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Unified formula of half-lives for α decay and cluster radioactivity
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In view of the fact that α decay and cluster radioactivity are physically analogical processes, we propose
a general formula of half-lives and decay energies for α decay and cluster radioactivity. This new formula
is directly deduced from the WKB barrier penetration probability with some approximations. It is not
only simple in form and easy to see the physical meanings but also shows excellent agreement with the
experimental values. Moreover, the difference between two sets of parameters to separately describe α decay
and cluster radioactivity is small. Therefore, we use only one set of adjustable parameters to simultaneously
describe the α decay and cluster radioactivity data for even-even nuclei. The results are also satisfactory.
This indicates that this formula successfully combines the phenomenological laws of α decay and cluster
radioactivity. We expect it to be a significant step toward a unified phenomenological law of α decay and cluster
radioactivity.
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I. INTRODUCTION

The spontaneous emission of a charged particle heavier
than an α particle but lighter than a fission fragment is known
as cluster radioactivity. There is a whole family of such
a disintegration mode: 14C radioactivity, 24Ne radioactivity,
28Mg radioactivity, and so on. This new nuclear radioactivity
decay mode was first predicted in 1980 by Sǎndulescu, Poe-
naru, and Greiner [1]. Subsequently in 1984 Rose and Jones
experimentally observed this new kind of radioactivity, 14C
from 223Ra [2]. Later primary studies of this new radioactivity
were widely carried out [3–7]. As a result of the special
interest in the studies of heavy and superheavy nuclei, in
particular the heaviest ones, the interest in α-decay systematics
is continuing [8–10], and the interest in systematic analysis
of cluster radioactivity is increasing. Many semiempirical
relationships for α decay have been developed [11–14]. We
also notice that there are some formulas to determine the half-
lives of cluster radioactivity [15–19]. All of these formulas
should be considered as effective methods to calculate the
half-lives of α decay and cluster radioactivity because they are
based on different models or different variations of Gamow’s
theory. In addition, a very simple formula for proton emission
systematics was proposed by Delion et al. [20]. It takes into
account the centrifugal barrier, the structure of the decaying
nucleus, and the corresponding preformation probability so
well that the experimental data of proton emitters with Z > 50
lie along two straight lines.

Our group have implemented some work for the description
of α decay and cluster radioactivity. New calculations of
α-decay half-lives by the Viola-Seaborg formula were carried
out [21]. The formula with new parameters can reproduce the
experimental half-lives of even-even nuclei within a factor of
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1.3 and predict the half-lives of some superheavy nuclei well.
Besides, a new formula between half-lives and decay energies
of cluster radioactivity was proposed [17], which is

log10 T1/2 = aZcZdQ
−1/2 + cZcZd + d + h, (1)

where Zc and Zd are the atomic number of the cluster and
daughter nuclei, respectively, and h accounts for a blocking
factor associated with unpaired nucleons for odd-A nuclei.
This formula can be considered as a natural extension of both
the Geiger-Nuttall law and the Viola-Seaborg formula from
simple α decay to complex cluster radioactivity. Nowadays,
considering many resemblances between α decay and cluster
radioactivity, we hope to give a universal formula that can
simultaneously describe them. On the one hand, α decay and
cluster radioactivity are physically similar processes. Both
are fundamentally quantum tunneling processes through the
potential barrier. On the other hand, in recent years many
new data of α decay, especially the data for the superheavy
nuclei, have been observed experimentally. During the same
time the data of cluster radioactivity from 14C to 34Si have
been accumulated. They provide an excellent opportunity
to unify the phenomenological laws of α decay and cluster
radioactivity. In this article, we start from the quantum
tunneling effect and hope to find a unified formula of half-lives
for α decay and cluster radioactivity.

This article is organized in the following way. In Sec. II,
we deduce a new formula of half-lives and decay energies
for α decay and cluster radioactivity, directly from the WKB
barrier penetration probability with some approximations. In
Sec. III, we use the new formula to make a systematic study
of the α decay and cluster radioactivity data, respectively.
The experimental data are well reproduced by the formula.
Furthermore, we use the formula to investigate the total
experimental data of α decay and cluster radioactivity for
even-even nuclei. The results are also satisfactory. A summary
is given in Sec. IV.
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II. THE UNIFIED FORMULA OF HALF-LIVES FOR
α DECAY AND CLUSTER RADIOACTIVITY

α decay was first described in 1928 as a quantum tunneling
through the potential barrier [22]. The cluster radioactivity
observed from 1984 is fundamentally also the quantum
tunneling process through the decay barrier. In terms of
the semiclassical approximation, the decay width (or decay
constant) can be expressed by the equation [23–26]

� ≡ h̄ ln 2/T1/2 = P0FP, (2)

where P0 is the preformation probability of the cluster in the
parent nucleus, which differs from one decay mode to another
but does not change very much for a given radioactivity [27].
F is the frequency of the cluster inside the barrier, and P is the
probability of transmission through the barrier, which is given
in the WKB approximation by

P = exp

(
−2

h̄

∫ RC

Rt

√
2µ[V (r) − Q]dr

)
. (3)

Here Rt is the touching radius, Rt = Rc + Rd , where Rc and
Rd are the hard-sphere radii for the cluster and daughter nuclei,
respectively. The potential is given by V (r) = ZcZde

2/r , and
RC is the classical turning point, RC = ZcZde

2/Q. µ is the
reduced mass of the cluster-daughter system measured in unit
of the nucleon mass, µ = AcAd/(Ac + Ad ). Combining the
above results, one obtains

log10 T1/2 = log10(h̄ ln 2/P0F ) + 2

ln 10

√
2µe2

h̄
ZcZdQ

−1/2

× [arccos(x) − x
√

1 − x2], (4)

where x = √
Rt/RC . As the first approximation of the last part

of Eq. (4), we obtain

log10 T1/2 = log10(h̄ ln 2/P0F ) +
√

2µπe2

h̄ ln 10
ZcZdQ

−1/2

− 4e
√

2µRt

h̄ ln 10
(ZcZd )1/2. (5)

Due to the rough assumption of Rt and the little change
of

√
Rt for α decay and cluster radioactivity of heavy and

superheavy nuclei, we treat the factor
√

Rt as a constant here.
In the case of α decay the reduced mass changes 0.3% as
the daughter(Ad ) changes from 200 to 300; that is to say, it
approaches to a constant for α decay of heavy and superheavy
nuclei. Therefore, the factor

√
µ was usually omitted as a

constant in the prevenient α-decay systematics. However, for
heavier clusters the reduced mass is sensitive to the mass of the
fragments. With this feature in mind, without loss of generality
we have

log10 T1/2 = log10(h̄ ln 2/P0F ) + c1
√

µZcZdQ
−1/2

+ c2
√

µ(ZcZd )1/2. (6)

It is known from available experimental cases that the larger
the cluster the smaller the preformation probability [27]. So
the preformation probability of a cluster depends practically
upon the size of the cluster. Because the same cluster is
emitted by different nuclei, the preformation probability
should associate with the size of the parent or the daughter.

Based on these simple experimental facts, we assume that the
preformation probability of a cluster is an exponential function
P0 = 10−c3

√
µ(ZcZd )1/2+c4 , where c3 and c4 are constants. For a

given cluster, in particular an α particle, in heavy nuclei
√

µ

and (ZcZd )1/2 change with the parent nuclei very smoothly so
that the preformation probability of the cluster does not change
very much, as shown by Iriondo, Jerrestam, and Liotta [27].
Moreover, the probability decreases quickly with the increase
of the charge number of the cluster, as one would expect.
Then we write the right side of Eq. (6) as the sum of the√

µZcZdQ
−1/2 term, the

√
µ(ZcZd )1/2 term and a constant,

where the term related to the preformation probability is also
included. The equation of half-lives and decay energies for α

decay and cluster radioactivity can be written as

log10 T1/2 = a
√

µZcZdQ
−1/2 + b

√
µ(ZcZd )1/2 + c, (7)

where a, b, and c are the constants to be determined.
Furthermore, for the case of odd-A and odd-odd nuclei, the

structures of the ground states of the parent and the daughter
are in general different. This causes the hindrance of the
transition between these states. The hindrance is characterized
by the cluster preformation probability and is independent
of the decay energy [28]. Generally speaking, the larger the
hindrance, the smaller the preformation probability. Looking
at the form of the cluster preformation probability above, the
first term of the exponential can describe the changes with
the cluster and the parent nuclei well, but for a given cluster
and some parent nuclei close to each other, it approaches to
a constant; i.e., it is not able to reflect the hindrance for each
kind of nuclei. In view of this fact, to describe the difference
among the hindrances for different kinds of nuclei, we assume
that the second term of the exponential c4 varies with the kinds
of parent nuclei, which corresponds to the parameter c of the
formula which has different values for even-even, even-odd,
odd-even, and odd-odd nuclei.

This new formula is not only simple in form and easy to
see the physical meanings but also at the same time describes
the complicated processes of α decay and cluster radioactivity
effectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

In our analysis of α-decay half-lives, we concentrate on
heavier nuclei with Z � 84 and N � 128. We take the latest
values of experimental half-lives from Ref. [29]. We also use
some other sources [30–34]. The parameter c of the formula
has different values for even-even, even-odd, odd-even, and
odd-odd nuclei while the other parameters have the same
values. This is similar to the technique of the famous Viola-
Seaborg formula. Before bringing forth our numerical results
for α decay, we compare the new formula of any cluster
emission with the Royer formula of α decay [14], which is
log10 T1/2 = aZQ−1/2 + bZ1/2A1/6 + c, where Z and A are
the proton number and the mass number of a parent nucleus,
respectively. When we treat

√
µ rather than

√
Rt as a constant

and fix Zc = 2 for α decay, the new formula comes naturally
back to the Royer formula. Based on this, the new formula can
be considered as a natural generalization of the Royer formula
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FIG. 1. Deviations between the logarithms of the experimental
half-lives and of the calculated values for α decay of even-even nuclei
with proton number Z = 84–118.

from simple α decay to any cluster emission, including α

decay.
Now we determine the three parameters a, b, and ce−e for

even-even nuclei. Through a least-square fit to the experimen-
tal data of 71 even-even (with Z = 84–118, N = 128–176)
nuclei, we obtain a set of parameters whose values are




a = 0.39961,

b = −1.31008,

ce−e = −17.00698.

To evaluate the proposed relation, the calculated favored
α decay half-lives of even-even nuclei are compared with
the experimental data as shown in Fig. 1. To aid the
eye, consecutive isotopes of a given element are connected
with a line segment. It can be seen that the values of
log10(Texp./Tcal.) are generally within the range of about ±0.3,
which corresponds to the values of the ratio Texp./Tcal. within
the range of about 0.5–2.0, except the values of the nuclei
212Po, 290116 and 292116. This means that the calculated
α-decay half-lives are in good agreement with the experimental
data for even-even nuclei. With the parameters a and b

fixed, the parameter c for 68 e-o (with Z = 84–116, N =
129–175), 52 o-e (with Z = 85–115, N = 128–172), and 53
o-o (with Z = 85–115, N = 129–173) nuclei are determined
to be ce−o = −16.26029, co−e = −16.40484, and co−o =
−15.85337. The results are illustrated in Fig. 2, where the
x axis is µ1/2ZcZdQ

−1/2 and the y axis is the other parts of
the formula. We also show the results when the parameter c has
the same value for the four cases. When the parameter c has
different values, we can obviously see that the experimental
points lie approximatively in a single straight line as predicted
by our formula in a better way. This is an active response to our
assumption that the parameter c4 of the cluster preformation
probability varies with the kinds of parent nuclei.

(a) (b)

MeV

FIG. 2. The comparison of the logarithm of the calculated half-
lives with the logarithm of the experimental data for α decay. The
line represents the calculated values and the points represent the
experimental ones. For the case of even-even, even-odd, odd-even,
and odd-odd nuclei, (a) the parameter c has the same value ce−e;
(b) the parameter c has different values ce−e, ce−o, co−e, and co−o.

The standard deviation is defined as

√
〈σ 2〉 =

√√√√ N∑
i=1

[
log10

(
T i

exp./T i
cal.

)]2/
N, (8)

and the mean deviation is given by

〈σ 〉 =
N∑

i=1

∣∣ log10

(
T i

exp.

/
T i

cal.

)∣∣/N. (9)

In Table I, the first column denotes the type of nuclei and the
second column denotes the number of nuclei. The standard
deviations and the mean deviations are listed in columns 3
and 4, respectively. One can see that the experimental data of
α decay are well reproduced by the new formula.

Now we describe the cluster radioactivity data with the new
formula. The parameter c has different values for even-even
and odd-A nuclei while the other parameters have the same
values, which is similar to the description of α decay. We
determine the three parameters a, b, and ce−e through a least-
square fit to the available data of 11 even-even emitters. With
the values of a and b kept fixed, the parameter co−A is obtained

TABLE I. Results for α decay obtained with the new formula.
The deviations 0.1, 0.2, 0.6, 0.7, 0.8 of the logarithms correspond
to the deviations between the experimental half-lives and the
theoretical ones by factors of 1.3, 1.6, 4.0, 5.0, 6.3, respectively.

Nuclei type Number
√

〈σ 2〉 〈σ 〉
Even Z, even N 71 0.159 0.125
Odd Z, odd N 53 0.805 0.680
Even Z, odd N 68 0.692 0.548
Odd Z, even N 52 0.616 0.474
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TABLE II. The comparison of the logarithm of calculated half-lives from our new formula with the
logarithm of experimental data for cluster radioactivity.

Decay Q (MeV) log10 T
exp.

1/2 (s) log10 T formula
1/2 (s) Ref.

221Fr → 207Tl + 14C 31.29 14.52 14.63 [29]
221Ra → 207Pb + 14C 32.40 13.39 13.47 [29]
222Ra → 208Pb + 14C 33.05 11.02 11.02 [35]
223Ra → 209Pb + 14C 31.84 15.21 14.54 [36]
224Ra → 210Pb + 14C 30.53 15.87 15.87 [35]
226Ra → 212Pb + 14C 28.21 21.34 20.91 [36]
225Ac → 211Bi + 14C 30.48 17.16 18.23 [37]
228Th → 208Pb + 20O 44.73 20.72 21.53 [29]
230Th → 206Hg + 24Ne 57.77 24.64 24.57 [29]
231Pa → 208Pb + 23F 51.84 26.02 25.67 [38]
231Pa → 207Tl + 24Ne 60.41 22.89 23.09 [38]
230U → 208Pb + 22Ne 61.39 19.60 20.09 [39]
232U → 208Pb + 24Ne 62.31 20.39 20.36 [29]
233U →209 Pb + 24Ne 60.49 24.84 24.41 [29]
234U → 206Hg + 28Mg 74.12 25.75 25.24 [40]
236Pu → 208Pb + 28Mg 79.68 21.65 20.75 [41]
238Pu → 206Hg + 32Si 91.20 25.30 25.57 [42]
242Cm → 208Pb + 34Si 96.52 23.15 23.51 [43]

through the least-square fit to the experimental data of seven
odd-A nuclei. Their values are as follows:



a = 0.38617,

b = −1.08676,

ce−e = −21.37195,

co−A = −20.11223.

The standard deviation and the mean deviation of both even-
even and odd-A nuclei are 0.489 and 0.378, respectively.
Looking at the present data of cluster radioactivity, both the
decay energies and the half-lives of many nuclei need to be
measured with improved accuracy. Therefore, the standard
deviation and the mean deviation are larger than they should
be. The numerical results are shown in Table II and Fig. 3.

In Table II, the first column denotes the mode of cluster
radioactivity and the second column is the experimental decay
energy. The logarithms of the experimental half-lives and of
the calculated ones are listed in columns 3 and 4, respectively.
We can see that in many cases the deviation between the

experimental value and the calculated one is less than 0.5. This
means that the experimental half-lives of cluster radioactivity
are reproduced by our formula within a factor of 3.

This new formula makes it easy to see the physical
meanings as it can be approximately derived. The signs and
values of the constants in the formula also agree with our
expectation. After we use the formula to separately describe
α decay and cluster radioactivity for even-even nuclei, we
find that the difference of the three parameters a, b, and ce−e

in the two cases is small, as we expected in the course of
deducing the new formula. With more and more accumulation
of data for cluster radioactivity and better and better precision
of data, it will be interesting to see whether the difference is
visibly smaller. If that happens, then we can use one set of
parameters to simultaneously describe the α decay and cluster
radioactivity data with high accuracy.

Nowadays we use three parameters a, b, and ce−e to
describe the total experimental data for even-even nuclei.
Through a linear least-square fit to 82 experimental values,

MeV

FIG. 3. The comparison of the logarithm of
the calculated half-lives with the logarithm of the
experimental data for cluster radioactivity. The
parameter c has different values for even-even and
odd-A nuclei. The small figures on the right are for
the radioactivity of 14C and 24Ne, respectively. The
line represents the calculated values and the points
represent the experimental ones.

044310-4



UNIFIED FORMULA OF HALF-LIVES FOR α . . . PHYSICAL REVIEW C 78, 044310 (2008)

(a)

(b)

FIG. 4. Deviations between the logarithms of the experimental
data and of the calculated values for even-even nuclei (a) when we use
two sets of parameters to describe α decay and cluster radioactivity
respectively and (b) when we use one set of parameters to describe
both α decay and cluster radioactivity at the same time.

consisting of the α decay and cluster radioactivity data for
even-even nuclei, we obtain


a = 0.39980,

b = −1.13263,

ce−e = −21.85863.

The standard deviation and the mean deviation are 0.310 and
0.202, respectively. The deviations between the logarithms
of the experimental half-lives and of the calculated values
for even-even nuclei are shown in Fig. 4. We also show the
deviations when using different sets of parameters to separately

describe α decay and cluster radioactivity for even-even nuclei,
in which T

exp.

1/2 are better reproduced. This is not unexpected
because of the larger number of parameters in the latter
case. Nevertheless, in the former case, we can see that the
values of the deviations are within the range of about ±0.5
in many cases, which means that the calculated half-lives
from the formula agree with the experimental data within a
factor of three. This indicates that the formula successfully
combines the phenomenological laws of α decay and cluster
radioactivity. We expect it to be an important step toward
a unified phenomenological law of α decay and cluster
radioactivity.

IV. SUMMARY

In summary, a general formula of half-lives and decay
energies for α decay and cluster radioactivity is deduced from
the WKB barrier penetration probability with some approxi-
mations. We systematically investigate the experimental data
of α decay and cluster radioactivity with this new formula,
respectively. The results show excellent agreement between
the experimental data and the calculated values. Furthermore,
it is only three adjustable parameters that we use to describe
the α decay and cluster radioactivity data for even-even nuclei
at the same time. The results are also satisfactory.
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