gamow state is similar to the one corresponding to
the wave function provided by the diagonalization procedure
in the box. For this we will analyze the level i13/2 of Fig. 1
that we have assumed to represent the resonance. In Fig. 4
we compare the Gamow wave function (real as well as
imaginary parts) with the wave functions provided by the box
representation for R = 15 fm and R = 30 fm. As expected for
this very narrow resonance, the imaginary part of the Gamow
function is negligibly small for distances at least up to 30 fm.
The agreement between the corresponding real part and the
box wave functions is excellent, confirming our previous
conclusions.

The important point in this analysis is that the narrow
resonance wave functions are localized within the nucleus.
Therefore the matrix elements of the pairing interaction acting
upon resonance states with given values of angular momenta
should have values similar to the ones corresponding to bound

FIG. 4. Comparison between the Gamow wave function for the
state 1i13/2 and the corresponding resonant state obtained by the box
diagonalization for R = 15 fm and R = 30 fm. The imaginary part of
the Gamow wave function is negligible, while the real part coincides,
within the precision of the figure, with the case R = 30 fm. Even the
case R = 15 fm [for which R13/2(r = 15 fm) = 0] is very similar to
the other two cases, except at the tail.

FIG. 5. Wave functions for the first three box states (labeled by
n) corresponding to the partial wave i13/2 evaluated at R = 30 fm.

states. Instead, continuum states are not localized and the
continuum wave functions are distributed along the whole
space inside the box. As an example we show in Fig. 5 the
wave function corresponding to the three first states in Fig. 1
at R = 30 fm. The first of these is the resonance already shown
in Fig. 4; the other two are states in the nonresonant continuum.
One thus sees that the continuum states are indeed distributed
throughout the box.

There is still one uncertainty regarding the resonances,
namely that their localization depends on the width of the
resonance. The question is at which value of the imaginary
part of the energy the pole loses its physical relevance to
become a part of the continuum background. To answer this
question we first consider the 3d5/2 Gamow state in Table II
at (1.249,−2.030) MeV. We present the corresponding wave
function in Fig. 6. One sees that it spreads outside the nucleus
and that its imaginary part is large. It is also seen in the
evolution of the levels as a function of the dimension of the
box corresponding to the partial wave d5/2 (see Fig 3), which
shows no plateau. So this state belongs to the nonresonant
continuum.

As an example of another state that does not show any
plateau, we present in Fig. 7 the partial wave g7/2. In
this case the energy of the pole is, according to Table II,
(5.500,−1.818) MeV. However, the pole 2g9/2, at an energy
of (3.470 − i0.443) MeV, can be recognized by using the box
diagonalization. This can be seen in Fig. 8, where the evolution
of the levels corresponding to the partial wave g9/2 is presented.
Although here the plateau is rather weak, it can still be seen at

FIG. 6. Real and imaginary parts of the complex Gamow wave
function corresponding to the state 3d5/2 at (1.249, −2.030) MeV.
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FIG. 7. Evolution of the levels corresponding to the partial wave
g7/2 as a function of the box dimension.

about 3 MeV. Owing to the width of the resonance the energy
differs rather much from the one corresponding to the pole
(cf. Table II).

It is important to notice that it is the box representation that
provides the energies that can be compared with experiment.

As a result of this discussion one can assert that very narrow
resonances (of the order of a few keV or less) show a behavior
very similar to that of bound states. That is, the resonance
survives such a long time that the state can be considered
quasistationary. But when the width of a resonance reaches a
few hundred keV, it becomes increasingly difficult to identify
any plateau in the evolution of the corresponding box levels.
In other words, it is the presence of a plateau that determines
whether the resonance will be considered as a polo in this
formulation.

III. THE PAIRING INTERACTION

In this section we will define the pairing interaction in the
continuum following the procedure that has been shown to be
very successful in bound systems [20]. We start with the two-
particle wave function �JM

n1n2
, where ni labels all the quantum

numbers corresponding to particle i. By taking for the pairing
force the monopole component of the contact delta interaction
[i.e., V (r1, r2) = −V0δ(r2 − r1)], the matrix elements take the
form〈

�JM
n1n2

∣∣VP

∣∣�JM
n3n4

〉 = (−)l1+l3δJ0δn1n2δn3n4

〈
�00

n1n1

∣∣V ∣∣�00
n3n3

〉
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FIG. 8. Evolution of the partial wave g9/2 as a function of the
box dimension. The dots correspond to the box resonances shown in
Table II

where, with standard notation [21],

〈
�00

n1n1

∣∣V ∣∣�00
n3n3

〉 = −(−)l1+l3
V0

2
ĵ1ĵ3In1n3

and

In1n3 = 1

4π

∫ ∞

0
R2

n1
(r)R2

n3
(r)r2dr. (2)

The state n1 (and n3) can be a pole or a continuum state.
In what follows we will call “poles” only bound states and
physically meaningful resonances (i.e., states that correspond
to some plateau in the box representation). Therefore there are
three types of integrals, namely I pp, I pc, and I cc.

The integrals in Eq. (2) are dependent on the states. It is
customary to replace them by their average value to have a
constant pairing interaction [20]. The average is defined as

Iav =
∑

m,n(2jn + 1)(2jm + 1)In,m∑
m,n(2jn + 1)(2jm + 1)

. (3)

The evaluation of these averages will allow us to estimate the
dependence of the integrals in Eq. (2) on the nuclear volume
VN and on the box volume V .

As we have seen, the radial wave functions Rn have a very
different behavior for the case of pole states as compared to
nonresonant states. Because to this we will consider separately
the pole-pole, pole-continuum, and continuum-continuum
cases.

A. Pole-pole case Ipp

Table III displays the average value of the integrals for the
pole states (I pp

av ) obtained for different box sizes. The striking
feature is the remarkable independence of I

pp
av on the box

size. This is a manifestation of the localization of the poles
and, therefore, one can use the standard values of the pairing
strength for this case (i.e., Gp ≈ g/A) [22].

It is possible to arrive at the same conclusion by using
general arguments. Since the pole wave function is localized,
most of it is inside the nuclear volume VN = 4π

3 R3
N . This

important property makes it possible to approximate Rn(r) by
the function Rloc

n (r) defined as

Rloc
n (r) =




Rn(r)√∫ RN
0 R2

n(x)x2dx
(r � RN )

Rloc
n (r) = 0 (r > RN ).

(4)

TABLE III. Average value of the integrals involving pole
states for different box volumes V .

R (fm) V (fm3) I
pp
av × 10−3 (fm−3)

15 14,137 0.358
20 33,510 0.351
25 65,450 0.340
30 113,097 0.321

Average relative
deviation

3.5%
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The integral becomes

I pp
n1n2

= 1

4π

∫ RN

0

[
Rloc

n1
(r)

]2[
Rloc

n2
(r)

]2
r2 dr. (5)

Since Rn(r) are real functions the integrants I (r) in Eqs. (4)
and (5) are positive functions and a value of r = ρ exists
(0 � ρ � RN ) such that∫ RN

0
I (r)r2dr = I (ρ)R3

N/3 = I (ρ)
3VN

4π
. (6)

Equation (5) can then be written as

I pp
n1n2

= In1n2,av/VN, (7)

where

In1n2,av = R2
n1

(ρ12)R2
n2

(ρ12)

3R2
n1

(ρ1)R2
n2

(ρ2)
. (8)

That is, the pairing strength Gp corresponding to the pole-pole
sector will be multiplied by a constant Iav, which will be the
average of the values In1n2,av.

B. Continuum-continuum case I cc

Table IV displays the average value of the integrals for
the continuum states obtained for different box sizes. We also
display the average value of the volume times the integral
(V × I cc

av ). The striking feature here is that V × I cc
av does not

depend on the box size, and therefore one can use for the
pairing interaction a strength, which is proportional to 1/V .

Again, it is possible to understand this result on general
arguments. To do so we will treat the nonresonant continuum
by using Cartesian coordinates, as one does in the description
of homogeneous superconductor materials [23]. In this case the
box state is defined by the linear momentum k = (kx, ky, kz).
The normalized single-particle wave function is, therefore,

R(k, r) = eik·r/
√

V , (9)

where V = L3 and L is the length of the cubic box.
Notice that, as the pairing interaction is extracted from the

delta force and the wave function does not contain information
related to the relative motion part of the two particles in
time reversal states, one can replace eik(r1−r2) by unity [23].
Therefore,

I cc = 1

V 2

∫ V

0
dxdydz = 1

V
. (10)

TABLE IV. Average value of the integrals involving contin-
uum states for different box volumes V .

R (fm) V (fm3) I cc
av × 10−4 (fm−3) V × I cc

av

15 14,137 0.878 1.24
20 33,510 0.346 1.16
25 65,450 0.171 1.12
30 113,097 0.097 1.10
Average relative
deviation

3.9%

TABLE V. Average value of the integrals involving pole and
continuum states for different box volumes V .

R (fm) V (fm3) I
pc
av × 10−4 (fm−3) V × I

pc
av

15 14,137 1.060 1.50
20 33,510 0.440 1.47
25 65,450 0.218 1.43
30 113,097 0.131 1.42

Average relative
deviation

2.1%

C. Pole-continuum case Ipc

Table V displays the average value of the integrals involving
pole and continuum states obtained for different box sizes.
We also display the average value of the integral times the
volume. Again the independence of this quantity on the box
size is remarkable, and therefore one can use for the pairing
interaction a strength that goes as 1/V .

By using the general arguments one obtains, as before,

I pc = 1

V

∑
n(2jn + 1)

∫ R

0 R2
n(r)r2dr∑

n(2jn + 1)
= 1

V
. (11)

D. The pairing Hamiltonian

We consider for convenience a pairing interaction with
constant strength, but the results to be presented do not depend
very much on this approximation, as expected. In Sec. III I we
will avoid this approximation and the energy-dependent matrix
elements will be properly evaluated.

As already shown within the constant pairing strength one
finds that the pairing interaction largely depends on the volume
as 1/VN ∝ 1/A (see also Refs. [24,25]) for the pole states. This
feature has been confirmed experimentally since the beginning
of the application of pairing interactions in nuclei [22] and
has been confirmed rather recently [24]. However, we have
seen that the interaction goes as 1/V for the part involving
continuum states (see also Ref. [23]). The pairing Hamiltonian
thus becomes

HP = Hsp − GpP †
pPp − GcP

†
pPc − GcP

†
c Pp − GcP

†
c Pc,

(12)

where

Gp = IavV0

VN

, (13)

Gc = V0

V
, (14)

P †
p =

∑
nm>0

(−)jn−ma†
nma

†
n−m, (15)

P †
c =

∑
νm>0

(−)jν−ma†
νma

†
ν−m, (16)

where Iav is the average value introduced in Eq. (3).
The label p (c) indicates pole (continuum) pairing states.

The single-particle pole states are labeled by n and the nonreso-
nant continuum states are labeled by ν. Since Gc/Gp ∝ VN/V

the strength of the pairing interaction acting upon states in
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the continuum diminishes with respect to the corresponding
pole strength as the volume of the box increases. One may
therefore be tempted to conclude that the continuum contri-
bution will be negligible as the dimension of the box goes
to infinity. But before reaching such conclusion the physical
quantities should be evaluated first and then the limit should
be performed. This we intend to do in the following.

By making the usual quasiparticle transformation the
pairing gaps for pole and continuum states become

�p = Gp�p

∑
n

2jn + 1

4En

+ Gc�c

∑
ν

2jν + 1

4Eν

,

(17)

�c = Gc�p

∑
n

2jn + 1

4En

+ Gc�c

∑
ν

2jν + 1

4Eν

,

where the quasiparticle energies En and Eν are given by

En =
√

(εn − λ)2 + �2
p, (18)

Eν =
√

(εν − λ)2 + �2
c (19)

and λ is the Fermi level.
The number of particles and the occupation numbers are

N =
∑

n

(2jn + 1)v2
n +

∑
ν

(2jν + 1)v2
ν , (20)

v2
n = 1

2


1 − εn − λ√

(εn − λ)2 + �2
p


 , (21)

v2
ν = 1

2

(
1 − εν − λ√

(εν − λ)2 + �2
c

)
. (22)

This constitutes the nonlinear system of equations for the
unknown parameters �p,�c, and λ. One can recognize here a
state-dependent BCS set of equations. There are two different
pairing parameters, one for the pole states and another one
for the nonresonant continuum. As we have discussed in the
previous section the pairing strength parameter can be written
as Gp = g/A, where g depends upon the nuclear region and
also on the number of shells included in the representation
[22]. One thus gets V0 = GpVN/Iav = 4π

3 r3
0 g/Iav, where r0

is the radius parameter, which we will take as the one in the
Woods-Saxon central potential. The strength in the continuum
is Gc = V0/V , where V is the volume of the box.

E. Quasiparticle energies

We solved the BCS equations by using g = 21 [6] and
obtained the quasiparticle energies corresponding to the
valence orbits shown in Fig. 9. One sees in this figure that
the order of the levels change from one state to another as
the shells are filled following the same pattern as the one
expected in bound nuclei, thus showing that the pole states
determine the behavior of the system in the continuum. The
scarce available experimental data [16] agree well with our
calculation, but it is not possible to give a definite answer to
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FIG. 9. Quasiparticle excitation energies as a function of the mass
number in heavy Sn isotopes for an energy cutoff of 30 MeV and a
box size of R = 30 fm.

whether the formalism is indeed appropriate to describe the
effect of pairing interactions in the continuum until more data
become available.

The quasiparticle energies shown (for bound as well as
for resonant states) were evaluated by using a box of radius
R = 30 fm and a cutoff energy of 30 MeV. We also performed
the calculations using smaller cutoffs and have found that the
results do not change appreciably even using the rather low
value of 10 MeV.

To investigate the convergence of the pole quasiparticle
energies as a function of the box size we show in Table VI those
energies as well as the corresponding occupation probabilities
for an energy cutoff of 30 MeV and for 16 valence states.
One sees that the convergence is satisfactory even for wide
resonances (cf. Table II).

F. Gap parameters

A major aim of this paper is to investigate the importance
of the nonresonant continuum in building up physically
meaningful unstable states. This we can do by noticing that
from Eqs. (17) one gets

V �c = V0�c

∑
n

2jn + 1

4En

+ V �p

(
1 −

∑
n

Gp

2jn + 1

4En

)
,

(23)

where Gc = V0/V was used. If the nonresonant continuum is
neglected then

1 −
∑

n

Gp

2jn + 1

4En

= 0

and, therefore, the product V �c would be independent of the
box size. We show in Table VII this product for an energy
cutoff of 30 MeV as a function of the number of particles. One
indeed sees that V �c is virtually independent of the box size
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TABLE VI. Quasiparticle energy and occupation probability as a function of the box size for the energy
cutoff of 30 MeV and N = 16. The energies are in MeV and the box radius is in fm.

State R = 10 R = 15 R = 20 R = 25 R = 30

E v2 E v2 E v2 E v2 E v2

2f7/2 2.075 0.793 1.875 0.831 1.914 0.838 1.867 0.836 1.878 0.837
3p3/2 1.686 0.528 1.415 0.556 1.419 0.552 1.392 0.555 1.399 0.560
1h9/2 1.716 0.402 1.434 0.403 1.445 0.392 1.403 0.417 1.417 0.401
3p1/2 1.767 0.348 1.494 0.332 1.489 0.340 1.476 0.326 1.458 0.348
2f5/2 1.920 0.259 1.709 0.216 1.731 0.211 1.742 0.196 1.715 0.207
1i13/2 3.400 0.066 3.054 0.056 2.994 0.059 3.051 0.054 3.017 0.056
2g9/2 6.933 0.015 5.076 0.020 4.505 0.025 4.980 0.020 5.313 0.017
1i11/2 9.755 0.007 9.036 0.006 9.164 0.006 9.258 0.006 8.388 0.007
1j15/2 11.042 0.006 10.327 0.005 10.405 0.005 10.456 0.004 10.426 0.004

for each isotope even when the volume of the box changes
27 times (i.e., from R = 10 fm to R = 30 fm). The last line in
the table shows the relative deviation with respect to the mean
value. It is less than 1% for the isotopes considered. We found
the same behavior for other energy cutoffs.

Another feature that shows this is the evolution of the
continuum gap �c as a function of the box size. In Figure 10
we plotted �c for different isotopes and box sizes using an
energy cutoff of E = 30 MeV. One can see that the continuum
gap becomes negligible as the box radius increases.

In Figs. 11 and 12 one can see the convergence of the pairing
gap parameter and the Fermi level, respectively, as a function
of the box size for different isotopes (with an energy cutoff of
30 MeV). These features again confirm that the nonresonant
continuum can be disregarded in describing unstable nuclei.

G. Particle number

An additional probe of the importance of the nonresonant
continuum can be performed by analyzing its contribution to
the number of particles (20). To do this we first use the standard
procedure to replace sums by integrals [23], that is,

1

V

∑
n

f (kn) →
∫

g(ε)f (ε)dε with g(ε) = 3
√

2m3

h̄3π3

√
ε.

(24)

TABLE VII. Continuum gap parameter times box volume as a
function of the box size for an energy cutoff of 30 MeV and for a
particle numbers from N = 2 to N = 8. The values of �c × V are
given in unit of fm3 MeV.

R (fm) V (fm3) N = 2 N = 4 N = 6 N = 8

10 4189 685 938 1119 1268
15 14,137 670 921 1102 1254
20 33,510 668 916 1096 1250
25 65,450 683 939 1124 1279
30 113,087 676 929 1111 1266
Relative deviation 0.89% 0.86% 0.81% 0.72%
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FIG. 10. Evolution of the continuum gap parameter for different
isotopes as the box increases for the energy cutoff of 30 MeV.
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FIG. 11. Evolution of the gap parameter for different isotopes as
the box increases for an energy cutoff of 30 MeV.

134 138 142 146 150 154 158
Mass number

-3

-2

-1

0

Fe
rm

i l
ev

el
 [

M
eV

] R= 10 fm
R= 20 fm
R= 30 fm

FIG. 12. Evolution of the Fermi level for different isotopes as the
box increases for an energy cutoff of 30 MeV.
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TABLE VIII. The product P = NcV
√|λ| (in units of fm3 MeV1/2) as a function of the box size and the particle

number N for an energy cutoff of 30 MeV. The Fermi level λ is give in MeV.

R (fm) V (fm3) N = 2 N = 4 N = 6 N = 8

P −λ P −λ P −λ P −λ

10 4189 31 3.161 58 2.906 82 2.640 104 2.369
15 14,137 34 3.098 65 2.854 92 2.600 120 2.340
20 33,510 38 3.133 71 2.886 151 2.625 133 2.358
25 65,450 54 3.118 104 2.875 102 2.620 199 2.359
30 113,087 48 3.078 92 2.828 134 2.572 176 2.309

Relative deviation 19.6% 20.5% 21.4% 22.5%

Notice that the single-particle density contains only the
nonresonant part. The particle number equation becomes

N =
∑

n

v2
n + V

∫
g(ε)v2(ε)dε. (25)

Since the first term in this equation does not depend on the
box size for large enough values of R, the second term will not
depend on R either. We start the analysis of this second term,
Nc, by noticing that for �c/|ε − λ| � 1 (i.e., small �c) one
can write

v2(ε) = 1

2

(
1 − ε − λ√

(ε − λ)2 + �2
c

)
� �2

c

4|ε − λ|2 (26)

and

Nc = V

∫
g(ε)v2(ε)dε � V �2

c

4

∫
g(ε)dε

|ε − λ|2 . (27)

Since �c ∝ 1/V (Sec. III F) one obtains, after performing the
integral, Nc ∝ 1

V
√|λ| , and therefore the product P = NcV

√|λ|
should be independent on R if our assumption that �c is small
is valid. We show this product in Table VIII for an energy
cutoff of 30 MeV and for particle numbers from 2 to 8. One
sees that for each value of the particle number the value of P

is rather constant, with a dispersion of about 20%.

H. Binding energies

So far we used g = 21, which we took from Ref. [6].
We want now to evaluate binding energies to compare with
available experimental data. To do this we proceed as usual
and write the BCS Hamiltonian as

HBCS = B +
∑
nm

Enα
+
nmαnm +

∑
νm

Eνα
+
νmανm, (28)

where the binding energy is

B =
∑
nm

v2
n(εn − λ) +

∑
νm

v2
ν (εν − λ) + Vpair (29)

and the pairing energy has the form

Vpair = −�p

2

∑
n

(2jn + 1)unvn − �c

2

∑
ν

(2jν + 1)uνvν.

(30)

It is worthwhile to point out that the BCS equations
do not have any nontrivial solution for normal systems. In
particular, in the nucleus 48Ca the BCS equations give zero
gap whereas exact numerical solutions provide a couple of
MeV of correlation energy [26]. This feature is still present
when the continuum is included.

We evaluated the binding energies B using for the pairing
strength the value g = 22.5, which fits the experimental
binding energy of 134Sn. In Table IX we show the results of our
calculations and the few available experimental data. Again,
here, it is encouraging to see that, for the only measured isotope
(i.e., 136Sn), the agreement between theory and experiment is
excellent.

One may think that any calculation that includes the
continuum in some reasonable way would provide binding
energies that would be in equally good agreement with each
other and with experiment or, in other words, that all reasonable
calculations in heavy Sn isotopes would provide similar
results. To show that this is not the case we notice that in
a recent shell-model calculation adjusted to treat neutron-rich
nuclei [28] it was found that B = 18.56 MeV in 138Sn, well
outside the corresponding value shown in Table IX.

Finally, it is worthwhile noticing that even the experimental
binding energies in these isotopes may disagree with each
other substantially. Thus, in a recent paper [29] the binding
energy of 134Sn was reported to be B = 5.906 MeV (cf.
the corresponding value in Table IX). We re-evaluated our
Sn isotopes by adjusting the pairing strength to obtain that
experimental energy, which we did with g = 18.4. This gives
for 136Sn the value B = 11.426 MeV (i.e., a deviation of
910 KeV with respect to the nowadays accepted value). It

TABLE IX. Binding energies B for heavy Sn isotopes.
The experimental results are from Ref. [27]. A box radius of
R = 30 fm and a cutoff energy of 30 MeV were used in the
calculations.

Isotope Experimental (MeV) Calculated (MeV)

134Sn 6.390 6.390
136Sn 12.336 12.321
138Sn – 17.764
140Sn – 22.692
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TABLE X. Single-particle states and corresponding energies
(MeV) in the core 132Sn evaluated by using the delta interaction
matrix elements [Eq. (2)] and the box representation. In the
third column is the pairing gap (in MeV) and in the last
column is the occupation probability v2 corresponding to the
quasiparticle states in the nucleus 148Sn (i.e., N = 16) The
states are ordered in three groups: bound states (with negative
energies), resonances (as determined by the box procedure), and
some selected continuum states.

State Energy Gap v2

Bound
2f7/2 −2.527 1.122 8.7 × 10−1

3p3/2 −1.381 0.523 6.2 × 10−1

1h9/2 −0.922 1.568 4.0 × 10−1

3p1/2 −0.759 0.230 4.4 × 10−2

2f5/2 −0.232 0.747 9.2 × 10−2

Resonances
i13/2 1.506 2.000 1.0 × 10−1

g9/2 4.475 0.661 3.3 × 10−3

i11/2 7.818 1.488 6.6 × 10−3

j15/2 9.090 1.900 8.3 × 10−1

Continuum
s1/2 0.995 0.040 8.3 × 10−5

d3/2 4.469 0.174 2.3 × 10−4

f7/2 2.681 0.090 1.3 × 10−4

thus seems that experimental efforts to measure these binding
energies are well motivated.

I. Influence of the continuum background

We have shown that the contribution of the continuum
background to the physical quantities diminish and eventually
vanishes as the dimension of the box goes to infinity. We have
performed our studies by using a constant pairing interaction.
We now want to show that bound states and narrow resonances
are also overwhelmingly more important than states in the
continuum background even if the force is dependent upon
the configurations in which the pairs of nucleons move. This
calculation will also enable us to probe whether the use of
the constant pairing interaction is justified. To do this we will
include the matrix elements of the delta force [Eq. (2)] without
performing any average of their values. We thus evaluated
the gaps and occupation probabilities v2 corresponding to
bound, resonant, and continuum configurations by using the
box representation with a box radius of R = 20 fm and a
cutoff energy of 30 MeV. The corresponding results are shown
in Table X, where even the single-particle energies are given.
In the table the states have been collected in three groups.: the
bound states, the resonances, and some selected continuum
states. One notices that the gaps and occupation probabilities

in the first group are of the same order of magnitude as the
corresponding quantities in the second group. Instead, the gaps
in the third group are about one order of magnitude smaller as
compared with those in the first two groups. Even more striking
is the difference in the occupation probabilities, which are on
average three orders of magnitude smaller than the previous
ones. Considering that this difference would even be larger as
the box dimension increases, one can conclude that continuum
states do not influence the dynamics of unstable nuclei. This is
just in agreement with the conclusions reached in the previous
case of constant pairing strength.

Another important feature that one notices in this calcu-
lation is that the evaluated quantities agree well with the
ones calculated previously. This can be seen by comparing
the energies in Table X with the corresponding ones in
Tables I and II, while the occupation probabilities can be
compared with those given in Table VI. The average pairing
gap in this energy-dependent case is 1.201 MeV, which agrees
well with the corresponding value in Fig. 11. One thus
confirms the validity of the constant pairing interaction in
BCS calculations.

IV. SUMMARY AND CONCLUSIONS

In this paper we have introduced a pairing interaction fitted
to be applied in nuclei with active particles moving close to
the continuum threshold or even immersed in the continuum
itself. For this we took into consideration the property that
resonant wave functions are localized within the nuclear
volume whereas states in the continuum are distributed over the
whole space. Using these properties we found that the pairing
strength Gp corresponding to bound and resonant states is
different than the pairing strength Gc acting upon continuum
states. We found that the effects of the nonresonant continuum
upon physically meaningful quantities are not important. We
applied the theory to heavy Sn isotopes and found very
good agreement between the calculated quantities and the
few available experimental data. We argued that experimental
efforts to measure binding energies in these nuclei would be
most welcome to probe theories that are designed to treat the
continuum part of the spectrum, including the theory presented
here.
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