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Universality of Mallmann correlations for nuclear band structures
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It is shown that the Mallmann’s energy ratio correlations, for the first time observed for the ground state band of
the even-even nuclei, are universal: various band structures in all collective nuclei obey the same systematics, and
consequently the same spin dependence. Based on a second order anharmonic vibrator description, parameter-free
recurrence relations between Mallmann-type energy ratios are deduced, which can be used to extrapolate bands
to higher spin.
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The understanding of the energies of the positive-parity
yrast levels (the “ground state band”—g.s.b.) of even-even
nuclei has been a subject of continuous interest since many
years. Almost 50 years ago Mallmann [1] observed that
the experimental energy ratios R(6/2) = E(6+)/E(2+) and
R(8/2) = E(8+)/E(2+) lie on two “universal” curves when
represented as a function of the lowest ratio in the band,
R(4/2) = E(4+)/E(2+) [where E(J+) is the excitation en-
ergy of the state of spin J ]. With increasing number and quality
of data (more nuclei and higher observed spin) it was found that
Mallmann-type ratios for higher spin states in the g.s.b. define
also compact, unique patterns. This implies that all g.s.b. in
even-even nuclei have energies with the same spin dependence.
We emphasize that the concept of Mallmann-type correlation
has been associated until now only with the g.s.b. of even-even
nuclei.

The fact that the g.s.b. structure in the even-even nuclei
follows a simple systematic incited to the development of
many theoretical and phenomenological approaches aiming
at understanding this behavior. Among the early various
approaches to the description of the yrast excitation energies,
important steps are the expansion in the powers of I (I + 1) [2],
the variable moment of inertia (VMI) model [3], the Holmberg-
Lipas expression [4], the anharmonic vibrator (AHV) [5],
and the empirical relation of Ejiri [6] (see also [7] and
references therein). More recent approaches are, for example,
Refs. [8–15].

The AHV-type of approach to the description of the
band structures regained a lot of interest after the surprising
finding [14,16] that the g.s.b.’s of most of the even-even
collective, nonrotational (2.0 < R(4/2) < 3.15) nuclei are
well represented by a universal anharmonic vibrator:

E(I ) = nE(2+
1 ) + n(n − 1)

2
ε4 (1)

with a nearly constant anharmonicity ε4 (where n, the number
of phonons of the state, is n = I/2 as a function of spin
I ). This equation, where E(2+

1 ) and ε4 can be regarded
more generally as free parameters, is equivalent with the
two-parameter relation empirically proposed by Ejiri [6],
E(I ) = aI + bI (I + 1) (a, b are parameters). Similar energy
correlations have subsequently been found for different bands
in collective, both rotational and nonrotational odd-A and
odd-odd nuclei [17–20]. The extent of applicability of the

AHV type relations for B(E2) values is also very interesting,
considering the importance of the K quantum number, but this
investigation is hindered by the lack of extensive data in odd-A
and odd-odd nuclei, and it is outside the goal of this paper.

Equation (1) is only a first order description of the nuclear
band structures. It is found experimentally [19] that with
increasing n (spin) the plots increase in scattering but with
highly correlated deviations around the straight lines (1), a
fact which indicates the need of additional anharmonicities. In
Ref. [15] the next order AHV expression was studied:

E(I ) = nE(2+
1 ) + n(n − 1)

2
ε4 + n(n − 1)(n − 2)

6
ε6 (2)

and it was found that it represents the experimental data very
well, including the good rotor nuclei (R(4/2) > 3.15) as well.
As shown in Refs. [18,19], Eq. (2) is a good approximation
to a rather smooth and compact correlation empirically found
between the experimental energies of four successive levels in
the band. As emphasized in Ref. [15], the applicability of
Eq. (2) to different types of band structures remains a
surprising, empirical finding.

A question which occurs often in practice is how to
extrapolate a band structure to higher spins by using the known
levels. Practical methods employed by experimenters to do this
imply following the evolution of different quantities related
to the band, such as the excitation energy as a function of
spin E(I ); the in-band transition (or gamma-ray) energies—or
the first derivative dE(I )/dI ; the differences of gamma-
ray energies (the second derivative d2E(I )/dI 2, which is
proportional to the inverse of the dynamical moment of inertia).
These methods usually work very well in the good rotational
cases. In using the AHV relation (2) for different types of
nuclei, best results are obtained if the model parameters are
determined for each case considered; note that even when
looking at the gamma-ray differences (second derivative) one
still has two parameters. It is well known that the structure
of a band can change at a certain spin (e.g., backbending).
This can be easily seen [21] by a comparison with the AHV
predictions, and the change is marked by a difference in the
parameters [for example, a rotational sequence is described by
Eq. (1) with ε4 = 4

3E(2+
1 )].

The universality of the AHV approach (2), that is, the
fact that just one single formula describes very well any
nuclear band structure, leads to the idea of using it in a
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parameter-independent way. In this respect, its universality
should clearly be related to that of the Mallmann correlations
for the ground state bands of the even-even nuclei. To this end,
in the present work we show that: (i) experimental Mallmann
correlations for all band structures in collective even-even,
odd-mass, and odd-odd nuclei are universal, implying that all
collective bands, in all nuclei, have the same spin dependence;
(ii) parameter-free relations resulting from the second order
AHV relation (2), which connect different Mallmann-type
energy ratios, are rather suitable tools for extrapolating band
energies to higher spin.

In this work we study experimental band structures in
“collective” nuclei, as extracted from the ENSDF database
[22]. For the even-even nuclei the condition applied was
R(4/2) � 2.0, which eliminates the nuclei with magic numbers
and some of the close-to-magic nuclei. For the odd-A and odd-
odd nuclei, the criterion was that their even-even neighbors
(core nuclei) are collective. In these nuclei we selected
different band structures, i.e., sequences of states of increasing
spins j, j + 2, j + 4, . . . connected by strong E2 transitions,
which were reasonably well known (at least three transitions).
We have not restricted the set of bands only to the yrast states.
In the even-even nuclei, besides the g.s.b., bands built on
intrinsic excitations, such as the “beta” quasiband (usually
built on the first excited 0+ state), or the “gamma” quasiband,
built on the 2+

γ excited state were also considered [19,20].
We have 306 even-even nuclei between 42Ti and 254No for
which the g.s.b. is known at least up to the 6+ state. For
the odd-A and odd-odd nuclei, the collection of bands is that
used in Ref. [19]: 695 different bands (most of them based
on one-quasiparticle configurations, both signatures of a band
structure considered when available) in nuclei between 73As
and 185Hg, and 400 bands (mainly based on two-quasiparticle
states) in nuclei between 72As and 194Au, respectively. Data for
a band were considered as long as the band is “unperturbed,”
that is, we consider only levels bellow up(back)-bending (in the
g.s.b. of even-even nuclei, this usually means a maximum spin
of 12 or 14h̄). For each band we define the Mallmann-type
ratios R(j + 2n/j + 2) = [E(j + 2n) − E(j )]/[E(j + 2) −
E(j )] between excitation energies relative to the “bandhead”
(n = 0, energy E(j )).

Figure 1 shows two representative examples of usual
Mallmann correlation plots for our collection of bands: R(j +
6/j + 2) and R(j + 12/j + 2) versus R(j + 4/j + 2), respec-
tively. For the collective even-even nuclei R(j + 4/j + 2)
varies from 2.0 (vibrational nuclei) to 3.33 (good rotor nuclei)
while for the odd-A and odd-odd nuclei the plots continue to
higher values, following rather closely the “Ejiri” lines. The
highest R(j + 4/j + 2) values in the odd-A nuclei correspond
to bands with strong Coriolis mixing where, in some cases, the
state of spin j + 2 has very low energy relative to the bandhead
j (these bands were discussed in detail in Ref. [19]). In
Fig. 1, the points for the odd-A and odd-odd nuclei were
translated upward in order to clearly observe the pattern for
each case. To ease the comparison with the even-even plot,
the continuous line which is a spline interpolation to the
even-even data is also drawn (correspondingly shifted) through
the odd-A and odd-odd data. One can see that the three
correlation patterns are absolutely similar. The (parameter-
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FIG. 1. (Color online) Representative experimental Mallmann
correlation plots for the band structures of different nuclei: even-even
(the g.s.b.), odd-A, and odd-odd, as indicated (note the vertical shift of
the odd-A and odd-odd data). The continuous lines through the even-
even data are spline interpolations, and are drawn (correspondingly
shifted) also through the odd-A and odd-odd data to guide a
comparison with the even-even case. The dashed lines are the “Ejiri”
straight lines [prediction of the Ejiri formula or of Eq. (1)]. Note that
the data for odd-A nuclei contain points with R(j + 4/j + 2) values
up to 78 (not shown), which are close to the Ejiri lines.

free) predictions of the Ejiri formula [or of Eq. (1)], are also
shown for comparison. Other bands, such as bands based
on intrinsic excitations (beta and gamma) in the even-even
nuclei [19,20] show absolutely similar correlations.

We conclude therefore that the Mallmann correlations
are universal in the sense that all band structures in collective
nuclei (even-even, odd-mass, or odd-odd) show exactly the
same patterns. This was effectively checked on a large
collection of band structures, as described above, comprising
mainly one- and two-quasiparticle bands for the odd-A and
odd-odd nuclei, respectively. Some checks were made for
bands built on other intrinsic excitations as well, so this
statement may be generalized to any band structure (with the
condition that it stays non perturbed—e.g., by the interaction
with other bands). This implies that the energies of any band,
and in all nuclei, are described by the same functional spin
dependence.

Equation (2) gives a good description of all these bands [19]
(here n = 0 for the first state (“bandhead”) of spin j, n = 1
corresponds to the first excited state in the band (spin j + 2),
etc.). From Eq. (2) adapted to a band built upon a state of spin
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FIG. 2. (Color online) Comparison between the experimental Mallmann ratios and those calculated with Eq. (4). The insets show the
distributions of the R(j + 2n/j + 2)exp/R(j + 2n/j + 2)calc values, counted with a bin value of 0.005.

j we write the Mallmann-type energy ratios as

R(j + 2n/j + 2) = n + n(n − 1)

2

ε4

E(j + 2)

+ n(n − 1)(n − 2)

6

ε6

E(j + 2)
. (3)

We can apply this relation to different states n in the band,
and by eliminating the parameters ε4

E(j+2) and ε6
E(j+2) one

obtains recurrence relations which express the energy ratio
of a state as a function of other two ratios in the band. For
example, one can write

R(j + 2n/j + 2) = n

n − 2

[
2

n − 3
+ 2R(j + 2n − 2/j + 2)

− n − 1

n − 3
R(j + 2n − 4/j + 2)

]
(4)

which gives the Mallmann ratio for the nth state as a function
of those of the (n − 1)-th and (n − 2)-th excited states in the
band. By similar manipulations one can get for a certain state
different other relations, always expressing its energy ratio as
a function of the ratios for any other lower two states. We note
that the same recurrence relations can also be obtained from the
empirical energy recurrence relations recently derived by Buck

et al. [23] for ground state band spectra of even-even nuclei;
indeed, the recurrence relations found in this work were shown
to be satisfied by a general solution for the energies in the band
of the type E(I ) = αI + βI 2 + γ I 3 which is identical with
the spin dependence of the second order AHV Eq. (2).

For practical purposes (prediction of higher levels within a
band), it is interesting to check the accuracy of these recurrence
relations on the existing experimental data. Figure 2 shows
how formula (4) works for our entire collection of bands, by
displaying the ratio between the experimental Mallmann ratios
[for states of spin (j + 8) and above] and those calculated with
Eq. (4) in which for the energy ratios occurring in the right
side of the formula experimental values were used. One can
see that for the existing experimental data, covering nuclei
from pure vibrators to good rotors, the recurrence relations (4)
work, in general, very well. This is valid also for the bands with
higher R(j + 4/j + 2) values not shown in Fig. 2. The inset
of each graph in Fig. 2 shows the distribution of the values of
the ratio between the experimental and calculated Mallmann
ratios (which is 1.0 for perfect agreement), constructed with a
bin of 0.005. An inspection of these distributions shows that
for the overwhelming majority of the considered cases (bands)
the deviation between the experimental and calculated value
is within ±1%. In a small number of nuclei (compared to the
total number) one can observe larger deviations, most of them
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for transitional nuclei with R(4/2) < 2.5. As an example, in
the case of the g.s.b. of the even-even nuclei for the R(8/2)
ratio, there are 39 nuclei (out of the total of 290) for which the
deviation is more than 5%. An inspection of these cases shows
that most of them are nuclei with numbers of nucleons differing
by two from a magic number (Zn, Cd, Te, Hg isotopes), or
nuclei from shape coexistence regions (70−74Ge, 76Se, 74Kr),
therefore the deviations can be explained by non collective
effects or different perturbations of the band. Thus, most of the
large deviations shown in Fig. 2 would disappear if the criteria
chosen for the nuclear collectivity were more strict. Among
all possible recurrence relations for the ratio of the nth state,
relation (4) is the most accurate, which is expected because
the states n − 1 and n − 2 collect the maximum information
about the anharmonicities of the band.

One more remark is that the values n and j that we use
to characterize a band in an AHV manner [e.g., by formula
(3)] are not necessarily related to the actual spin of the states
I = j + 2n. One may take as reference any other state in
the band: then, that state becomes by convention the zero-
phonon state (n = 0) and the energies of the higher states in
the band (defined by n = 1, 2, . . .) must be taken relative to
this state. This aspect was discussed in Ref. [19]. The observed
energy or Mallmann-type ratio correlations are similar with
those presented above, where the reference was always the
bandhead.

We stress that the present study addressed only the question
of the applicability of the AHV-2 description [Eq. (2) and
those thereafter derived from it] to the description of different
band structures in any collective nucleus—it did not concern
the intrinsic structure of these bands (or of the bandheads).
Whether the AHV model describes well other nonyrast states
(or intrinsic excitations) was investigated in Ref. [20] for a

particular case (the γ -quasibands in even-even nuclei), and
still remains a problem for further study.

In conclusion, we have shown that the correlations between
energy ratios first time observed by Mallmann many years
ago for the states of the ground state bands in the even-
even nuclei have a universal character: they are prevalent
in the band structures of all collective nuclei. This unique,
universal behavior, indicates a common underlying structure
of all collective band structures. Mallmann type correlations
constitute a compact and concise way of showing, without
detailed fits, that all band structures in collective nuclei obey a
simple dependence on spin of the relative excitation energies,
which is similar to that predicted by the anharmonic vibrator
model. The relevance of a phonon model description of all
nuclear band structures remains a challenge for microscopic
investigations. Based on the second order anharmonic vibrator
formula which is empirically found to describe well all types
of band structures that we meet in collective nuclei, we deduce
parameter-free recurrence relations for the energy ratios within
the band. These recurrence relations predict well higher states
in the band, on the basis of the (known) lower lying states.
Thus, they may allow to extrapolate, more precisely than other
methods, without any fit, band structures for which we know
minimum three excited states, with at least one more state,
which is of practical interest for the future spectroscopy of
exotic nuclei.
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