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The E1(T = 1) isovector dipole giant resonance (GDR) in heavy and superheavy deformed nuclei is analyzed
over a sample of 18 rare-earth nuclei, four actinides, and three chains of superheavy elements (Z = 102, 114,
and 120). The basis of the description is the self-consistent separable random-phase approximation (SRPA) using
the Skyrme force SLy6. The model well reproduces the experimental data in the rare-earth and actinide regions.
The trend of the resonance peak energies follows the estimates from collective models, showing a bias to the
volume mode for the rare-earth isotopes and a mix of volume and surface modes for actinides and superheavy
elements. The widths of the GDR are mainly determined by the Landau fragmentation, which in turn is found to
be strongly influenced by deformation. A deformation splitting of the GDR can contribute to about one-third of
the width, and about 1 MeV further broadening can be associated with mechanisms beyond the SRPA description
(e.g., escape widths and coupling with complex configurations).

DOI: 10.1103/PhysRevC.78.044313 PACS number(s): 21.60.Jz, 24.30.Cz, 27.70.+q, 27.90.+b

I. INTRODUCTION

The isovector giant dipole resonance (GDR) is a most
prominent and much studied excitation mode of nuclei; see,
e.g., Refs. [1,2]. Nonetheless, it remains a subject of current
interest as there are many aspects that deserve more detailed
investigations such as photoexcitation cross sections in exotic
nuclei, which play a role in astrophysical reaction chains [3], or
isotopic trends of the GDR including the regimes of deformed
nuclei. The present paper aims at a theoretical survey of the
GDR in isotopic chains of heavy and superheavy nuclei.

The high importance of the GDR has triggered many
theoretical surveys of nuclear collective motion, starting from a
purely collective description [4,5] and then slowly establishing
a link to microscopic models in the framework of the Random-
Phase Approximation (RPA) [6,7]. The theoretical description
has developed greatly over the years. The majority of RPA
investigations in the past employed shell model potentials plus
an effective residual interaction (Migdal theory) [8–10]. In the
meantime, self-consistent nuclear models have been steadily
improving toward a reliable description of nuclear structure
and excitations; for reviews, see, e.g., Refs. [11–13]. These
models belong to the class of density functional methods that
aims at a universal energy functional from which all static and
dynamics equations could be derived in a strictly variational
frame [14,15]. Being rather universal by construction, such
density functional models are promising for investigation in
exotic areas, e.g., drip-line and superheavy nuclei. The studies
in this paper are based on the Skyrme functional, which was
introduced in Refs. [16,17] and extended to a dynamical
description shortly afterward [18–20]. The performance of
self-consistent RPA calculations using the Skyrme functional
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was tested systematically in Refs. [21,22], and it was found
that one can have a reliable description when taking care to
choose an appropriate parametrization.

Systematic scans through the isotopic landscape and the
study of exotic nuclei run over many deformed nuclei. Fully
fledged RPA calculations for deformed nuclei are feasible [23]
but extremely time consuming and not suited for systematic
investigations. Superheavy nuclei are especially demanding
because of the coexistence of two obstacles: large size and
deformation. Accurate but less demanding RPA techniques
are needed. To that end, the separable RPA (SRPA) based on
the Skyrme functional was recently developed [24–26]. The
self-consistent factorization of the residual interaction in SRPA
dramatically reduces the computational expense and so gives
way to systematic explorations of nuclear giant resonances in
both spherical and deformed nuclei [24–29]. In this paper, we
concentrate on the isovector (T = 1) electric GDR.

As shown in our previous studies [24–29], SRPA pro-
vides an accurate description of the GDR in spherical
and deformed nuclei. We obtained good agreement with
experiment for 154Sm, 238U, and Nd isotopes with A = 142,

144, 146, 148, 150. Eight different Skyrme forces were
checked in these investigations. In this paper, we aim at a
large systematics over the isotopic landscape and decide on
one parametrization, namely, SLy6 [30], which was found to
provide a satisfying description of the GDR for spherical and
deformed nuclei. In a first step, SRPA results for the GDR
will be compared with all available experiment data in rare-
earth and actinide regions. In particular, we consider nuclei
156,160Gd, 166,168Er, 170,172,174,176Yb, 176,178,180Hf, 182,184,186W,
186,188,190,192Os, 232Th, and 234,236,238U. Basic characteristics
(energy centroid, width, deformation splitting) and their trends
with system size will be analyzed.

In a second step, we will investigate the GDR in
superheavy nuclei for the three isotopic chains: nobelium with

0556-2813/2008/78(4)/044313(10) 044313-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.044313


KLEINIG, NESTERENKO, KVASIL, REINHARD, AND VESELY PHYSICAL REVIEW C 78, 044313 (2008)

Z = 102 (A = 242, 248, 254, 262, 270), Z = 114 (A = 264,

274, 284, 294, 304), and Z = 120 (A = 280, 288, 294, 304,

312). As discussed below, this set covers most of the important
mass regions and so is sufficiently representative. The main
features of the GDR will be analyzed and compared with
those in the rare-earth and actinide regions.

The paper is organized as follows. The calculation scheme,
methods of analysis, and choice of the isotopes are sketched in
Sec. II. In Sec. III the results of the calculations for the GDR
in rare-earth, actinide, and superheavy nuclei are discussed. A
summary is given in Sec. IV.

II. CALCULATION SCHEME

A. SRPA

The SRPA formalism is given elsewhere [24–26], so we
present here only its principle points. The SRPA approxi-
mates the residual interaction of Skyrme RPA in factorized
(separable) form as

V̂ sep
res = −1

2

∑
ss ′

K∑
k,k′=1

{κsk,s ′k′X̂skX̂s ′k′ + ηsk,s ′k′ ŶskŶs ′k′ }, (1)

where the indices s and s ′ label neutrons and protons, k

numbers the separable terms, X̂sk and Ŷsk are time-even and
time-odd Hermitian one-body operators, κsk,s ′k′ and ηsk,s ′k′ are
the corresponding strength matrices. We need these two kinds
of operators because the relevant Skyrme functionals involve
both time-even (nucleon ρ, kinetic τ, and spin-orbital J ) and
time-odd (current �j , spin σ , and spin kinetic �T ) densities, see
Ref. [11].

The starting point is a Skyrme functional E[J α
s (�r, t)] with

a set of local densities J α
s being sorted by α. The separable

operators and strength matrices are derived from the functional
by using the scaling transformation for the perturbed wave
function of the system:

|�(t)〉s =
K∏

k=1

exp[−iqsk(t)P̂sk] exp[−ipsk(t)Q̂sk]|〉s , (2)

where both |�(t)〉s and ground state |〉s are Slater determinants,
Q̂sk(�r) and P̂sk(�r) = i[Ĥ , Q̂sk] are generalized coordinate
(time-even) and momentum (time-odd) Hermitian one-body
input operators, Ĥ stands for the full Hamiltonian. Further,

qsk(t) = q̄sk cos(ωt), psk(t) = p̄sk sin(ωt) (3)

are corresponding collective variables. The number K of input
operators in Eq. (2) determines the number of separable terms
in V̂

sep
res . The treatment converges to exact RPA for K → ∞. In

practice, a good approximation to RPA can already be obtained
for a small K = 2–5 if the generating operators Q̂sk and P̂sk

are properly chosen; see Sec. II C and Refs. [24,25].
The separable operators and (inverse) strength matrices in

Eq. (1) are constructed as [24–26]

X̂sk =
∑
s ′

X̂s ′
sk = i

∑
α′αs ′

δ2E

δJα′
s ′ δJ α

s

〈[
P̂sk, Ĵ

α
s

]〉
Ĵ α′

s ′ , (4a)

Ŷsk =
∑
s ′

Ŷ s ′
sk = i

∑
α′αs ′

δ2E

δJα′
s ′ δJ α

s

〈[
Q̂sk, Ĵ

α
s

]〉
Ĵ α′

s ′ , (4b)

κ−1
s ′k′,sk =

∑
αα′

δ2E

δJα′
s ′ δJ α

s

〈[
P̂sk, Ĵ

α
s

]〉〈[
P̂s ′k′ , Ĵ α′

s ′
]〉
, (5a)

η−1
s ′k′,sk =

∑
αα′

δ2E

δJα′
s ′ δJ α

s

〈[
Q̂sk, Ĵ

α
s

]〉〈[
Q̂s ′k′, Ĵ α′

s ′
]〉
, (5b)

where Ĵ α
s are the operators associated with the densities J α

s .
As seen from Eqs. (4) and (5), the separable ansatz (1) explores
the residual interaction of the Skyrme functional through the
second functional derivatives.

The final RPA equations have the form [24–26]∑
sk

{
q̄ν

sk

[
F

(XX)
s ′k′,sk − κ−1

s ′k′,sk
] + p̄ν

skF
(XY )
s ′k′,sk

} = 0, (6a)

∑
sk

{
q̄ν

skF
(YX)
s ′k′,sk + p̄ν

sk

[
F

(YY )
s ′k′,sk − η−1

s ′k′,sk
]} = 0, (6b)

with

F
(AB)
s ′k′,sk = 2

∑
s",ph∈s"

αAB

〈
ph

∣∣Âs"
sk

∣∣〉∗〈ph
∣∣B̂s"

s ′k′
∣∣〉

ε2
ph − ω2

ν

, (7)

and

αAB =




εph, for Â = B̂

−iων, for Â = Ŷ , B̂ = X̂

iων, for Â = X̂, B̂ = Ŷ


 . (8)

Here 〈ph|Âs"
s ′k′ |〉 is the matrix element for the two-quasiparticle

state |ph〉, εph is the energy of this state, ων is the energy of
the RPA state |ν〉. The amplitudes of the RPA phonon operator

Ĉ†
ν =

∑
s

∑
ph∈s

(
cν−
ph Â

†
ph − cν+

ph Âph

)
(9)

are determined via solutions of Eqs. (6a) and (6b) as

cν±
ph∈s = −

∑
s ′k′

q̄ν
s ′k′

〈
ph

∣∣X̂s
s ′k′

〉 ∓ ip̄ν
s ′k′

〈
ph

∣∣Ŷ s
s ′k′

〉
2(εph ± ων)

, (10)

where Â
†
ph and Âph are operators of creation and destruction

of two-quasiparticle states.
SRPA equations presented above are obtained for arbitrary

functionals E[J α
s (�r, t)], including Skyrme ones, see details in

Refs. [24–26]. The model is self-consistent in the sense that
both the static mean field

ĥ0 =
∑
αs

δE

δJ α
s

Ĵ α
s (11)

and the residual interaction of Eqs. (1), (4) and (5) are derived
from the same functional. The rank of the RPA matrix (6)
is determined by the number K of the input operators in
Eq. (2). Usually K = 2–5 [24–29], so the rank is very small.
This drastically simplifies the RPA computational effort and
allows us to perform systematic explorations even for heavy
deformed nuclei.
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B. SRPA strength function

Giant resonances in heavy deformed nuclei are formed by
thousands of RPA states whose detailed contributions cannot
be resolved experimentally. Then, instead of the solution of
Eqs. (6), a direct computation of the strength function is
more efficient and reasonable. For an external electric field
of multipolarity E1µ, the energy-weighted isovector dipole
strength function reads

S(E1µ; ω) =
∑

ν

ων

∣∣〈ν∣∣f̂E1µ

∣∣〉∣∣2
ζ (ω − ων)

= 

[

zL
∑

ββ ′ Fββ ′(z)Dβ(z)Dβ ′(z)

πF (z)

]
z=ω+i�/2

+
∑

s

∑
ph∈s

εph

〈
ph

∣∣f̂E1µ

∣∣〉2 ζ (ω − εph), (12)

where β = skτ with τ being the time parity, 
 means
the imaginary part of the value inside the brackets, F (z) is
the determinant of the RPA matrix (6) with ων replaced by
the complex argument z, Fββ ′ (z) is the algebraic supplement
of the determinant, and

D
(X)
sk (z) =

∑
s ′

∑
ph∈s ′

εph

〈
ph

∣∣Xs ′
sk

∣∣〉〈ph
∣∣f̂E1µ

∣∣〉
ε2
ph − z2

, (13a)

D
(Y )
sk (z) = i

∑
s ′

∑
ph∈s ′

ων

〈
ph

∣∣Y s ′
sk

∣∣〉 〈ph
∣∣f̂E1µ

∣∣〉
ε2
ph − z2

. (13b)

Further,

f̂E1µ = N

A

Z∑
p=1

rpY1µ(�p) − Z

A

N∑
n=1

rnY1µ(�n) (14)

is the operator of the dipole transition; N,Z, and A are
neutron, proton, and mass numbers. The strength function (12)
is smoothed by the Lorentz function

ζ (ω − ων) = 1

2π

�

(ω − ων)2 + �2

4

, (15)

with the averaging parameter � = 2 MeV in most of the
calculations. Such averaging was found to be optimal for the
comparison with experiment and simulation of broadening
effects beyond SRPA, namely, escape widths and coupling
with complex configurations (collisional broadening). The
broadening through Landau fragmentation is already included
in SRPA. In fact, escape width could also be covered by SRPA
when working with absorbing or open boundary conditions.
This, however, would make calculations an order of magnitude
more involved without adding much information for our
purposes here.

The total strength function is counted as a sum of its µ = 0
and 1 branches [Eq. (12)]: S(E1) = S(E10) + S(E11).

C. Details of calculations

The calculations were performed with the Skyrme force
SLy6 [30], which had been proved to give a satisfying
description of the GDR for heavy nuclei [25,27–29]. The

residual interaction involves the contributions from (i) the
time-even densities ρ, τ , and J and time-odd current �j ,
(ii) the direct and exchange (in the Slater approximation)
Coulomb terms, (iii) the monopole pairing delta forces [25,26].
The latter are incorporated through the particle-particle pairing
channel at the BCS level [25,26] (though the pairing impact on
GDR was found to be weak). Further, the calculations employ
a cylindrical coordinate-space grid with the mesh size 0.7 fm.
The calculation box has 24–35 mesh points depending on the
nuclear size and deformation.

The SRPA formalism itself does not provide the input
operators Q̂sk(�r) in the scaling transformation (2). At the same
time, their choice is crucial to converging the approximate
residual interaction V̂

sep
res to the true Skyrme one with a minimal

number of separable terms. We achieve this aim by using
Q̂sk(�r) inputs which compel the separable operators X̂sk(�r)
and Ŷsk(�r) to have maxima in different spatial regions of
the nucleus, both in the surface and interior. As shown in
Refs. [24,25], this way indeed allows one to obtain good
convergence already with a few separable terms. The physical
arguments suggest that the leading scaling operator Q̂s1(�r)
should have the form of the applied external field in the
long-wave approximation. The corresponding operators (4)
are then most sensitive to the surface of the system. The next
input operators are chosen to shift the maxima of operators (4),
and hence the sensitivity, more and more to the interior
[24,25]. Following this prescription, the present calculations
use four input dipole operators Rk(r)(Y1µ + h.c.) with radial
dependencies R1(r) = r, Rk=2,3,4(r) = j (qkr), and qk taken
from Ref. [24]. Besides, the operator r3(Y3µ + h.c.) is added
to take into account the multipole mixing of excitations with
the same projection µ and space parity π .

For all nuclei, the equilibrium quadrupole deformations are
found by minimization of the total energy. The deformations
are characterized by the charge quadrupole moments Q2 and
related dimensionless parameters β2 as

Q2 =
∫

d�rρp(�r)r2Y20, β2 =
√

π

5

Q2

Z〈r2〉p , (16)

where ρp(�r) is the proton density in the ground state, 〈r2〉p =∫
d�rρp(�r)r2/Z is the r.m.s. proton radius.
The calculations use a large single-particle basis resulting

in two-quasiparticle dipole states up to ∼65 MeV, see Table I.

TABLE I. Characteristics of the configuration space used in
the calculations: minimal Emin and maximal Emax single-particle
energies, number of the single-particle levels M for protons and
neutrons, number of two-quasiparticle dipole states N2qp (for
branches µ = 0 and 1 altogether). See text for more details.

Nucleus Emin, Emax (MeV) M N2qp

Z N Z N

154Gd −45.4, +20.2 −57.2, +17.0 252 308 4720
238U −42.7, +19.3 −58.0, +14.8 307 393 6860
294120 −36.4, +20.9 −58.7, +14.1 360 426 8720
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The energy-weighted sum rule

EWSR(T = 1, λ = 1) = 9
(h̄e)2

8πm∗
1

NZ

A
(17)

is then exhausted by 92–95%. This sum rule includes the
isovector effective mass m∗

1, because the velocity-dependent
terms are involved; see discussion in Ref. [29]. In SLy6 we
have actually m∗

1/m = 0.80.
Since SRPA includes the dipole momentum-like input oper-

ators P̂ = i[Ĥ , Q̂], the spurious isoscalar dipole state should
be automatically placed at zero energy [24]. And indeed in our
calculations, the spurious strength is downshifted to an energy
of 2–3 MeV, thus fully leaving the GDR region. Because of
some natural computational limits (finite computational box,
restricted single-particle basis), the spurious peak does not yet
achieve the zero energy. Of course, this could be done for
the price of a considerable increase of the box and basis, but
then the calculations of GR in heavy deformed nuclei would
need an impressive computational effort. We do not follow that
path, since the spurious strength already resides safely below
the GDR and the basis is enough to exhaust most of the sum
rule (17).

To estimate the resonance energy centroid E, width �,
and deformation splitting �E, the following prescriptions
are applied. To determine E, the energy interval around the
resonance with the strength larger than 10% of the maximal
value is used, and the centroid of the strength inside this
interval is determined. The same method is implemented to
find centroids E0 and E1 of µ = 0 and 1 branches separately.
Then the deformation splitting �E = E1 − E0 is obtained.
The width � is determined at a half-maximum of the resonance.

SRPA does not take into account some important broaden-
ing mechanisms (e.g., escape widths, coupling with complex
configurations), so we do not pretend to describe the full
GDR widths. Instead, we simulate the experimental widths
by sufficiently large Lorentz averaging (� = 2 MeV). Such
simulation is also useful. Indeed SRPA can properly describe
the Landau fragmentation and deformation splitting. So,
subtracting these contributions from the simulated width,
one can estimate the relative role of the remaining width
mechanisms.

The experimental data for the GDR [31–40] include
photoabsorption

σ = (γ, n) + (γ, p) + (γ, np) + (γ, 2n) + (γ, d)

+ · · · + (γ, f ),

neutron yield

σ = (γ, n) + (γ, np) + 2(γ, 2n) + 3(γ, 3n) + · · · + (γ, f ),

and neutron product

σ = (γ, n) + (γ, np) + (γ, 2n) + (γ, 3n) + · · · + (γ, f ).

The photoabsorption data are preferable as they involve all the
main decay channels and so most correspond to the strength
function (12). If the photoabsorption data are absent, the
neutron yield and neutron product can also be used for a
rough comparison, since these data include most of the main
channels. However, one should take into account that both

neutron yield and product omit the (γ, p) channel and so can
underestimate the strength and change the resonance gross
structure. Besides, the neutron yield amplifies the neutron
contributions (γ, 2n), (γ, 3n), . . . , and hence the right wing
of the resonance.

In what follows, we use experimental data for photoab-
sorption in 156Gd [32], 160Gd [33], 168Er [32], 174Yb [32],
178,180Hf [32], 182,184,186W [32], 232Th [38], and 238U [38];
neutron yield in 170,172,176Yb [35] and 186,188,190,192Os [37]; and
neutron products (γ, n) + (γ, np) + (γ, 2n) in 166Er [34] and
176Hf [36] and (γ, n) + (γ, np) + (γ, 2n) + (γ, f ) in 234U [39]
and 236U [40].

In rare-earth and actinide regions, we consider all
nuclei for which reasonable GDR experimental data
exist (with the exception of Nd and Sm isotopes
already explored in our previous papers [25,27–29]). In
superheavy nuclei, we look at three isotopic chains: nobelium
Z = 102 (A = 242, 248, 254, 262, 270), Z = 114 (A = 264,

274, 284, 294, 304), and Z = 120 (A = 280, 288, 294, 304,

312). As can be seen from Ref. [41], these chains cover
the most interesting mass and deformation regions. Indeed,
they involve the onset (Z = 102), the center (Z = 114),
and the upper end (Z = 120) of the superheavy region.
Every chain extends through the whole neutron interval at
a given Z. Different deformation regions are covered. For
Z = 102, we deal with well-deformed nuclei and small
variation of the quadrupole deformation. The chains Z = 114
and 120 show strong variations of the deformation with its
decrease, when moving toward the magic neutron number
N = 184 [42]. The proton numbers Z = 114 and 120 are
tentatively magic [11,43] such that neutron shell structure
acquires a decisive weight for sphericity or deformation.

III. RESULTS AND DISCUSSION

A. Rare-earth and actinide nuclei

Results of SRPA calculations for rare-earth and actinide
nuclei are presented in Figs. 1–6. Note that for reasons of
comparison the calculated strength function is rescaled to cor-
respond roughly to the maximal magnitude of the experimental
cross section. Moreover, because of the insufficient accuracy
of the model and experimental resolution (see discussion in the
previous section), we skip here the analysis of the fine structure
that manifests itself mainly at the top of the resonance. The
main attention will be paid to the resonance energy centroids
and widths.

Figures 1 and 2 show an excellent agreement with experi-
ment for Gd, Er, and Yb isotopes. The agreement is less perfect
for Hf, W, and Os shown in Figs. 3 and 4: the calculated
strength exhibits a slight (∼0.5 MeV) downshift in Hf and
W and a larger (∼1 MeV) upshift in Os. It is known that
Os isotopes are soft to oblate quadrupole deformation, which
is confirmed by our calculations. However, as we checked,
SRPA calculations on top of the oblate isomer do not improve
agreement with the experiment. The discrepancies for Os may
be partly caused by using the neutron yield experimental data.
As discussed above, the neutron yield alone can amplify the
right GDR flank, thus resulting in some apparent upshift
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FIG. 1. Isovector dipole strength in 156,160Gd and 166,168Er. The
calculated strength (solid curve) is compared with the experimental
data for total photoabsorption [32,33] (triangles) and neutron product
[34] (rhombs). Dotted curves represent the branches of the resonance
with µ = 0 (left small) and µ = 1 (right large). The deformations are
β2 = 0.347, 0.359 and 0.348, 0.353, respectively.

relative to the total photoabsorption cross section. Results
for the actinides in Fig. 5 also look encouraging. Modest
deviations in the gross structure of 234,236U can be explained
by using the neutron product experimental data.

It is worth noting that the comprehensive analysis of
experimental data reveals noticeable (sometimes significant)
deviations in GDR measurements of different experimental
groups [44]. Taking into account these uncertainties in the
data, one may consider the agreement with experimental data
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FIG. 2. Same as in Fig. 1, but for 170,172,174,176Yb. The exper-
imental data are for neutron yield [35] (solid circles) and total
photoabsorption [32] (triangles). The deformation parameters are
β2 = 0.350, 0.347, 0.340, 0.327, respectively.
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FIG. 3. Same as in Fig. 1, but for 176,178,180Hf and 182,184,186W. The
experimental data are for total photoabsorption [32] (triangles) and
neutron product [36] (solid circles). The deformation parameters for
176,178,180Hf and 182,184,186W are β2 = 0.330, 0.296, 0.287 and 0.260,
0.252, 0.247, respectively.
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as very satisfying, at least for energy centroids and widths (the
latter is partly due to the large averaging � = 2 MeV).

The correlation of the quadrupole moments of Eq. (16) with
some resonance characteristics (width �, deformation splitting
�E, energy centroid E) and trends of these characteristics
with the mass number A are shown in Fig. 6. All nuclei in
the sample have a significant quadrupole deformation. The
calculated quadrupole moments are in excellent agreement
with the experiment [45]. In the rare-earth nuclei, the moments
have a maximum in the middle of the region. Note that the

dimensionless deformation parameters β2 as indicated in the
captions of the previous figures are maximal at the onset of the
region. The difference between Q2 and β2 maxima is related
to the nuclear mass factor in Eq. (16). The direct contribution
of the deformation splitting �E to the GDR width is maximal
(∼40%) in the first half of the region (A < 176) and then
slowly decreases to 37–34% for Hf, 34–31% for W, and 31–
24% for Os. Furthermore, �E is a bit increased in the actinides,
where it reaches 30–33%. This trend obviously correlates with
β2. See also discussion of the GDR width and structure in
Sec. III C.

In Fig. 6 (lower panel), the resonance energy is compared
with empirical estimates based on Steinwedel-Jensen (SJ) [5]

ESJ = 81A−1/3 MeV (18)

and Berman-Fultz (BF) [1,2]

EBF = (31.2A−1/3 + 20.6A−1/6) MeV (19)

collective models. BF takes into account both volume and
surface contributions and treats the dipole resonance as a
combination of Steinwedel-Jensen [5] and Goldhaber-Teller
(GT) [4] scenarios. The calculated energies are closer to the
SJ estimate [Eq. (18)] in the rare-earth region and to the BF
estimate [Eq. (19)] in actinides. As shown below, the BF
estimate is also more appropriate in superheavy nuclei. This
agrees with the commonly accepted view that in heavy nuclei
neither the density gradient (∼A−1/3) nor the nuclear surface
impact (∼A−1/6) dominate the restoring force [2,46,47].

B. Superheavy nuclei

The agreement of SRPA results with the experimental
data in rare-earth and actinide nuclei encourages its further
application to superheavy nuclei. SRPA results for superheavy
nuclei are exhibited in Figs. 7–10.
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FIG. 6. Calculated characteristics of
rare-earth and actinide nuclei as functions
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moments Q2 compared with experimen-
tal values (crosses) [45]. Middle panel:
widths � (upper set) and deformation
splittings �E (lower set). Lower panel:
energy centroids compared with the esti-
mates of Eqs. (18) (dotted curve) and (19)
(solid curve).
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FIG. 7. Same as in Fig. 1, but for isotopes of superheavy nuclei
No and Z = 114 and 120. The dimensionless proton quadrupole
deformation β2 is indicated in the plots.

140 144 148 152 156 160 164 168
10

12

14

16  Q2

 Q2 
(Baran)

Q
2 [b

]

Neutron number

No

140 144 148 152 156 160 164 168
0

5

10

W
id

th
 [M

eV
]

∆E
 [M

eV
]

140 144 148 152 156 160 164 168
12

13

14

15

E
 [M

eV
]

FIG. 8. Calculated characteristics of No isotopes as a function
of their neutron number. Upper panel: quadrupole moments Q2

(squares) compared with values from Ref. [41] (open circles). Middle
panel: widths � (squares) and deformation splittings �E (solid
circles). Lower panel: energy centroids (squares) compared with the
estimates ESJ [Eq. (18)] (dotted curve) and EBF [Eq. (19)] (dotted
curve with crosses).

148 152 156 160 164 168 172 176 180 184 188 192

0

4
8

12

16
 Q

2

 Q2 
(Baran)

Q
2 [b

]

Neutron number

Z=114

148 152 156 160 164 168 172 176 180 184 188 192

0

2

4

6

8

W
id

th
 [M

eV
]

∆E
 [M

eV
]

148 152 156 160 164 168 172 176 180 184 188 192
12

13

14

E
 [M

eV
]

FIG. 9. Same as in Fig. 8, but for Z = 114 isotopes.

Figure 7 indicates that the GDR in this region is generally
similar to that in rare-earth and actinide nuclei. In particular,
the resonance width correlates with the quadrupole parameter
β2. Furthermore, the middle panels in Figs. 8–10 show that the
direct contribution of the deformation splitting �E to the GDR
width � does not exceed 40%, as in rare-earth and actinide
nuclei. Note that our quadrupole moments Q2 from the self-
consistent calculations agree nicely with the values obtained
within the macroscopic-microscopic model [41], see the upper
panels in Figs. 8–10. The agreement persists even in mass
regions with large variations of deformation.

At the same time, the GDR in superheavy nuclei shows
some peculiarities. First, unlike the rare-earth nuclei, its energy
is much closer to the BF estimate of Eq. (19) than to the
SJ [Eq. (18)], which supports once again the treatment of
the GDR in heavy nuclei as a mixture of SJ and GT modes.
Maximal deviations from both estimates emerge at the ends of
the isotopic chains, which is natural since these estimates do
not parametrize any isospin dependence. Second, as seen from
Figs. 8–10, the decrease of the resonance energies with neutron
number N levels off and is even reversed to an increase at the
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FIG. 10. Same as in Fig. 8, but for Z = 120 isotopes.
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the proton quadrupole deformation are given for each nucleus.

end of every isotope chain. A possible explanation may come
from the increase of the symmetry energy Esym = asym(N −
Z)2/A2 (which is believed to be proportional to GDR energy
ω [10]) at these neutron-rich edges. Note that such a turnover
is absent for lighter nuclei, e.g., in the chain of Nd isotopes
(A = 134–158) explored earlier in Ref. [29]. Probably this
is because Nd isotopes do not reach so large a neutron excess
as the superheavy elements. Anyway, this turnover of the trend
is an interesting feature that deserves further inspection.

C. GDR width and structure: General discussion

In Fig. 11, the isovector dipole strengths calculated with
different Lorentz averaging parameters � are compared for a
representative set of nuclei. It is seen that smaller averaging,
� = 0.5 and 1 MeV, yields more fine structures, mainly at the
resonance peak, and leaves the width almost unchanged. As
a rule, δ� = �(� = 2 MeV) − �(� = 0.5 MeV) � 1 MeV.
Since �(� = 2 MeV) reproduces well the experimental
widths, one may associate the difference δ� to the smoothing
effects omitted in the present RPA calculations (coupling with
complex configurations, escape widths). In fact, the averaging
with � = 2 MeV effectively mimics these effects. Since
δ� � �(� = 2 MeV), the deformation splitting and Landau
fragmentation (distribution of the collective strength between
nearby two-quasiparticle states) obviously dominate the total
width. We estimate their contribution to be 70–90%, depending
on the nucleus and its shape.

Figure 11 also shows that the averaging � = 2 MeV chosen
in our calculations is indeed most suitable for the comparison
with the GDR experimental data (at least for the heavy nuclei
considered here). This averaging does not cause significant
artificial increase of the resonance width and, at the same time,
allows suppression of the structure details which, in any case,
are not resolved in the experimental strength distributions.

0

100

200

300

400

SRPA

100

200

300

SRPA

304120

0 5 10 15 20
0

100

200

300

400

 E
1 

st
re

ng
th

 fu
nc

tio
n 

[a
rb

. u
ni

ts
]

2qp

0 5 10 15 20 25

100

200

2qp

ω [MeV]

 

156Gd

FIG. 12. Isovector dipole strength calculated with smoothing
� = 2 MeV in deformed 156Gd and spherical 304120. The upper
panels show full SRPA results (with residual interaction) and the
lower panels pure two-quasiparticle (2qp) strengths (without residual
interaction). The separate branches µ = 0 (small) and µ = 1 (large)
are plotted by the dotted line and their sum by the full line.

Besides the splitting of the GDR into two branches, the
deformation also results in a considerable redistribution of the
strength within every branch. In other words, the deformation
severely influences the Landau fragmentation itself. This effect
is illustrated in Table II and Fig. 12. Table II provides the widths
of the resonance branches µ = 0 and µ = 1 for a selection
of nuclei. There is a large difference between spherical and
deformed nuclei. In spherical nuclei (304114, 304120, 312120),
we have �0 ≈ �1 ≈ �; whereas in deformed nuclei, �1 > �0

and their sum �0 + �1 roughly covers the total width �. So, we
see a strong deformation effect within the branches themselves.
To analyze it, we plot in the lower panels of Fig. 12 the
unperturbed two-quasiparticle (2qp) strengths. In deformed

TABLE II. Calculated RPA widths �0 and �1 of the resonance
branches µ = 0 and 1, the sum �0 + �1, and the total width �.
For every nucleus, the deformation parameters β2 are given. The
averaging is � = 2 MeV. For more details see the text.

Nucleus β2 Widths (MeV)

�0 �1 �0 + �1 �

156Gd 0.347 3,05 4,74 7,79 7,69
172Yb 0.347 2,54 5,08 7,62 7,28
186Os 0.222 2,65 5,09 7,74 6,39
238U 0.287 2,62 5,11 7,73 6,86
254No 0.308 2,44 5,13 7,57 6,81
264114 0.293 2,74 5,11 7,85 6,47
304114 −0.006 3,98 3,99 7,97 3,98
304120 0.001 3.32 3.26 6.58 3.30
312120 0.038 3,61 3,91 7,52 3,80
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nuclei (156Gd), the inequality �1 > �0 appears already in 2qp
strengths, which shows that this is simply an effect of the
density of states. The residual interaction (SRPA case) does
not cause essential changes in the relation between µ = 0 and
µ = 1 branches and preserves �1 > �0 in deformed nuclei.
Besides showing the influence of deformation, Fig. 12 also
illustrates the collective shifts from the unperturbed strengths
to the SRPA ones. The size of the shifts is, of course, related
to the actual force SLy6. The shifts are 4.0 and 3.4 MeV in
156Gd and 304120, respectively.

For most nuclei, the calculations indicate a small shoulder
at the right flank of the resonance. The heavier the nucleus,
the stronger the shoulder. At a small smoothing, the shoulder
becomes more pronounced and may even show up as a separate
peak; see, e.g., results for � = 0.5 MeV in Fig. 11. This
effect is often absent, or at least much less pronounced, in the
experimental data. The shoulder takes place in both deformed
and spherical nuclei and so is independent of deformation.
It persists not only for SLy6 but also for most other Skyrme
forces [25,27]. As shown in Ref. [27], the effect is caused
by specific 2qp structures with high angular momentum
(thus large statistical weight) lying at the right GDR flank.
SRPA neglects some broadening mechanisms (escape widths,
coupling with complex, 2p-2h, etc., configurations) which
could soften these structures, hence the pronounced effect.
The shoulder can be further enhanced if the Skyrme force
overestimates the dipole collective shift [25,27]. The case calls
for further detailed exploration.

IV. CONCLUSIONS

The isovector giant dipole resonance is systematically in-
vestigated in rare-earth, actinide, and superheavy regions. The
study covers 37 nuclei altogether. Mainly axially deformed nu-
clei are considered. In all the nuclei, the calculated quadrupole
moments correctly reproduce the experimental data (rare-
earth and actinide regions) [45] or macroscopic-microscopic
estimates (superheavy region) [41]. The calculations are
performed in the framework of the self-consistent separable
RPA approach (SRPA) based on the Skyrme functional. The
force SLy6 is used.

A satisfying agreement of the SRPA results with the
available GDR experimental data is found for 22 rare-earth
and actinide nuclei. The trends of the peak energies are
compared with simple estimates from collective models. It
is confirmed that the Steinwedel-Jensen (SJ) model performs
well for medium-heavy nuclei, while a mix of SJ and the
Goldhaber-Teller scenarios is more appropriate for heavy
nuclei. Encouraged by these results, the survey is extended
to superheavy nuclei, where GDR in isotope chains with
Z = 102, 114, and 120 are explored. The GDR in superheavy
nuclei is found to behave similarly to that in rare-earth and
actinide nuclei. The peak energies are, again, better described
by the mixed collective model, continuing the trend from heavy
nuclei. A new feature in the superheavy region is that the peak
energies turn from a decreasing trend to an increasing one
toward the neutron-rich ends of the isotopic chains (close to
the drip lines).

We also analyze the GDR widths �. They are shown to be
strictly dominated (at least 70–90%) by Landau fragmentation
and deformation contributions. The direct deformation con-
tribution through the splitting of the GDR into µ = 0 and 1
branches achieves 40%. The Landau fragmentation is severely
affected by the deformation as well, which modifies the branch
widths and leads to �1 > �0. The final step to agreement with
the experimental pattern is achieved by Lorentz-averaging
the SRPA results, thus simulating the missing broadening
mechanisms (e.g., escape widths and coupling with complex
configurations). A modest additional broadening of ∼1 MeV
suffices to reach a realistic pattern.
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