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Parity assignments in 140Ce up to 7 MeV using Compton polarimetry
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Parity quantum numbers of J = 1 states up to 7 MeV in the region of the Pygmy Dipole Resonance in
140Ce were determined model independently by combining the methods of Nuclear Resonance Fluorescence
and Compton polarimetry. For the first time the well-established method of Compton polarimetry was applied
at such high energies. The experiment was performed using a fourfold segmented HPGe clover detector for the
detection of the scattered photons. For all investigated dipole transitions asymmetries are found which correspond
to negative parity of the excited states.
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I. INTRODUCTION

In the last decade the dipole response of atomic nuclei up to
the particle separation energies has been studied systematically
in various nuclei covering a wide mass range using the
method of real-photon scattering [1,2]. In most medium
to heavy nuclei a concentration of electric dipole strength
below the neutron separation energy was observed, which is
usually denoted as Pygmy Dipole Resonance (PDR), e.g., see
Refs. [3–7]. Systematic studies of isotonic and isotopic chains
have revealed a rather smooth development of the gross
features like center of mass energy and total integrated strength
of the PDR in neighboring nuclei. Therefore, the PDR is
proposed as a new common mode in atomic nuclei, while
its collectivity is a matter of ongoing discussions [8].

The interpretation of these excitations is in many cases
based on the assumption of negative parity for the majority
of J = 1 states between 5 and 9 MeV. Their parity was
measured directly only in a few cases, e.g., using laser
Compton backscattering [9]. In recent experiments the low-
lying dipole excitations in 140Ce were studied using the
(α, α′γ ) reaction [10]. The results reveal a splitting of the
dipole strength in 140Ce: while the dipole excitations below
6 MeV were observed in (α, α′γ ) as well as in (γ, γ ′)
experiments, the excitations above 6 MeV could only be
observed in (γ, γ ′) experiments. Under the given kinematic
conditions of forward-angle scattering under 3.5◦ and a beam
energy of Eα = 136 MeV Coulomb excitation is suppressed.
In first order, a reaction with spinless projectile and target only
populates natural parity states via nuclear scattering [11]. So a
simple explanation for the nonobservation of the higher-lying
states could be that they have positive parity. The aim of
the present work is therefore to determine the parity of the
high-lying dipole states in 140Ce in a model-independent
way.

The experimental method of Nuclear Resonance Fluores-
cence has been shown to be able to determine fundamental
properties of bound J = 1 states. Due to the well-understood
excitation mechanism and the low momentum transfer of real
photons the method has a high selectivity to low-spin states and

provides the possibility of extracting absolute B(σ l) values as
well as angular momenta in a model-independent way [1].

While the multipolarity of a transition radiation can be
extracted from the angular distribution of the resonantly
scattered photons, its electric or magnetic character can only
be determined from polarization observables.

When using unpolarized photons in the entrance channel
the polarization of the scattered photon contains information
on the parity of the excited states. Measurements of the linear
polarization using the polarization dependence of Compton
scattering (generally denoted as Compton polarimetry) have
proven to be a reliable tool for model-independent parity
assignments at energies up to about 4 MeV [12–18]. At
these energies the analyzing power of the Compton effect has
dropped already significantly and reliable parity assignments
become difficult [19]. To counter the strongly decreasing
analyzing power and make Compton polarimetry applicable
at higher energies, higher photopeak efficiencies and longer
measuring times are needed.

II. EXPERIMENTAL AND THEORETICAL BASICS

A. Experimental method

The experiment was performed at the High-Intensity
Photon Setup (Fig. 1) at the superconducting linear accelerator
S-DALINAC for electrons at the TU Darmstadt. Unpolarized
bremsstrahlung is produced by stopping the electron beam
in a segmented copper radiator. Behind the radiator the
bremsstrahlung beam is collimated to prepare a well-defined
photon beam of about 3 cm diameter at the target positions. Fol-
lowing the first experimental setup with three actively shielded
HPGe detectors a second target position with an additional
detector could be set up. At this position a fourfold segmented
HPGe clover detector is used at an angle of 90 degrees
with respect to the incoming photon beam. This second
measuring station provides the possibility of parasitic longtime
measurements.

As in-beam targets 11B, 32S, 208Pb, and 140Ce were used.
The measurement durations were 26, 74, 63, and 290 hours,
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FIG. 1. High-Intensity Photon Setup at the superconducting
linear accelerator for electrons S-DALINAC. The electron beam
coming from the left produces bremsstrahlung photons in a copper
radiator.

respectively, with average beam currents of about 20 µA. For
the determination of the intrinsic asymmetry also the decay
radiation of 56Co and 60Co sources was analyzed.

B. Basics of Compton polarimetry

For nuclear scattering processes restricted to multipolar-
ities L � 2 the directional correlation between incident and
scattered photons is given by

W (ϑ) =
∑

ν=0,2,4

Aν(1)Aν(2)Pν(cos ϑ) (1)

with the Legendre polynomials Pν(cos ϑ) and the scattering
angle ϑ . Restricting ourselves to two multipole components
Li and L′

i = Li + 1 the expansion coefficients for the nth
transition are given by [1,20]

Aν(n) = 1

1 + δ2
n

[
Fν(LnLnJnJ ) + 2δnFν(LnL

′
nJnJ )

+ δ2
nFν(L′

nL
′
nJnJ )

]
(2)

with the angular momenta Jn and J of the nth state and of the
intermediate state, respectively, and the mixing ratios δn. The
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FIG. 2. Principles of Compton polarimetry. The primary photon
beam γ is resonantly scattered at the target and shows a linear
polarization depending on the parity of the excited state. The linear
polarization of the scattered photons γ ′ is determined with a system
of scatterer and analyzers. On the right-hand side a schematic
front view of the Clover detector is shown. The arrows symbolize
the coincidences between neighboring segments which define the
Compton scattering plane.

coefficients are normalized so that A0(n) = 1. The coefficients
Fν are listed, e.g., in Ref. [21]. Taking now into account
the linear polarization of the scattered photon the correlation
function W (ϑ, ϕ) can be written as

W (ϑ, ϕ) = W (ϑ) + (±)L′
2

∑
ν=2,4

Aν(1)

×A′
ν(2)P (2)

ν (cos ϑ) cos 2ϕ (3)

with the unnormalized associated Legendre Polynomials
P (2)

ν (cos ϑ). The polarization angle ϕ is defined as the angle
between the reaction plane (spanned by the momentum
vectors of the incoming and the scattered photon) and the
polarization plane (spanned by the momentum vector of the
scattered photon and its electric field vector). The factors (±)L′

2

correspond to ±1 for electric and magnetic transitions L′
2,

respectively. The coefficients A′
ν(2) are given by

A′
ν(2) = 1

1 + δ2
2

[−κν(L2L2)Fν(L2L2J2J )

+ 2δ2κν(L2L
′
2)Fν(L2L

′
2J2J )

+ δ2
2κν(L′

2L
′
2)Fν(L′

2L
′
2J2J )

]
(4)

with the polarization coefficients κν listed, e.g., in Ref. [22].
The coefficients are normalized so that A′

0(2) = 1. The degree
of linear polarization Pγ is usually defined as

Pγ (ϑ) ≡ W (ϑ, ϕ = 0◦) − W (ϑ, ϕ = 90◦)

W (ϑ, ϕ = 0◦) + W (ϑ, ϕ = 90◦)
. (5)

With Eq. (3) this becomes

Pγ (ϑ) = (±)L′
2

∑
ν Aν(1)A′

ν(2)P (2)
ν (cos ϑ)∑

ν Aν(1)Aν(2)Pν(cos ϑ)
. (6)

In the case of pure dipole or quadrupole transitions (spin
sequences 0-1-0 and 0-2-0, respectively) and for a scattering
angle of ϑ = 90◦ full linear polarization |Pγ | = 1 is obtained,
see Table I.

The linear polarization of the scattered photons can be
determined by making use of the polarization dependency
of the Compton scattering process. A detection system of
scatterer and analyzers allows us to distinguish between
Compton scattering parallel and perpendicular to the reaction
plane (see Fig. 2). The asymmetry ε which is defined as

ε = αN⊥ − N‖
αN⊥ + N‖

(7)

is directly related to the degree of linear polarization Pγ by

ε = Pγ Qγ (Eγ ). (8)

TABLE I. In the case of pure dipole or quadrupole transitions
maximum degree of linear polarization |Pγ | = 1 is obtained at ϑ =
90◦. The parity of the excited state determines the sign of the degree
of linear polarization.

Transition J π -sequence Pγ (� = 90◦)

E1 0+ → 1− → 0+ −1
M1 0+ → 1+ → 0+ +1
E2 0+ → 2+ → 0+ +1
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The parameter α in Eq. (7) includes possible intrinsic asym-
metries of the detection system. The polarization sensitivity
Qγ in Eq. (8) is parametrized by

Qγ =
dσ
d�

(ϑ, ϕ = 90◦) − dσ
d�

(ϑ, ϕ = 0◦)
dσ
d�

(ϑ, ϕ = 90◦) + dσ
d�

(ϑ, ϕ = 0◦)
(aQ + bQEγ ), (9)

where the first factor is the analyzing power of the Compton
effect for point-like scatterer and analyzers and the second
factor takes into account their finite dimensions. The differ-
ential cross sections are given by the Klein-Nishina formula
and aQ, bQ are fit parameters. As Qγ does not change with the
character of the radiation inspected, for a given spin the sign of
the asymmetry allows us to distinguish between positive and
negative parity of the excited states.

III. RESULTS

A. Intrinsic asymmetry and polarization sensitivity

To allow the determination of linear polarization with a
given detection system, the intrinsic asymmetry [see Eq. (8)]
and the polarization sensitivity [see Eq. (6)] have to be known.

By analysis of unpolarized radiation the intrinsic asymme-
try of the detection system can be determined. For this purpose
56Co and 60Co sources and a 11B in-beam target were used. For
unpolarized radiation the parameter α, which was introduced
in Eq. (8) to characterize the intrinsic asymmetry, is given
as the ratio of coincidences parallel and perpendicular to the
reaction plane

α(Pγ = 0) = N‖
N⊥

. (10)

This ratio is plotted in Fig. 3. By fitting a constant to the data
over the entire energy range, the parameter of this fit is found
to be

α = 0.995(6). (11)

This value is consistent with a negligible intrinsic asymmetry
of α = 1 as expected because of the compactness of the
detection system.

For the determination of the polarization sensitivity, dipole
and quadrupole transitions of excited states of known parity of
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FIG. 3. Intrinsic asymmetry of the detection system. Asymme-
tries of decay lines of 56Co and 60Co sources and of excitations of
11B were fitted with a constant function. An intrinsic-asymmetry
parameter of α = 0.995(6) was obtained from the fit.
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FIG. 4. Polarization sensitivity of the clover detector. Dipole and
quadrupole transitions of excited states of known parity of 32S, 208Pb,
140Ce were analyzed in terms of their asymmetry. The function from
Eq. (8) was fitted to the absolute values. The fitting parameters aQ =
0.38(12) and bQ = −1.9(22) × 10−5 keV−1 are obtained.

the nuclei 32S, 208Pb, and 140Ce were analyzed. The parameters
aQ, bQ in Eq. (9) were fixed as

aQ = 0.38(11)

and

bQ = −1.9(22) × 10−5 keV−1

see Fig. 4 and Table II. The measured polarization sensitivity is
in good agreement with extrapolations of the results published
in Ref. [23] which were obtained for a clover detector with
similar dimensions but at lower photon energies. In the energy
range between 5 and 7 MeV the polarization sensitivity
accounts for 2–4%.

TABLE II. Asymmetries of electric and magnetic dipole and
electric quadrupole transitions of excited states of known parity
in 32S, 208Pb, 140Ce.

Target/duration [h] Eγ [keV] J π ε [%]

32S/74 2231(2) 2+ 7.4(30)
4281(2) 2+ 6.2(46)
5796(2) 1− −2.4(31)
8124(2) 1+ 1.9(12)

208Pb/63 4085(2) 2+ 7.0(39)
4842(2) 1− −1.6(20)
5293(2) 1− −4.2(22)
5512(2) 1− −1.5(9)
6721(2) 1− −0.8(31)
7064(2) 1− −3.6(29)
7332(2) 1− −3.2(31)

140Ce/290 3644(2) 1− −5.5(24)
5660(2) 1− −2.9(16)
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TABLE III. Asymmetries for transitions in 140Ce and assigned parities of the appropriate excited states.
Negative parity is assigned to all states. In the cases of groups of peaks evaluated together (marked with ∗)
the parities assigned are put in parentheses. Confidence levels for the exclusion of positive parity are also
listed, see text for details. The values for P (χ 2) are expressed in units of Gaussian standard deviations. The
number symbols correspond to those in Figs. 5 and 6.

Symbol Eγ [keV] J ε [%] π Conf. [σ ] P (χ 2) [σ ]

©1 6119(2) 1 −7.3(4.4) −1 2.2 2.0
©2 6296(2) 1 −3.8(3.4) −1 1.7 1.6
©3 6398(2) 1 −6.8(2.4) −1 3.7 3.2
©4 6439(2)∗ 1 −2.6(2.7) (−1) 1.7 1.5

6449(2)∗ 1 −2.6(2.7) (−1) 1.7 1.5
6459(2)∗ 1 −2.6(2.7) (−1) 1.7 1.5

©5 6498(2) 1 −1.3(2.4) −1 1.4 1.2
©6 6537(2) 1 −3.7(2.2) −1 2.6 2.2
©7 6606(2)∗ 1 −2.6(4.2) (−1) 1.1 1.0

6616(2)∗ 1 −2.6(4.2) (−1) 1.1 1.0
©8 6863(2) 1 −5.7(3.2) −1 2.4 2.2

B. Parities in 140Ce

Spectra of vertical and horizontal coincidences for the
140Ce target in the energy range from 6 to 7 MeV are
shown in Fig. 5. Table III shows the resulting asymmetries
of the analyzed peaks. Because of lack of statistics or
superpositions with strong escape peaks some peaks could
not be evaluated properly. The two groups of transitions
with Eγ = 6606, 6616 keV and Eγ = 6439, 6449, 6459 keV
appear as a doublet and a triplet, respectively. In Fig. 6 the
asymmetries are compared to the polarization sensitivity of
the clover detector. Since the degree of linear polarization of
the transitions under consideration is |Pγ | = 1, the positive
and negative sign corresponds to positive and negative parity
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FIG. 5. Spectra of 140Ce between 6 and 7 MeV of coincidences
perpendicular and parallel to the reaction plane. The duration of the
measurement was 290 h. Only peaks marked with number symbols
were evaluated. See Fig. 6 and Table III for the results.

of the excited state respectively. The errors of the polarization
sensitivity are shown as shaded bands.

All asymmetries show negative signs leading to an assign-
ment of electric character to the corresponding transitions.

As an estimate of the confidence level for this assignment
the deviation of each data point from the M1 expectation value
(given by the positive polarization sensitivity) is taken. These
values, expressed in terms of the standard deviation of the
individual data points, are given in Table III in the row labeled
“Conf.”. For a more accurate confidence analysis one has to
take into account the nonvanishing error of the polarization
sensitivity as well. Therefore, χ2 values with respect to the
positive polarization-sensitivity curve were calculated for all
data points. Taking the errors of the polarization sensitivity
and of the asymmetries of the data points as independent of
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FIG. 6. Asymmetries of dipole transitions in 140Ce between 6
and 7 MeV versus the values of the asymmetries expected for E1
and M1 transitions, respectively. The bands are obtained from the
polarization-sensitivity analysis, see Sec. III A. For all transitions
magnetic character can be excluded with confidence levels of at least
1σ , see text and Table III.
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each other, the integrated probability distribution

P (χ2) =
∫ χ2

0

exp(x2/2)√
2πx2

dx2 (12)

for finding a value up to χ2 gives another quantitative measure
of the confidence level for the exclusion of magnetic character.
See Ref. [24] for details. The results are summarized in
Table III. With both methods confidence levels are obtained
which amount to at least 1σ and therefore support the
assignment of negative parity to all states under consideration.

IV. SUMMARY AND CONCLUSION

The method of Compton polarimetry which is well es-
tablished at energies of up to about 4 MeV was applied
successfully in the energy region up to 7 MeV and allowed
model-independent parity assignments. Negative parity was
assigned to all of the examined states of 140Ce in the region of

the PDR at a confidence level of 1σ or better. The result that
the states in this region show negative parity is in agreement
with the expectation following from the observation for the
even-even neighbor nucleus 138Ba. Since the nonpopulation of
the higher lying states via α scattering can therefore not be
explained as a change in parity, it seems appropriate to refer
to a splitting of the PDR. This splitting could be explained
by a different isospin character of the two components, i.e.,
isoscalar and isovector character of the low-lying and the high-
lying states, respectively. It is planned to further address this
question with complementary measurements using different
hadronic probes.

ACKNOWLEDGMENTS

We thank the KVI Groningen for lending us the clover de-
tector. This work was supported by the Deutsche Forschungs-
gemeinschaft under contract SFB 634.

[1] U. Kneissl, H. H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37,
349 (1996).

[2] U. Kneissl, N. Pietralla, and A. Zilges, J. Phys. G: Nucl. Part.
Phys. 32, R217 (2006).

[3] K. Govaert, F. Bauwens, J. Bryssinck, D. De Frenne, E. Jacobs,
W. Mondelaers, L. Govor, and V. Y. Ponomarev, Phys. Rev. C
57, 2229 (1998).

[4] T. Hartmann, M. Babilon, S. Kamerdzhiev, E. Litvinova,
D. Savran, S. Volz, and A. Zilges, Phys. Rev. Lett. 93, 192501
(2004).

[5] S. Volz, N. Tsoneva, M. Babilon, M. Elvers, J. Hasper, R.-D.
Herzberg, H. Lenske, K. Lindenberg, D. Savran, and A. Zilges,
Nucl. Phys. A779, 1 (2006).

[6] N. Ryezayeva, T. Hartmann, Y. Kalmykov, H. Lenske, P. von
Neumann-Cosel, V. Y. Ponomarev, A. Richter, A. Shevchenko,
S. Volz, and J. Wambach, Phys. Rev. Lett. 89, 272502 (2002).

[7] D. Savran, M. Fritzsche, J. Hasper, K. Lindenberg, S. Müller,
V. Y. Ponomarev, K. Sonnabend, and A. Zilges, Phys. Rev. Lett.
100, 232501 (2008).

[8] N. Paar, D. Vretenar, E. Khan, and G. Colo, Rep. Prog. Phys.
70, 691 (2007).

[9] N. Pietralla, Z. Berant, V. N. Litvinenko, S. Hartman, F. F.
Mikhailov, I. V. Pinayev, G. Swift, M. W. Ahmed, J. H. Kelley,
S. O. Nelson et al., Phys. Rev. Lett. 88, 012502 (2001).

[10] D. Savran, M. Babilon, A. M. van den Berg, M. N. Harakeh,
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