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Pairing vibrations study with the time-dependent Hartree-Fock-Bogoliubov theory
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We study pairing vibrations in 18,20,22O and 42,44,46Ca nuclei solving the time-dependent Hartree-Fock-
Bogoliubov equation in coordinate space with spherical symmetry. We use the SLy4 Skyrme functional in
the normal part of the energy density functional and a local density dependent functional in its pairing part.
Pairing vibrations are excited by two-neutron transfer operators. Strength distributions are obtained using the
Fourier transform of the time-dependent response of two-neutron pair-transfer observables in the linear regime.
Results are in overall agreement with quasiparticle random phase approximation calculations for oxygen isotopes,
though differences appear when increasing the neutron number. Both low-lying pairing modes and giant pairing
vibrations (GPV) are discussed. The GPV is observed in the oxygen but not in the calcium isotopes.
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I. INTRODUCTION

Energy density functional (EDF) approaches such as the
Skyrme-Hartree-Fock model [1,2] have proven to be success-
ful to describe bulk properties of nuclei over the nuclear chart
[3]. Recent computer improvements allow large scale EDF cal-
culations of nuclear structure [4,5] and reactions [6,7]. In these
approaches, one restricts the many-body wave functions to a
subset of the Hilbert space on the one hand and guess a nuclear
EDF on the other hand. A commonly used technique is to break
symmetries to enrich the variational subspace and improve
the description of nuclear structure. As an example, breaking
gauge invariance associated to particle number conservation
yields the Hartree-Fock-Bogoliubov (HFB) formalism [8–10].
This technique allows for the description of superfluidity in
ground states of open-shell nuclei.

Extensions to treat collective excitations in the presence
of pairing correlations are possible in the framework of the
quasiparticle random phase approximation (QRPA) which
has been widely used in nuclear structure studies [11–17].
This approach and its zero pairing counterpart (RPA) give
reasonable estimates of giant resonances though improvements
are necessary to reproduce fine structures [18]. In fact,
the QRPA can be obtained from the linearization of the
time-dependent Hartree-Fock-Bogoliubov (TDHFB) equation
which provides a self-consistent evolution of an independent
quasiparticles state. There is a consistency requirement that
QRPA and the static limit of TDHFB should use the same
effective interaction. This is a natural feature of TDHFB that
the same EDF can be easily used in the static and dynamical
calculations thanks to the structure of the TDHFB equation.
This is not always the case in (Q)RPA calculations where
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spin-orbit and Coulomb parts of the residual interaction are
often omitted (see discussion in [19] and references therein),
which may affect collective modes [15,20–22].

Unlike in condensed matter where, for instance, TDHFB
has been applied to study dynamics of Bose-Einstein con-
densates [23,24], explicit time evolutions of nuclei including
pairing are sparse and usually limited to the BCS ansatz of
superfluidity with simple functionals [25–27] or to simple
systems [28]. Only recently, a numerical method of solving
TDHFB with the Gogny interaction [29] has been proposed
to study quadrupole oscillations using a harmonic oscillator
basis [30].

At the limit where pairing is neglected, however, extensive
calculations of nuclear dynamics have been performed using
the time-dependent Hartree-Fock (TDHF) formalism intro-
duced by Dirac in 1930 [31]. In this approach, one considers
the dynamics of independent particles in a self-consistent
mean-field generated by all the others. The use of Skyrme
EDF [32] allowed recent realistic calculations of both collision
mechanisms [6,7,33–38] and giant resonances [19,39–41].
For instance, TDHF has been used to study anharmonicities
in collective motion which are beyond the RPA range of
applications [39,42]. It is then an appealing challenge to
repeat these works using TDHFB to investigate the role of
pairing correlations in nuclear dynamics. In particular, “how do
they affect low-energy reaction mechanisms?” is still an open
question. However, full three-dimensional TDHFB codes for
collisions are still prohibitive at moment. For nuclear structure
purposes, pairing vibrations and rotations [43–45] also demand
theoretical investigations to reach realistic predictions [46].
Of particular interest are high-lying pairing collective modes
like giant pairing vibrations (GPV) [47]. These modes can
be viewed as coherent sums of two-quasiparticle excitations
across a major shell. They are probed by two-nucleon
transfer reactions [48,49]. The GPVs are still unobserved
experimentally but they are experiencing a renewed interest
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since recent theoretical developments predicted that the use of
radioactive ion beams could provide better conditions for their
studies [50–52].

In this article, we solve for the first time the TDHFB
equation with a full Skyrme functional in the normal part of
the EDF and a local density dependent one in its pairing part.
As a first application, we investigate pairing vibrations using
the linear response theory. Our model is then equivalent to
a fully consistent QRPA including spin-orbit and Coulomb
interactions also in the particle-hole channel. In Sec. II,
we recall the TDHFB formalism and the choice of the
EDF. We present in Sec. III numerical implementations in
spherical symmetry. Then, we discuss in Sec. IV our choice of
observables associated to pairing vibrations in the framework
of the linear response theory. Finally, we present the results for
18,20,22O and 42,44,46Ca isotopes in Sec. V before to conclude
in Sec. VI.

II. FORMALISM

A. TDHFB equation

The TDHFB equation can be derived starting from the
action between an initial and final time ti and tf

S =
∫ tf

ti

dt〈�(t)|ih̄ ∂

∂t
− Ĥ |�(t)〉 (1)

and writing the variational principle δS = 0 in the subspace
of quasiparticle vacua. For each state |�〉 of this subspace,
one can find a basis of quasiparticle annihilators {β̂} such that
β̂µ|�〉 = 0 for all µ [44]. The latter can be related to the
particle creation and annihilation operators {â†, â} through the
Bogoliubov transformation [10]

β̂µ =
∑

ν

(U ∗
νµâν + V ∗

νµâ†
ν), (2)

where the matrices U and V are such that the quasiparticle
operators {β̂†, β̂} fulfill the canonical anticommutation rules
for fermions.

The variational principle leads to the TDHFB equation [53]

ih̄
∂

∂t
R = [H,R]. (3)

The generalized one-body density matrix reads

R(t) =
(

ρ(t) κ(t)

−κ∗(t) 1 − ρ∗(t)

)
, (4)

where ρµν = 〈ψ |â†
ν âµ|ψ〉 are the matrix elements of the

normal density and κµν = 〈ψ |âν âµ|ψ〉 are the elements of the
pairing tensor. The generalized one-body Hamiltonian H has a
block structure and can be written in terms of the Hartree-Fock
(HF) Hamiltonian h and the pairing field 	

H =
(

h 	

−	∗ −h∗

)
, (5)

where

hµν = δE[ρ, κ, κ∗]

δρνµ

and 	µν = δE[ρ, κ, κ∗]

δκ∗
µν

. (6)

In the above HFB formalism, the functional E[ρ, κ, κ∗] is
the expectation value of the exact Hamiltonian Ĥ on the
quasiparticle vacuum |�〉.

A more practical form of the TDHFB equation is found
by recasting these equations in terms of the quasiparticle
components U and V introduced in Eq. (2)

ih̄
∂

∂t

(
Uνµ

Vνµ

)
=

∑
η

(
hνη 	νη

−	∗
νη −h∗

νη

)(
Uηµ

Vηµ

)
. (7)

B. EDF approach

In nuclear physics, the above formalism should be modified,
in particular to take into account the short-range repulsive
part of the nuclear interaction which makes the mean-field
HFB approach irrelevant with the bare interaction. This is a
reason why one generally replaces E[ρ, κ, κ∗] by an effective
EDF fitted on nuclear properties without invoking directly the
underlying exact Hamiltonian. Moreover, in the spirit of the
density functional theory [54–56], this procedure allows to
include many-body correlations.

Let us decompose the total energy into kinetic, Skyrme,
Coulomb, and pairing parts (see the Appendix for an explicit
expression of each component)

E = Ekin + ESk + ECoul + Epair. (8)

We choose the SLy4 parametrization [57] of the Skyrme func-
tional [32] including time-odd densities [58]. The Coulomb
energy includes direct and exchange terms. The latter is
estimated using the Slater approximation [59]. The three first
terms of Eq. (8) depend only on the normal densities. It
is convenient to express the pairing energy Epair using the
anomalous density

ρ̃q(rs, r′s ′) = −2s ′κq(rs, r′ − s ′), (9)

where s the projection of the spin and q the isospin. We use a
local pairing functional (see, e.g., [2] and references therein)

Epair =
∫

dr
g

4

[
1 −

(
ρ0(r)

ρc

)γ ] ∑
q

ρ̃∗
q (r)ρ̃q(r), (10)

where ρq(r) = ∑
s ρq(rs, rs) and ρ̃q(r) = ∑

s ρ̃q(rs, rs) are
the local parts of the normal and anomalous densities
with isospin q, respectively, ρ0(r) = ∑

q ρq(r) is the scalar-
isoscalar density and g is the pairing coupling constant.
The parameters ρc and γ are adjusted to generate pairing
correlations preferably at the surface and/or in the bulk of
the nucleus. Such a pairing scheme yields pairs of nucleons
of the same isospin coupled to angular momentum zero. The
simplicity of such an EDF made systematic three-dimensional
HFB calculations over the whole nuclear chart possible
[4,5].

However, one has to face the divergence of local pairing
densities [60]. It is then necessary either to regularize the equa-
tions by introducing a cutoff in the quasiparticle spectrum or
eventually to perform a more complex renormalization scheme
(for an example based on the Thomas-Fermi approximation,
see [61,62]).
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In our calculations, we use a cutoff to regularize the TDHFB
equation in a quasiparticle energy window of 80 MeV. This
value allows two-quasiparticle excitations up to 160 MeV. The
pairing parameters are fitted to reproduce a neutron spectral
gap of 1.25 MeV in 120Sn, the pairing acting both in the bulk
and at the surface of the nucleus [63]. The obtained pairing
coupling constant is g = −275.25 MeV with the parameters
ρc = 0.32 fm−3 and γ = 1.

C. Particle number conservation

Due to the broken U (1) gauge invariance associated to the
particle number conservation, the HFB states are not eigenstate
of the particle number operator N̂ . In static calculations,
one adds a Lagrange multiplier λ, interpreted as a chemical
potential, in order to fix the number of particles in average. In
TDHFB dynamical simulations, however, the particle number
obeys

ih̄
∂

∂t
〈N̂〉 = Tr(κ	∗ − 	κ∗). (11)

The definitions of 	 and ρ̃ in Eqs. (6) and (9), respectively,
together with the choice of the pairing functional in Eq. (10)
ensure that the right hand side of Eq. (11) vanishes. As a
consequence, we do not need to enforce the conservation of
the average number of particles with a chemical potential in
the TDHFB equation.

Nevertheless, dropping this constraint in the dynamics
induces a rotation of the Bogoliubov vacuum in gauge space
[64]. In particular, the anomalous density of a stationary state
will carry a phase exp (−2iλt/h̄). Then, the ground state
expectation values of observables which are linear in the
anomalous density will evolve in time. For instance, this is
the case of the observable we use to study pairing vibrations
[see Eq. (22)]. The time-Fourier analysis of such an observable
in the linear response theory (see Sec. IV) will then contain a
spurious peak at an energy h̄ω = 2λ. This is a manifestation
of the Goldstone mode due to the broken symmetry associated
to particle number conservation. In QRPA calculations, it
induces a spurious mode at zero energy. In order to avoid
such a spurious mode in the linear response of TDHFB, we
have to keep the static ground state chemical potential in the
particle-hole field during the evolution. Finally, we note that
the chemical potential λ is easy to compute only for nuclei
with pairing. Thus we do not consider doubly magic nuclei as
initial states in the present work.

III. NUMERICAL IMPLEMENTATION OF TDHFB

A. Spherical symmetry

The pairing functional defined in Eq. (10) couples only
nucleons of the same isospin. We can then focus on semimag-
ical nuclei for which the spherical assumption is a good
approximation. As a consequence, we solve the TDHFB
equation using spherical symmetry.

Let us recast the problem with purely local fields in space,
spin and isospin using this symmetry. The total many-body
wave function being rotational invariant, it is convenient to
write the Bogoliubov transformation in the spherical basis
using the standard notation for quantum numbers n, l, j , and
m (we omit the isospin q in the notation for simplicity)

β̂
†
nljm =

∑
k

(
V (ljm)

kn (−1)j−mâklj−m + U (ljm)
kn â

†
kljm

)
. (12)

This definition ensures that the component m of these
quasiparticle operators transforms under rotation as a tensor
of rank j (see Eq. (8.79) of Ref. [53]).

We choose to solve the TDHFB equation in coordinate
space using quasiparticle wave functions Uν(rs) ≡ Urs,ν and
Vν(rs) ≡ Vrs,ν defined as components of quasiparticle spinors(

Unljm(rs)

Vnljm(rs)

)
=

(〈rs|β̂†
nljm|−〉

〈−|β̂†
nljm|rs〉

)
, (13)

where |−〉 is the particle vacuum. The standard decomposition
of single particle orbitals in spherical coordinates writes
〈rs|nljm〉 = Rnlj (r) �ljms(θφ). The angular part is expressed
in terms of Clebsch-Gordan coefficients and spherical har-
monics �ljms = 〈l(m − s) 1

2 s|jm〉Ym−s
l . Defining the radial

quasiparticle wave functions unjl(r) = r
∑

k U
(ljm)
kn Rklj (r) and

vnjl(r) = (−1)l+1r
∑

k V
(ljm)
kn R∗

klj (r), and using the property
�∗

lj−ms = −2s(−1)m+l−j�ljm−s , Eq. (13) becomes(
Unljm(rs)

Vnljm(rs)

)
= 1

r

(
unlj (r)�ljms(θφ)

2σvnlj (r)�ljm−s(θφ)

)
.

Following the same way as Dobaczewski et al. for the
static HFB problem [65], we introduce the anomalous field
h̃q(rs, r′s ′) = δE[ρ,ρ̃,ρ̃∗]

δρ̃∗
q (rs,r′s ′) where only the pairing energy in

Eq. (10) contributes. The EDF considered here contains only
local densities (see the Appendix). Therefore, the HF and
anomalous fields are also local in space. Finally, it is possible
to recast the TDHFB equation (7) as a set of Schrödinger like
equations for the quasiparticle radial wave functions u and v

ih̄
∂

∂t

(
unlj

vnlj

)
=

(
hlj − λ h̃

h̃∗ −h∗
lj + λ

) (
unlj

vnlj

)
, (14)

where λ is the chemical potential (see Sec. II C). The
expressions of the fields h(r) and h̃(r) and those of the various
densities entering the EDF solved in spherical symmetry can
be found in the Appendix.

B. Computational details

The initial condition is obtained with the HFBRAD code [66]
which solves the static HFB equation in spherical symmetry.
We have constructed a time-dependent version of this code to
solve the TDHFB equation with the functional described in
Sec. II B. The set of equations (14) is solved iteratively using
a one-step predictor-corrector method [67] and a truncation of
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the time propagator

U (t, t + δt) = exp

(−iδt

h̄
H(t + δt/2)

)
(15)

at fourth order in δt .
Spatial derivatives are calculated in a discretized r-space

using a seven-points formula. The numerical accuracy of
this method decreases increasing quasiparticle energy. As a
consequence, this approximate derivation formula induces a
small periodic variation of the HFB ground state (of the order
of few tens of keV) due to high energy quasiparticles. We
checked that this numerical artifact disappears if we develop
the wave functions on a constant step Lagrange mesh [68].
However, the latter method increases the numerical effort.
The amplitude of these variations being linked to the mesh
discretization, a mesh step of 0.15 fm has been found to ensure
a good numerical precision with a reasonable computational
effort. In particular, the energy is conserved up to 15 keV and
deviations of the total number of particles are of the order of
10−7 in the present calculations. Though this latter value is
one order of magnitude higher than in the TDHF case with
the same numerical conditions, it is small enough to leave
the observables of interest unaffected. Moreover, to avoid
any unphysical contribution due to the approximate spatial
derivative in the evolution of observables, we subtract from
their expectation values the one obtained without external field.
We checked that this procedure does not affect the physical
content of the spectra presented in Sec. V.

Let us precise that we use hard box boundary conditions.
The latter are not optimized for a proper treatment of the
continuum because they lead to a discretized quasiparticle
spectrum. In addition, particles which are reflected on the
boundaries of the box may interact with the nucleus and
induce unphysical effects on the evolution of observables.
This problem has been tackled in TDHF with the help of
absorbing boundary conditions [19,69]. However, we did not
found this technique to be appropriate to treat the TDHFB
continuum because of the nonvanishing asymptotic nature of
the upper component of the quasiparticle wave-functions in
Eq. (13) [65]. Though needed to refine description of unbound
states [13], further improvements of the boundary conditions
are beyond the scope of this exploratory work.

We consider nuclei with magic proton numbers and exci-
tations acting on neutrons only. Then the calculations include
pairing for neutrons only. The local pairing functional couples
to high angular momenta and high energy quasiparticle states
up to the energy cutoff of 80 MeV. In the calculations presented
here, convergence of the static solutions have been obtained
with a maximum total angular momentum for neutrons, for
which the Bogoliubov transformation is achieved, of jc =
19/2(23/2) for oxygen (calcium) isotopes, respectively. For
oxygen isotopes, a box radius 22.5 fm was used, in order to
be in conditions as close as possible to the discrete QRPA
results of Ref. [52]. Calculations for calcium isotopes have
been performed in a box of radius 30 fm.

Both the mesh step, through the derivation formulas, and
the maximum angular momentum, through the centrifugal part
of the kinetic operator, constrain very much the time step for
which the calculations are stable. The adopted time step used

in these calculations are 0.003 and 0.002 fm/c for oxygen and
calcium isotopes, respectively.

IV. LINEAR RESPONSE FRAMEWORK FOR
PAIRING EXCITATIONS

A. Linear response theory

The linear response theory has been widely used with
TDHF to study collective vibrations in nuclei [19,39–42,70–
76]. In this theory, one computes the time evolution of an
observable

	Q(t) = 〈�(t)|Q̂|�(t)〉 − 〈0|Q̂|0〉 (16)

after an excitation induced by a small external potential
V̂ext(t) = εF̂ ξ (t) on the ground state |0〉 of the system. The
parameter ε quantifies the intensity of the excitation. It has to
be small enough to ensure the linear regime, i.e., the amplitude
	Qmax of the response must be proportional to ε. In this study,
the time dependence of the external potential is chosen to be
a Dirac function ξ (t) = δ(t). The excitation is then equivalent
to a boost applied on the ground state at the initial time

|�(0)〉 = e−iεF̂ /h̄|0〉. (17)

The response 	Q(t) to this excitation can be decomposed
into various frequencies ω using

RQ(ω) = −h̄

πε

∫ ∞

0
dt 	Q(t) sin(ωt). (18)

In the particular case where the operators used for the
excitation and the observations are the same, i.e., F̂ = Q̂,
Eq. (18) gives the strength distribution

RF (ω) =
∑

α

|〈α|F̂ |0〉|2 δ(ω − ωα), (19)

where 〈α|F̂ |0〉 is the transition amplitude between the ground
state and the eigenstate |α〉 of the Hamiltonian and h̄ωα =
Eα − E0 is their energy difference.

When the excitation generates a transition to neighboring
nuclei, E0 and Eα are the energies of the ground and excited
states of the final nucleus if one keeps the static chemical
potential in the Hamiltonian (see section 10.1 of Ref. [53]).
For instance, in the case of an addition of two nucleons on a
nucleus of A nucleons, the energy of the mode reads h̄ωα =
E(A+2)

α − E
(A+2)
0 where the ground state energy of the final

nucleus is approximated by E
(A+2)
0 = E

(A)
0 + 2λ. Note that this

energy may differ from the one obtained in a HFB calculation
in the A + 2 nucleus because of a possible rearrangement of
the HFB field.

B. Application to pairing vibrations

Pairing vibrations of quantum numbers 0+ can be excited
by two-nucleon transfer reactions and have been studied in
the small amplitude limit within the QRPA framework [52]. A
Hermitian pair-transfer operator is given by [45]

F̂ =
∑

ν

(fν â†
ν â

†
ν̄ + f ∗

ν âν̄ âν), (20)

where ν̄ denotes the time-reversed state of ν.
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In this paper, we consider local excitations acting on
neutrons only and, for the sake of simple notations, we do not
write explicitly the isospin quantum number in the following.
The pair-transfer operator then writes in coordinate space

F̂ =
∫

dr f (r) (â†
r,↓â

†
r,↑ + âr,↑âr,↓). (21)

In this particular choice, the spatial distribution f (r) is real.
Using Eq. (9), the expectation value of F̂ simply writes

〈�(t)|F̂ |�(t)〉 = 1

2

∫
dr f (r) (ρ̃0(r; t) + ρ̃∗

0 (r; t)), (22)

where ρ̃0 = ∑
q ρ̃q .

To preserve spherical symmetry, we focus on monopole
pairing modes, requiring a radial dependence only, i.e., f (r) ≡
f (r). We choose a Fermi-Dirac spatial distribution f (r) =
(1 + exp( r−Rc

d
))−1 where the parameters Rc = (1.27A1/3

+ 4) fm and d = 0.5 fm are chosen to allow for pair transfer on
the whole nucleus on the one hand, and to remove unphysical
high energy modes associated to pair creation outside of the
nucleus on the other hand. Finally, this excitation may change
the number of neutrons at the initial time. However, deviations
are small in the present calculations (∼10−3 neutrons).

We choose to follow the excitation operator F̂ itself to get its
strength distribution defined in Eq. (19). We also decompose
the excitation operator F̂ = ∑

l F̂l into components of single
particle angular momentum l

F̂l =
∑
nn′jm

∫
dr f (r) 〈nljm|r ↓〉 〈n′lj (−m)|r ↑〉

× â
†
nljmâ

†
n′lj (−m) + H.c. (23)

where H.c. denotes the Hermitian conjugate of the entire
expression. Computing the response of the F̂l helps us interpret
the spectra in terms of specific quasiparticle excitations.

We perform the calculations over a total time interval of
T = 1200 fm/c. In order to minimize the effects of the time
gate on the Fourier transforms, we follow the protocol given in
Ref. [69], multiplying the observables by a time filter cos2( πt

2T
).

This procedure induces an additional width of ∼1 MeV.

V. RESULTS

In this section, two-neutron transfer in several nuclei is
studied. To illustrate the method described in the previous
section, we first detail the analysis in 18O. Then, we present
the results on neutron-rich oxygen isotopes and on f -shell
calcium isotopes.

A. Detailed analysis on 18O

We apply the boost of Eq. (17) in the linear regime on
the HFB ground state of 18O. The pair-transfer operator F̂ is
defined in Eq. (21). The variation of the expectation value of
F̂ , obtained from Eq. (22), is plotted in Fig. 1 as a function
of time. We observe a complex evolution due the excitation
of several modes at different energies. We see in the inset that

 0  600  1200

F
(t

) 
(a

rb
. u

ni
ts

)

time (fm/c)

 0  25  50

∆

FIG. 1. Evolution of 	F (t) after a pair transfer type excitation
on 18O. The inset shows the same quantity at early times.

a strong variation of 	F (t) occurs at early times because all
modes are initially in phase [39].

The evolution in Fig. 1 is used to compute the strength
distribution of F̂ according to Eq. (18) and using the time
filter procedure described in the previous section. We have
controlled that the extracted strength is independent of the
excitation amplitude ε. The resulting spectrum is shown in
Fig. 2(a) in solid line. We see two separated peaks at 6.5 and
14.3 MeV and several peaks between 20 and 26 MeV.

R
F

(a)

 0  10  20  30

R
F

l

ω (MeV)

(b)

l=0
l=1
l=2
l=3

FIG. 2. Decomposition of the responses (in arbitrary units) into
frequencies ω for a two-neutron pair transfer excitation in 18O.
(a) Strength distribution of F̂ obtained from TDHFB (solid line)
and the unperturbed approximation (dotted line). The arrows indicate
the 1p3/2 (solid) and 1p1/2 (dotted) deep hole states. (b) TDHFB
responses of F̂l with l = 0, 1, 2, and 3.
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To understand the effect of the residual interaction which
is included in TDHFB, we have computed the so-called
unperturbed response to the pair transfer excitation. The latter
is equivalent to Eq. (19) if one assumes that the states |α〉
are two-quasiparticle excitations of the type |µν〉 = β̂†

ν β̂
†
µ|0〉

where β̂†
ν creates a quasiparticle eigenstate of the static HFB

Hamiltonian on its ground state |0〉. In this approximation,
the energy of the transition to the state |µν〉 is the sum
of the quasiparticle energies h̄ωµν = eµ + eν . To allow for
a quantitative comparison between the strength distributions
obtained from TDHFB and unperturbed approximations, we
compute the latter using the same time Fourier technique as for
the TDHFB case. First, we determine the transition amplitudes
〈µν|F̂ |0〉 and then the time evolution of the observable
F̂ − 〈0|F̂ |0〉 within the unperturbed approximation. The latter
reads

	F 0(t) =
∑
µν

|〈µν|F̂ |0〉|2 sin(ωµνt). (24)

Finally, we apply exactly the same procedure as for the TDHFB
evolution to extract its strength distribution. The resulting
unperturbed spectrum is represented by a dotted line in
Fig. 2(a). We see clearly that the effect of the residual
interaction is to increase the strength on the one hand and,
on the other hand, to shift down the positions of the peaks.

To get a deeper insight into the nature of the peaks, we
decompose the response into components of the single particle
orbital momentum l using the observables F̂l defined in
Eq. (23). The response for l = 0, 1, 2, and 3 are plotted in
Fig. 2(b). These spectra, together with the quasiparticle HFB
spectrum, allow us to characterize the peaks in terms of
dominating two-quasiparticle excitations. As one can see in
Fig. 2(b), the first peak located at 6.5 MeV is associated to the
l = 0 component of F̂ . It corresponds mainly to a pair transfer
toward the almost empty 2s1/2 orbitals.

The next peak, located at 14.3 MeV, is mainly a mixture of
two contributions: the transfer of a pair toward 1d3/2 orbitals
and the removal of the 1p1/2 occupied neutrons indicated by
a dotted arrow in Fig. 2(a). The fact that these two modes
have the same energy is fortuitous. (This is also the case at the
unperturbed level.) As we will see later, they are well separated
in the other oxygen isotopes. We also see in Fig. 2(b) that there
is a l = 3 contribution to this peak due to a coupling to f7/2

orbitals in the continuum.
Let us now focus on the group of peaks at higher energies.

As one can see in Fig. 2(b), they are mostly populated by l = 1
and 3 components. In fact, the peaks between 20 and 24 MeV
are mainly associated to the excitation of f7/2 quasiparticle
resonant states while the peak at 24.7 MeV, indicated by a
solid arrow in Fig. 2(a), corresponds to the deep hole 1p3/2

state. Except for the latter contribution, which is due to the
removal of two occupied neutrons, these peaks belong to the
GPV [52]. Indeed, they correspond to excitations of resonant
states belonging to the next major shell and the enhancement
of the strength as compared to the unperturbed spectrum is a
sign of their collectivity [45].

S
F

18O

S
F

20O

 0  10  20  30

S
F

ω (MeV)

22O

FIG. 3. Strength distributions of the two-neutron transfer operator
F̂ for 18,20,22O (in arbitrary units with the same scale on each plot).
TDHFB results (solid lines) and the unperturbed approximation
(dotted lines) are shown. The arrows indicate the 1p3/2 (solid) and
1p1/2 (dotted) deep hole states and the 1d5/2 (dashed) pair removal.
The filled regions correspond to GPV candidates (see text).

B. Neutron-rich oxygen isotopes

In addition to 18O, we also studied two-neutron pair transfer
in 20,22O nuclei. The spectra are shown in Fig. 3 while the
energies and most important quasiparticle contributions to the
main peaks are summarized in Table I. Comparing strength
distributions obtained from TDHFB (solid lines) with the
unperturbed approximation (dotted lines) in Fig. 3 leads to
the same conclusions for all isotopes, i.e., an increase of the
strength and a lowering of the peak energies due to the TDHFB
residual interaction. We also see in Fig. 3 that the energies of
the 1p3/2 and 1p1/2 deep-hole states increase with the number
of neutrons. The 1p3/2 peak in 22O is located outside of the
figure at 31.3 MeV. The occupied single particle orbitals are
indeed deeper as compared to the Fermi level when increasing
the neutron number, corresponding to higher quasiparticle
energies. We also note that transitions associated to the 1d5/2

orbital appear only in the 22O spectrum. This is due to the fact
that the operator F̂ leaves the strongly paired levels almost
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TABLE I. Energies and main quasiparticle contribu-
tions of the most important peaks appearing in the strength
distribution of the two-neutron pair transfer operator F̂

extracted from TDHFB calculations for various oxygen
isotopes. Numbers in parentheses are the centroids of the
continuum-QRPA energies of Ref. [52]. Labels in brackets
indicate two-neutron removal contributions.

Nucleus E (MeV) Main orbital contribution

18O 6.5(6.5) 2s1/2

14.3(14) 1d3/2, [1p1/2]
20–24(21.5) f7/2

24.7 [1p3/2]
20O 4.3(4) 2s1/2

12.1(11) 1d3/2

17.5 [1p1/2]
18–22(19) f7/2

28.0 [1p3/2]
22O 2.0 2s1/2, [1d5/2]

9.2(8) 1d3/2

16–20(16) f7/2

21.0 [1p1/2]

unchanged [45], and then no significant strength is associated
to addition and removal of nucleons into a partially occupied
level at the Fermi surface. This is not the case in 22O where
the 1d5/2 single particle orbital is almost fully occupied.

Last but not least, we see that the GPV, indicated by a filled
region, is present in the three isotopes with similar amplitudes.
In all cases, the most important contributions to the GPV are the
excitation of f7/2 quasiparticle resonant states. In the present
calculations, continuum states are discretized due to the finite
size of the box, inducing a fragmentation of the GPV. We
also note that the GPV and the other two-neutron additional
modes, contrary to the removal ones, have a decreasing energy
with the neutron number. This is due to the fact that the Fermi
level is less deep for neutron-rich nuclei, which decreases the
quasiparticle energy of states with small or zero occupation
number.

Let us now compare the energies predicted by the present
TDHFB calculations with the continuum-QRPA results of
Khan et al. [52], also reported in Table I. The latter have been
computed for two-neutron additional modes only. Compared to
QRPA results, TDHFB calculations globally predict slightly
higher energies when going to more neutron-rich nuclei. In
the GPV region, the centroid energies are 0.5, 1, and 2 MeV
higher with TDHFB for 18,20,22O, respectively. However, this
overall agreement can be considered as good in regard to the
differences between the two approaches. Both calculations
use the SLy4 Skyrme functional, but with different pairing
schemes. In the present work, we use a mixed volume-surface
effective coupling. In addition, our calculations are performed
in wide quasiparticle energy and angular momentum windows,
with cutoff values Ec = 80 MeV and jc = 19/2, respectively,
while the QRPA calculations have been performed in smaller
windows (Ec = 50 MeV and jc = 9/2) with a surface type
pairing functional. The parameters of the latter have been
determined using a different prescription than ours [13], in

particular to reproduce the trend of the experimental gap
in neutron-rich oxygen isotopes. Another possible source of
discrepancies is the fact that the QRPA calculations of Ref. [52]
do not take into account the Coulomb and spin-orbit parts of
the residual interaction whereas the TDHFB approach uses the
same EDF as the underlying HFB field. This assumption may
induce a slight shift in the energy of collective modes [20–22].

C. Calcium isotopes

In this section we discuss two-neutron pair transfer on
42,44,46Ca. We have plotted in Fig. 4 the corresponding TDHFB
strength distributions (solid lines). The spectra are roughly
similar for the three isotopes. They exhibit several discrete
transitions to bound states together with excitations of resonant
two-quasiparticle states. The energy threshold for the latter can
be estimated by twice the Fermi energy, i.e., 2EF = 20.6, 19.6,
and 17.8 MeV for 42Ca, 44Ca, and 46Ca, respectively.

S
F

42Ca

S
F

44Ca

 0  10  20  30

S
F

ω (MeV)

46Ca

FIG. 4. Strength distributions of the two-neutron pair transfer
operator F̂ for 42,44,46Ca (in arbitrary units with the same scale on each
plot). TDHFB results (solid lines) and the unperturbed approximation
(dotted lines) are shown. The arrows indicate the 1d5/2 (solid), 2s1/2

(dashed) and 1d3/2 (dotted) two deep-hole states.
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TABLE II. Energies and main quasiparticle contri-
butions of the most important peaks appearing in the
strength distribution of the two-neutron pair transfer op-
erator F̂ extracted from TDHFB calculations for calcium
isotopes. Labels in brackets indicate two-neutron removal
contributions.

Nucleus E (MeV) Main orbital contribution

42Ca 9.1 2p3/2, [1d3/2]
13.7 2p1/2, [2s1/2]
16.6 1f5/2

22.0 [1d5/2]
23.4 g9/2

44Ca 7.5 2p3/2

11.6 2p1/2, [1d3/2]
15.2 1f5/2, [2s1/2]
22.1 g9/2

23.9 [1d5/2]
46Ca 6.0 2p3/2

10.7 2p1/2

13.6 1f5/2, [1d3/2]
16.4 [2s1/2]
20.8 g9/2

25.4 [1d5/2]

We performed the same analysis as for the oxygen isotopes,
i.e., we decomposed the strength distribution in l-components
which, together with the HFB quasiparticle spectra, helped
us assign the main quasiparticle contributions to each peak. A
summary of the results is given in Table II where the transitions
associated to the removal of two neutrons are indicated in
brackets.

For the three isotopes, the lowest mode is interpreted in
terms of the addition of a neutron pair in the 2p3/2 orbitals. In
42Ca, an additional l = 2 quasiparticle component contributes
to this mode and corresponds to the removal of a 1d3/2 neutron
pair. As for oxygen isotopes, the appearance of removal modes
(in brackets in Table II) together with additional modes at the
same energy is fortuitous. In the calcium isotopes, the removal
modes are built of neutrons from the s-d shell, the major shell
below the Fermi energy. As expected, one finally notes that
energies of the removal (additional) modes increase (decrease)
with the neutron number. Although 2 g9/2 quasiparticles
excitations are forbidden below the 2EF threshold in the
unperturbed spectrum, it gets mixed to the last bound 2 (f5/2)
quasiparticles excitation because of the residual interaction.

We have also plotted the unperturbed spectra in Fig. 4
(dotted lines). As in the case of oxygen isotopes, we observe
that the TDHFB residual interaction lowers the energies on
the one hand and increases the strength on the other hand,
though this second effect is less pronounced in the high energy
part of the spectra. Here, the pairing residual interaction is
not strong enough to gather high energy states together and
to generate a well identified collective pairing vibration in
the continuum. In a pure independent particles shell model
picture, the last occupied neutron level of these calcium
isotopes is the 1f7/2 orbital. Then, one expects the GPV
to be built mainly on low-lying g9/2 resonant quasiparticle

states. However, as we clearly see in Fig. 4, the strength
associated to the two-quasiparticle excitation of g9/2 levels,
located at 23.4, 22.1, and 20.8 MeV for 42Ca,44 Ca, and 46Ca,
respectively, is only slightly enhanced by the TDHFB residual
interaction. We checked that employing other parametrizations
of the spatial distribution f (r) of the excitation operator in
Eq. (21) does not alter these conclusions. We note that this
lack of collectivity of the g9/2 has already been observed in
hole pairing giant resonances studies within a more schematic
formalism [77].

VI. CONCLUSION

We solved the TDHFB equation in coordinate space with
spherical symmetry for the evolution of a single nucleus in
an external field. For the normal part of the energy density
functional, we used the SLy4 Skyrme functional. For its
pairing part, we chose a local density dependent functional.
Special care has been taken regarding the convergence of
the static HFB solutions and the energy and particle number
conservations in the TDHFB calculations.

As a first application, we studied 0+ pairing modes
excited by a two-neutron pair transfer type operator. The
linear response theory has been used to compute the strength
distributions of this operator in 18,20,22O and 42,44,46Ca nuclei.
Both transitions to bound states and to the continuum are
observed in all nuclei. In particular, the GPV is observed
in all oxygen isotopes whereas no significant enhancement
of the strength due to dynamical pairing correlations appears
in the continuum of the studied calcium isotopes. In the latter,
the g9/2 quasiparticle excitations are not collective enough to
generate a GPV.

A detailed comparison with previous QRPA calculations
have been performed in the oxygen isotopes. Though there
is a good agreement for the most stable isotope, we find
slightly higher energies for the pairing vibrations when going
to more neutron-rich nuclei. Different pairing schemes and
implementations of the residual interaction in both calculations
are invoked to explain these differences.

In addition, there is room for a better treatment of the
continuum, for instance in the spirit of continuum-QRPA
calculations, but such an improvement is not straightforward.
Indeed, one cannot extrapolate the absorbing boundary condi-
tions used in TDHF calculations to the TDHFB case because of
the delocalized upper components of the Bogoliubov spinors.

Finally, TDHFB calculations are much more demanding in
terms of computational time than standard TDHF calculations,
by about two orders of magnitude in the one-dimensional
case. However, thanks to recent increase of computational
power, some of the standard TDHF applications to nuclear
structure and reactions should be repeated with the inclusion
of dynamical pairing correlations in the framework of TDHFB.
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APPENDIX: DENSITIES AND FIELDS IN SPHERICAL
SYMMETRY

Each energy term entering Eq. (8) can be written as a
spatial integral of an energy density, i.e., E = ∫

dr H(r), which
depends only on local densities and currents. For a spherically
symmetric system, the densities entering the SLy4 and local
density dependent pairing functionals are the radial part of
the local particle ρq(r), anomalous ρ̃q(r), kinetic τq(r), matter
current jq(r), and spin-orbit current Jq(r) (both oriented along
the radial unit vector er ) densities of isospin q. Introducing the
notation α ≡ {n, l, j, q}, these densities write

ρq(r) =
∑
nlj

Kj (r)|vα(r)|2,

ρ̃q(r) = −
∑
nlj

Kj (r)v∗
α(r)uα(r),

τq(r) =
∑
nlj

Kj (r)

[ ∣∣∣∣
(

∂

∂r

− 1

r

)
vα(r)

∣∣∣∣
2

+ l(l + 1)

r2
|vα(r)|2

]
,

jq(r) =
∑
nlj

Kj (r)Im

[
vα(r)

(
∂

∂r

− 1

r

)
v∗

α(r)

]
er ,

Jq(r) =
∑
nlj

Kj (r)

r

[
j (j + 1) − l(l + 1) − 3

4

]
|vα(r)|2er ,

where Kj (r) = 2j+1
4πr2 . We also define isoscalar densities as the

sum of proton and neutron densities, e.g., ρ0(r) = ρp(r) +
ρn(r). Omitting the dependence in r to simplify the notations,
the different parts of the functional can be written

Hkin = h̄2

2m

(
1 − 1

A

)
τ0,

HSk =
∑

k=n,p,0

{(
C

ρ

k + C
ρα

k ρα
0

)
ρ2

k + C
	ρ

k ρk	ρk

+Cτ
k

(
ρkτk − j2

k

) + CJρk∇.Jk

}
,

Hpair = g

4

(
1 −

(
ρ0

ρc

)γ ) ∑
q=p,n

ρ̃∗
q ρ̃q,

HCoul = V dir
c ρp − 3

4
e2

(
3

π

)1/3

ρ4/3
p ,

where V dir
c (r) = e2

2

∫
dr′ ρp(r ′)

|r−r′| is the direct Coulomb field. The
factor (1 − 1/A) in the kinetic part is the so-called one-body
center of mass correction. The j2 term ensures Galilean
invariance [78].

The coefficients C are related to the usual Skyrme coeffi-
cients by (see, e.g., [58])

C
ρ

0 = t0

2

(
1 + x0

2

)
, Cρ

n,p = − t0

2

(
x0 + 1

2

)
,

C
ρα

0 = t3

12

(
1 + x3

2

)
, Cρα

n,p = − t3

12

(
x3 + 1

2

)
,

Cτ
0 = t1

4

(
1 + x1

2

)
+ t2

4

(
1 + x2

2

)
,

Cτ
n,p = − t1

4

(
x1 + 1

2

)
+ t2

4

(
x2 + 1

2

)
,

C
	ρ

0 = −3t1

16

(
1 + x1

2

)
+ t2

16

(
1 + x2

2

)
,

C	ρ
n,p = 3t1

16

(
x1 + 1

2

)
+ t2

16

(
x2 + 1

2

)
, CJ = −W0

2
.

The fields entering Eq. (14) write

hljq(r) = − ∂

∂r
Mq(r)

∂

∂r
+ Iq(r)

∂

∂r
+ Vljq(r),

h̃q(r) = g

2

[
1 −

(
ρ0(r)

ρc

)γ ]
ρ̃q(r)

with

Mq = h̄2

2m
+ Cτ

0 ρ0 + Cτ
q ρq,

Iq = 2i
(
Cτ

0 j0 + Cτ
q jq

) · er ,

Vljq = Uq + l(l + 1)

r2
Mq + 1

r

(
∂

∂r
Mq

)
− Iq

r

− j (j + 1) − l(l + 1) − 3/4

r
CJ

(
∂

∂r
(ρ0 + ρq)

)
,

Uq =
∑
k=q,0

[
2
(
C

ρ

k + C
ρα

k ρα
0

)
ρk

+αC
ρα

k ρα−1
0 (ρ2

p + ρ2
n) + Cτ

k τk

+ 2C
	ρ

k 	ρk + CJ∇ · Jk + iCτ
k ∇ · jk

]
− g

4
γ

ρ
γ−1
0

ρ
γ
c

(|ρ̃p|2 + |ρ̃n|2).
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