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Shell model formalism for all hypernuclei types: A guide to solving the nonmesonic
weak decay puzzle
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We extend to odd-odd core hypernuclei our independent particle shell model (IPSM) formalism developed
previously for the evaluation of the �NM, �n/p , and a� hypernuclear weak decay observables. The present
procedure reproduces the even-odd and even-even core results as particular cases. Adopting the standard
strangeness-changing weak �N → NN transition potential with exchange of the complete pseudoscalar and
vector meson octets (π, η,K, ρ, ω,K∗) we get simple analytical expressions for all observables. Numerical
values for 4

�He, 5
�He, 11

�B, 12
�C, 16

�O, 17
�O, and 28

�Si hypernuclei are obtained and compared with available
experimental data, putting special attention on the asymmetry parameter. We remark that, in the present
form, the IPSM gives roughly the same value of a� for all hypernuclei in contradiction with experiments.
We stress the necessity of introducing configuration mixing to go beyond the IPSM taking into account,
in a more realistic way, nuclear structure effects. Moreover, one could to include more relevant degrees of
freedom, even within the IPSM framework, like: (i) modifications of the exchange potential (two-pion, a1

meson, �T = 3/2 terms of vector mesons, etc.), (ii) final state interactions accounting for the distortion
of the plane waves of emitted nucleons, and (iii) two-nucleon induced decay, as possible ways to solve the
puzzle.
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I. INTRODUCTION

Hypernuclear physics adds a new flavor (strangeness) to
usual nuclear physics studying the behavior of hyperons
(�,�,	,
) inside the nuclear medium, which is now a
bound system of neutrons, protons, and hyperons. In particular,
we are interested in hypernuclei with strangeness S = −1,
produced mainly via strong interactions through the π+n →
�K+,K−n → π−�, and K−p → π0� reactions. As known,
the free � hyperon decays mainly through the weak mesonic
mode � → Nπ , but inside the nuclear medium this mode is
Pauli blocked and a new nonmesonic mode, �N → NN , is
opened. It can be stimulated either by neutrons (�n → nn) or
protons (�p → np) with rates �n and �p, respectively.

The nonmesonic hypernuclear weak decay (NMHWD)
offers a good opportunity to analyze the |�S| = 1 nonleptonic
weak interactions between hadrons inside nuclear medium. For
many years there has been a great effort to find agreement be-
tween theoretical and experimental results for the observables
of this mode: the total decay rate, �NM = �n + �p, the neutron
to proton ratio, �n/p = �n/�p, and the intrinsic asymmetry
parameter in polarized hypernuclei, a�. Between theoretical
calculations we have (i) the simplest one-pion exchange
model (OPEM) assuming the �T = 1/2 isospin rule [1,2];
(ii) models including exchange of heavier mesons like
η,K, ρ, ω, and K∗ [3–7]; (iii) models describing short-
range baryon-baryon interaction in terms of quark degrees
of freedom [8,9]; (iv) models including correlated (in the form
of σ and ρ mesons) and uncorrelated two-pion (2π ) exchange
[10–13], and also the axial-vector a1 meson [14]; (v) models

including interaction terms that violate the isospin �T = 1
2

rule [15–18]; (vi) analysis of the two-nucleon stimulated
process �NN → NNN [19–21]; and (vii) calculations taking
into account the effect of final state interactions (FSI) involving
the ejected nucleons [22–27]. These calculations, performed
by some in the nuclear matter framework and by others using
shell model (SM), reproduce fairly well the total nonmesonic
decay rate. In the light of recent developments [23,24] and
new measurements [28–34], the experimental value of �n/p

seems to be small and close to 0.50. However, the majority
of calculations predict very similar values for the asymmetry
parameter, a�, for 5

�He and 12
�C (in the range from −0.73 to

−0.19) although measurements favor a negative value for 12
�C

and a positive one for 5
�He. These discrepancies constitute

an interesting puzzle involving the hypernuclear weak decay
that still needs to be solved. Here it is important to remark
on the relevance of the recent works from Refs. [12–14] that
point to possible solutions via the inclusion of correlated plus
uncorrelated chirally motivated 2π exchange, or a1 meson.

Despite the fact that nuclear matter and SM calculations
lead to similar general conclusions about the mentioned
observables, in Refs. [5–7] the necessity of using a SM
framework to calculate the observables, mainly for light
hypernuclei where the nuclear matter approximation cannot
be well justified, has been discussed and analyzed carefully.
Moreover, Ref. [35] has established the bridge between both
formalisms. As usual, a A

�Z hypernucleus is represented as
a � particle coupled to a A−1Z core. Thus, we can group
the hypernuclei according to their even-even, even-odd, and
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odd-odd cores. The SM formalism developed in our previous
works involves a partial wave expansion of the emitted nucleon
waves, preserving naturally the antisymmetrization between
the escaping particles and the residual core. However, there
only the cases of even-even and even-odd hypernuclei, 5

�He
and 12

�C, respectively, were treated. In looking for general
conclusions about the theoretical values for the NMHWD
observables, it would be very useful to have a valid SM
formalism for all types of hypernuclei. This will contribute
to our understanding of why a similarity between theoretical
values of the observables for different hypernuclei exists; at
the same time it could clearly give a guide to finding the
origin of the discrepancies between theory and experiments.
Motivated by the previously mentioned arguments, here we
extend to the odd-odd case the formalism of Refs. [5]
and [7] and evaluate the observables for several different
hypernuclei.

The article is organized as follows. In Sec. II the general
formalism is presented and we show that it reproduces in par-
ticular our previous results from Refs. [5] and [7]. In Sec. III we
give the numerical results for 4

�He, 5
�He, 11

�B, 12
�C, 16

�O, 17
�O,

and 28
�Si hypernuclei, draw our conclusions, and give our final

remarks.

II. FORMALISM

The decay rates �n and �p for the NMHWD of an initial
hypernucleus (with spin JI and energy EI ) to a residual nucleus
(with spin JF and energy EF ) plus two free nucleons (with total
spin S and energies εP ≡ ε and εp = �F − ε) can be evaluated
by means of Fermi’s golden rule as [5]

�N = 16M3
N

π

∑
JF νJF

∫ �F

0
dε
√

ε(�F − ε)

×
∑

SlLλJT

∣∣〈plPLλSJT JF νJF
; JI |V |JI

〉∣∣2, (1)

where p = √
MN (�F − ε) and P = 2

√
MNε are the relative

and center-of-mass momenta and �F = EI − EF − 2MN is
the released energy, with MN being the nucleon mass. νJF

are the set of labels to specify different states with the
same JF (the final nucleus isospin MTF

= MTI
− mtN − mt�

is fixed); MT = mtN + mt� , with mtN = 1
2 (− 1

2 ) for N = p (n)
and mt� = −1/2; and V is the transition potential, where

〈plPLλSJT JF νJF
; JI |V |JI 〉

= Ĵ−1
I

∑
jN

fJ

(
jNJF νJF

)
M
(
plPLλSJT ; j�jNmtN

)
, (2)

with jN ≡ nN lN jN tN and j� ≡ n� l� j� t� being the single-
particle states for the nucleon and �, respectively (we assume
that the � particle behaves as a | 1

2 ,− 1
2 〉 isospin particle in the

1s1/2 level). Here we define

fJ

(
jNJF νJF

) = (−)2JF Ĵ ĴI

{
JC JI j�

J jN JF

}
〈JC‖a†

jN mtN

∥∥JF νJF

〉
,

(3)

with JC being the core spin such that |(JCj�)JI 〉, and the
matrix element

M(plPLλSJT ; j�jNmtN )

= 1√
2

[1 − (−)l+S+T ](plPLλSJT |V |j�jNmtN J ) (4)

corresponds to the two body matrix element between the
bounded �-nucleon system and the two final unbounded
nucleons.

For the sake of simplicity we will work within the
independent particle shell model (IPSM) where the final states
are built by single hole states created on |JC〉. Figure 1
shows the initial and final states contributing to each case
(even-even, even-odd, and odd-odd core). We begin with a A

�Z

hypernucleus with an odd-odd core being

|JCMC〉
= (

b
†
jnc

b
†
jpc

)
JCMC

|0〉,
|JF νJF

= {
jN, J1,MTF

= MTC
− mtN

}
,MF 〉

= δmtN
1/2
[
b
†
jnc

,
(
b
†
jpc

b
†
jN

)
J1

]
JF MF

|0〉
+ δmtN

−1/2
[
b
†
jpc

,
(
b
†
jnc

b
†
jN

)
J1

]
JF MF

|0〉, (5)

where |0〉 = |A+1(Z + 1)〉 is the vacuum state and b
†
j (bj )

creates (destroys) a hole state. Note that the extra label νJF
in

this model is associated with the hole state j−1
N , J1, the type of

destroyed nucleon mtN , and MF = MI . Because each |JF νF 〉
is built for only one hole state j−1

N , consequently the sum in
Eq. (2) reduces to only one term and the index νJF

≡ jNJ1,
being EF ≡ EC − εjN and �jN ≡ M� − MN + εjN + εj� , with
the single-particle energy εjN . This suggests that we rewrite
our Eq. (1) as

�N = 16M3
N

π

∑
jN

∫ �jN

0
dε
√

ε(�jN − ε)

×
∑

SlLλJT

S1
(
J, jNmtN

)
× ∣∣M(

plPLλSJT ; j�jNmtN

)∣∣2 (6)

S1
(
J, jNmtN

) ≡ Ĵ−2
I

∑
JF J1

fJ

(
JF J1jNmtN

)2
, (7)

where we see that all the nuclear structure information should
be present in the spectroscopic factors S1(J, jNmtN ). After
some simple algebra, we can write1

fJ

(
JF J1jNmtN

)
= (−)jnc +jpc +JC+2JF δmtN

1/2
[
1 + (−)J1δjN jpc

]1/2
Ĵ ĴI ĴCĴ1ĴF

×
{

JC JI j�

J jN JF

}{
jnc

jpc
JC

jN JF J1

}
+ (

pc,mtN ↔ nc,−mtN

)
,

(8)

1It is important to remark that the allowed j values are limited by the
fact that, in the j1j2 coupling we are using here, one needs to satisfy
the condition j + t = odd for configurations with j1 = j2 [36].
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FIG. 1. Initial and final states contributing
to the hypernuclear weak decay for even-even,
even-odd, and odd-odd core cases.

and thus, making the angular momentum sums present in
Eq. (7), we get

S1
(
J, jNmtN

) = δmtN
1/2Ĵ

2


ĵ−2

� − δjN jpc
Ĵ 2

C




JC jN jnc

JI j� JC

j� J jN






+ (
pc,mtN ↔ nc,−mtN

)
. (9)

It is important to note that when the extracted nucleon comes
from a full shell (jN 	= jNc

), the factor S1 is independent of the
initial hypernucleus and also on the level jN . For the case of
the even-odd core hypernucleus considered here we have

|JCMC〉 = (
b
†
jnc

)
JCMC

|0〉,
(10)

|JF MF 〉 = (
b
†
jnc

b
†
jN

)
JF MF

|0〉,
where |0〉 = |A+1Z〉 is now the vacuum state, and the results
in this case can be obtained from those of the odd-odd core
by choosing jpc

= 0 (which means jnc
= JC and J1 = JF

(J1 = jN ) for neutron (proton)-induced decay).2 Similarly,
because

|JCMC〉 = |0〉,
(11)

|JF MF 〉 = b
†
jN

|0〉,
for the even-even core hypernucleus, being now |0〉 = |AZ〉,
results for this case are reproduced with jpc

= jnc
= 0 (which

means JC = 0 and J1 = JF = jN ) in the odd-odd core formu-
las. In conclusion, we have arrived at the general expression
(8) for the fJ (JF J1jNmtN ) coefficients of odd-odd hypernuclei,
which includes the even-odd and even-even hypernuclei as
particular cases.

2Alternatively, for an odd-even core hypernucleus the final state of
which is described as |JF MF 〉 = (b†

jpc
b
†
jN

)JF MF
|0〉, the results can be

obtained from odd-odd formulas with jnc
= 0.
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Analogously, the intrinsic asymmetry parameter can be
calculated as [7]

a� = ω1

ω0
, (12)

where

ωκ (JI ) = 28π5
√

2

{
j� JI JC

JI j� κ−1

}∫
d cos θp1

×
∫

dF
∑
ST T ′

(−)T +T ′ ∑
lLλJ

∑
l′L′λ′J ′

i−l′−L′−l−L

× (−)λ+S+JC− 1
2 +2JI +J+J ′+κ+1+JF l̂l̂′L̂L̂′λ̂λ̂

′
Ĵ Ĵ ′

×
∑
kK

(l0l′0|k0)(L0L′0|K0)[Yk(θp, π )

⊗ YK (θP , 0)]κ0

{
JI κ JI

J JF J ′

}{
κ J ′ J

S λ λ′

}

×



l l′ k

L L′ K

λ λ′ κ


 , 〈plPLλSJT JF ; JI |V |JI 〉

× 〈pl′PL′λ′SJ ′T ′JF ; JI |V |JI 〉∗, (13)

where we use the short notation (h̄ = c = 1)∫
dF . . . = 2π

∑
νJF

JF

∫
p2

2 dp2

(2π )3

∫
p2

1dp1

(2π )3
δ

×
(

p2
1

2M
+ p2

2

2M
+ |p1 + p2|2

2MF

− �νJF
JF

)
. . . .

(14)

Now, if we assume the IPSM as before, in the case of an odd-
odd core the Eqs. (13) and (14) can be rewritten, respectively,
as (remember that N = p because the asymmetry is measured
in the proton-induced decay)

ωκ (JI ) = 8
√

2
∑

jp

∫
d cos θp1

∫
dFjp

∑
ST T ′

(−)T +T ′

×
∑
lLλJ

∑
l′L′λ′J ′

i−l′−L′−l−L (−)λ+S− 1
2 l̂ l̂′L̂L̂′λ̂λ̂

′
Ĵ Ĵ ′

×
∑
kK

(l0l′0|k0)(L0L′0|K0)[Yk(θp, π )

⊗ YK (θP , 0)]κ0

{
κ J ′ J

S λ λ′

}


l l′ k

L L′ K

λ λ′ κ




×S2(J, J ′, jp, κ)M(plPLλSJT ; j�jp)

×M∗(pl′PL′λ′SJ ′T ′; j�jp), (15)

and ∫
dF . . . = 1

(2π )5

∑
jp

∫
dFjp

∑
J1JF

. . . , (16)

with∫
dFjp . . . =

∫
p2

2dp2

∫
p2

1dp1δ

×
(

p2
1

2M
+ p2

2

2M
+ |p1 + p2|2

2MF

− �jp

)
. . . .

(17)

Here

S2(J, J ′, jp, κ) ≡ Ĵ−2
I (−1)JC+2JI +J+J ′+κ+1

{
j� JI JC

JI j� κ

}−1

×
∑
J1JF

(−)JF

{
JI κ JI

J JF J ′

}

× fJ (JF J1jp1/2)fJ ′ (JF J1jp1/2), (18)

which, after using Eq. (8) for fJ , can be reduced as

S2(J, J ′, jp, κ)

= Ĵ Ĵ ′
[

(−)−jp

{
κ j� j�

jp J J ′

}
+ δjp jpc

Ĵ 2
C(−1)JC+2JI +jnc

×
{

j� JI JC

JI j� κ−1

}


j� JI JC jp

J κ J ′ JC

jp JI jnc
j�




 , (19)

valid for odd-odd hypernuclei and containing as special cases
the even-odd (with jpc

= 0) and even-even (with jpc
= jnc

=
0) ones. Here also we can realize that for a full shell in the
core, in which case only contributes the first term in Eq. (19),
the contribution of each jN to the asymmetry is independent of
the hypernucleus, i.e., on JC and JI .

III. NUMERICAL RESULTS AND SUMMARIZING
CONCLUSIONS

We have performed numerical computation for 4
�He,

5
�He, 11

�B, 12
�C, 16

�O, 17
�O, and 28

�Si hypernuclei, with a stan-
dard strangeness-changing weak �N → NN transition po-
tential comprising the exchange of the complete pseudoscalar
and vector meson octets (π, η,K, ρ, ω,K∗) [5–7]. In our
calculation, we have taken into account corrections due to kine-
matical effects related to the �-nucleon mass difference and
the first-order nonlocal terms, which are carefully discussed
in Ref. [6]. Also, we have included both (i) finite nucleon size
(FNS) effects that are phenomenologically implemented by a
monopole form factor (�2

M − µ2
M )/(�2

M + q2),�M being the
cutoff for the meson M [5], and (ii) initial and final short-range
correlations (SRC) that are simulated, respectively, by means
of the correlation functions

g�N (r) = (
1 − e−r2/α2)2 + βr2e−r2/γ 2

,
(20)

gNN (r) = 1 − j0(qcr),

with α = 0.5 fm, β = 0.25 fm−2, γ = 1.28 fm, and qc =
3.93 fm−1. Tables I and II show the numerical results for
the decay rates and the intrinsic asymmetry parameter, respec-
tively, which can be compared with the available experimental
data for each observable exhibited in Table III.
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TABLE I. Numerical results for the decay rates (in units of �0 = 2.5 × 10−6 eV). See text for
detailed explanation.

4
�He 5

�He 11
�B 12

�C 16
�O 17

�O 28
�Si

�n(1s1/2) 0.042 0.137 0.119 0.117 0.111 0.107 0.082
�n(1p3/2) − − 0.092 0.089 0.122 0.117 0.088
�n(1p1/2) − − − − 0.027 0.055 0.042
�n(1d5/2) − − − − − − 0.058

�n 0.042 0.137 0.211 0.206 0.260 0.279 0.271
�p(1s1/2) 0.564 0.553 0.468 0.462 0.437 0.429 0.327
�p(1p3/2) − − 0.340 0.508 0.481 0.471 0.359
�p(1p1/2) − − − − 0.229 0.224 0.173
�p(1d5/2) − − − − − − 0.281

�p 0.564 0.553 0.808 0.970 1.148 1.124 1.140
�NM 0.606 0.690 1.019 1.176 1.408 1.403 1.411
�n/p 0.071 0.248 0.261 0.212 0.226 0.248 0.238

In Table I we generalize the results previously discussed
in Ref. [5] for 5He and 12C to other even-even and even-odd
nuclei and include results for the odd-odd case, accordingly
with Eqs. (6), (9), (12), (15), and (19) developed in the
previous section within the IPSM. One first view shows that
�p is large in relation to �n, which is due to the tensor
interaction contributing to the parity-conserving part in the
proton-induced decay. As a second important observation we
note that the partial contributions �p,n(jN ) and ω0,1(jN ) of each
jN coming from full shells (jN 	= jNc

) are roughly independent
of the considered hypernucleus, very small differences coming
form the different oscillator parameters used in each case
to generate the single-particle wave functions (see paragraph
below Eq. (5.2) in Ref. [5] for a discussion about the adopted
values for this parameter). This fact can be understood from the
factors in Eqs. (9) and (19) that contain the nuclear structure
information for the �p,n(jN ) and ω0,1(jN ), respectively, and are
independent of JC and JI for full shells. Comparison with
the closed shell case indicates a notable change (reduction)
in these contributions when the nucleon is promoted from
an open shell, as happens for neutrons in 4

�He, 12
�C, 16

�O,

and 28
�Si and for both protons and neutrons in 11

�B. This
is produced because of the change in the occupancies,
accounted for by the second term in brackets in mentioned
factors. Nevertheless, the contribution for an open shell is
also hypernucleus independent, as can be seen in the case
of �n(1s1/2) for 11

�B and 12
�C. It is important to note that

Eqs. (9) and (19) are only valid within the IPSM [see
Eq. (5)] where the sums in Eq. (2) reduce to only one term. This
enables a contraction between different angular momentum
recoupling (geometrical) coefficients present in fJ , through
the sum on JF and J1. The third and very important result is
that, within the IPSM, we get approximately the same value
for the neutron to proton ratio �n/p ∼ 0.25 (except for 4

�He)
and for the asymmetry parameter a� ∼ −0.5 (see Table II)
of all hypernuclei. This can be understood noting that for
each hypernucleus �p,n(jN ) 
 αjN �p,n(1s1/2) and ω1(jN ) 

αjN ω1(1s1/2) (remember that ω0(jN ) = �p(jN )) with α1p3/2 =
1, α1p1/2 = 0.5, and α1d5/2 = 0.9 for initial hypernuclei where
the jN shell is closed, while, for example, α1p3/2 = 0.75 for 11

�B
where this shell is open for neutrons and protons.In this way
�n/p 
 �n/p(1s1/2) 
 �n/p(5

�He) 
 0.25 for all the even-even

TABLE II. Numerical results for the intrinsic asymmetry parameter. See text for detailed
explanation.

4
�He 5

�He 11
�B 12

�C 16
�O 17

�O 28
�Si

ω0(1s1/2) 0.564 0.553 0.468 0.462 0.437 0.429 0.327
ω0(1p3/2) − − 0.340 0.508 0.481 0.471 0.359
ω0(1p1/2) − − − − 0.229 0.224 0.173
ω0(1d5/2) − − − − − − 0.281

ω0 0.564 0.553 0.808 0.970 1.148 1.124 1.140
ω1(1s1/2) −0.298 −0.297 −0.258 −0.255 −0.242 −0.233 −0.178
ω1(1p3/2) − − −0.169 −0.260 −0.248 −0.240 −0.186
ω1(1p1/2) − − − − −0.119 −0.114 −0.090
ω1(1d5/2) − − − − − − −0.139

ω1 −0.298 −0.297 −0.427 −0.515 −0.609 −0.587 −0.593
a� −0.529 −0.538 −0.529 −0.530 −0.530 −0.522 −0.520
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TABLE III. Experimental data for the NMHWD observables (total width is given in units of �0 = 2.5 × 10−6 eV).

�NM �n/p a�

4
�He 0.17 ± 0.05 [38] 0.06+0.28

−0.06 [38] −
0.20 ± 0.03 [39] 0.25+0.05

−0.13 [39] −
0.177 ± 0.029 [40] �0.19 [40] −

5
�He − 0.39 ± 0.11 [24,25] −

0.41 ± 0.14 [41] 0.93 ± 0.55 [41] −
− − 0.24 ± 0.22 [42]
− (0.45 − 0.51) ± 0.15 [43] 0.07 ± 0.08+0.08

−0.00 [43,44]
0.424 ± 0.024 [45] 0.45 ± 0.11 ± 0.03 [45,46] 0.11 ± 0.08 ± 0.04 [45,47]

11
�B − 1.04+0.59

−0.48 [41] −
− − −0.16 ± 0.28+0.18

−0.00 [44]
− − −0.20 ± 0.26 ± 0.04 [47]
− 0.59±+0.17

−0.14 [48] −
− − 0.28 ± 0.14 [49]

0.95 ± 0.13 ± 0.04 [50] 2.16 ± 0.58+0.45
−0.95 [50] −

1.33 ± 0.08 [51] − −
0.861 ± 0.063 ± 0.073 [52] − −

12
�C − 0.51 ± 0.13 ± 0.04 [32] −

1.14 ± 0.2 [41] 1.33+0.12
−0.81 [41] −

− 0.87 ± 0.09 ± 0.21 [43] −0.24 ± 0.26+0.08
−0.00 [43]

− − −0.16 ± 0.28+0.18
−0.00 [44]

0.940 ± 0.035 [45] 0.56 ± 0.12 ± 0.04 [45] −0.20 ± 0.26 ± 0.04 [45,47]
− − 0.02 ± 0.20 [49]

0.828 ± 0.056 ± 0.066 [52] 0.87 ± 0.09 ± 0.21 [52] −
16
�O 2.80+1.07

−0.84 [53] − −
17
�O − − −

28
�Si 1.30 ± 0.10 [51] − −

1.125 ± 0.067 ± 0.106 [52] 0.79+0.13+0.25
−0.11−0.24 [52] −

− 1.38+0.13+0.27
−0.11−0.25 [54] −

and odd-odd hypernuclei, as a consequence of αjN being the
same for neutron and proton shells and the independence
of the hypernuclei mentioned above. This relation is also
approximately fulfilled by even-odd hypernuclei (except 4

�He
where �n(1s1/2) is the only contribution to neutrons) where
αjN is a little bit smaller for neutrons than for protons in the
valence shell. The mentioned factorization has been already
explicitly shown for the case of 12

�C in Ref. [5], but now we see
that can be extended to other orbitals and other hypernuclei.
The analysis achieved for �n/p can be easily repeated for a�

to explain the independence shown in Table II. Here, as the
asymmetry is calculated from the ratio ω1/ω0 for the same kind
of decaying particles (protons) the differences in the factors
αjN between closed and open shell does not affect the ratio and
the result a� ∼ −0.5 is fulfilled by all the hypernuclei with
great precision even for 4

�He.
Comparison with the available experimental results from

Table III is very useful to remark on the puzzle involving
the NMHWD when we use the IPSM with the complete
octet meson decay potential. In fact, discrepancies between
theoretical and the more recent experimental data can be
observed, mainly for the intrinsic asymmetry parameter.
Particularly, it is very easy to see that the central values of
�n/p and a� do not exhibit the hypernucleus independence

obtained within the IPSM. We remember at this point that
FSI effects are not included in the present plain model. Thus,
certain dependence with the considered hypernuclei could be
obtained by adding their contribution [22,27,37].

On the other hand, one of the most serious objections that
we could have to the IPSM, without considering the additional
effects of the FSI between the ejected nucleons, the three-
body �NN → NNN decay contribution, the |�T | = 3/2
contribution of vector mesons, or other modifications in the
exchange potential, is that it does not consider configuration
mixing in the final nucleus. For example, suppose that in
place of the final states shown in Eq. (5) we adopt the
combination

|JF νJF
〉 =

∑
jNJ1

CjN ,J1 (JF νJF
)
[
b
†
jnc

,
(
b
†
jpc

b
†
jN

)
J1

]
JF MF

|0〉 (21)

within the Hilbert space generated by states with a given
JF , obtained by adding one hole to the core,3 for mtN =

3We could enlarge the Hilbert space and consider more complex
configurations of one particle-two holes or two particles-three holes
coupled to the core, which could in principle interact with the
configurations in Eq. (21), without changing the conclusions.
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1/2 or −1/2. Here CjN ,J1 (JF νJF
) should be obtained from

diagonalization of the full Hamiltonian including the residual
interaction. Now, the sum in the Eq. (2) does not reduce to
only one term, the summation on JF cannot skip as before the
kinematical factors containing EF ≡ EJF νJF

, and besides each
contribution is weighted by CjN ,J1 (JF νJF

). As a consequence
of this, Eqs. (6) and (15), responsible for the independence on
the initial nucleus in the IPSM, will be no more valid.

For this reason, our calculation, based in the IPSM
formalism, should be considered the zero-order approximation
for the correct treatment of the nuclear structure, mainly for
light hypernuclei. It is also important to mention here the three
following aspects that could help to solve the puzzle. First, in
view of the large error bars exhibited by the data, it will be very
useful to have precise experimental values for the observables
of different hypernuclei (more than 5

�He and 12
�C). Thus, if one

introduces a more evolved nuclear structure treatment, as for
example the effect of configuration mixing, the experimental
results should be capable of giving enough information to
differentiate the predictions of the different models. Second,
in the light of very recent contributions [12–14] it seems that
proper modifications of the exchange potential and inclusion of
FSI would lead to substantial improvements in the coincidence
between the calculations and the experimental results, mainly
for the asymmetry parameter. For example, our values in Table
II, a�(5

�He) = −0.538, a�(11
�B) = −0.529, and a�(12

�C) =
−0.530, are strongly changed in Ref. [14] to 0.083, 0.078,

and 0.045, respectively, by the addition of the a1 meson, all
these values being within the error bars (see Tables II, V,
and VI from Ref. [14]). Another modification has been the
inclusion of correlated plus uncorrelated 2π in the exchange
potential, which is capable of breaking the uniformity of the
values for a�, giving a�(5

�He) = 0.028, a�(11
�B) = −0.111,

and a�(12
�C) = −0.126 (see Tables 1 and 3 from Ref. [12])

in complete agreement with experiment. Third, any one of

the available theoretical evaluations in the literature intro-
duces the contribution of two-nucleon-induced decay to the
intrinsic asymmetry parameter. As happens with the neutron
to proton ratio [23,24], it could modify the results for this
observable.

In summary, we have developed a general IPSM formalism,
valid for even-even, even-odd, and odd-odd core hypernuclei,
which is an extension of that presented in our previous works
[5,7]. We have shown that, in the present form, it predicts
approximately the same value for the neutron to proton ratio,
�n/p, and asymmetry parameter, a�, of all hypernuclei and
cannot reproduce the available experimental data. These nearly
constant values obtained for all considered hypernuclei are
due to the fact that nuclear structure detailed information
seems to have been removed because of the dropping of
configuration mixing in the final states and to the factorization
of the 1s1/2 contribution, which lead to a cancellation of factors
between numerator and denominator for both observables
approximately.We suggest that one should go beyond the IPSM
and consider configuration mixing in the final nucleus. Finally,
we have stressed the necessity of evaluating, with the IPSM
framework as a starting point, the effects of (i) modifications
of the exchange potential (2π, a1 meson, �T = 3/2 terms of
vector mesons, etc.), (ii) final state interactions, which could
be included on the same footing as in Refs. [22] and [27],
and (iii) two-nucleon-induced decay as possible ways to solve
the puzzle. We plan to include these contributions and to
improve the IPSM model in the future by analyzing why the
factorization effect should not be present in such cases.

ACKNOWLEDGMENTS

C.B. and A.M. were supported by CONICET (Argentina)
under contract PIP 06-6159. A.S. acknowledges the financial
support from Texas A&M University-Commerce.

[1] M. M. Block and Dalitz, Phys. Rev. Lett. 11, 96 (1963).
[2] J. B. Adams, Phys. Rev. 156, 832 (1967).
[3] J. F. Dubach, G. B. Feldman, B. R. Holstein, and L. de la Torre,

Ann. Phys. (NY) 249, 146 (1996).
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[24] G. Garbarino, A. Parrẽno, and A. Ramos, Phys. Rev. C 69,
054603 (2004).
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