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Many-body approximations in the sd-shell “sandbox”
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A new theoretical approach is presented that combines the Hartree-Fock variational scheme with the exact
solution of the pairing problem in the finite orbital space. Using this formulation in the sd-space as an example,
we show that the exact pairing significantly improves the results for the ground state energy.
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I. INTRODUCTION

The classical Hartree-Fock (HF) approximation is a pro-
totype of the modern approach to the quantum many-body
problem related to the energy density functional [1,2]. When
applied to complex nuclei, the density functional theory may
provide a universal description across the nuclear chart. The
pairing interaction that is present in nuclei as well as in
fermionic condensed matter systems is usually included in the
Hartree-Fock-Bogoliubov (HFB) form [3]. The well-known
deficiencies of the HFB approach for mesoscopic systems
follow mainly from its nonconservation of particle number.
As a result, unphysical features are introduced into dynamics,
the superfluid phase transition appears too sharp, and the
correlational energy produced by pairing might be severely
underestimated. As was shown earlier [4,5], the pairing part
of the problem can be solved numerically quite easily with
the help of the seniority representation in a spherical basis,
and its exact solution significantly improves the results. For
example, differences between the exact solution of the pairing
problem and the BCS theory of up to 2 MeV are found for the
Ca isotopes [4].

It was also sketched in Ref. [4] how other parts of the
interaction can be incorporated into the exact pairing method
in the approximate way that reminds the HF approach. This
can be done in an iterative fashion: the exact pairing solution
using the starting single-particle basis determines the actual
occupation numbers; these (in general, fractional) occupancies
self-consistently determine, in the HF spirit, an improved
single-particle basis where we again solve the pairing problem,
etc., until convergence. In this way both mean-field features,
deformation and pairing, can be accounted for. The main
purpose of the current work is to further develop this Hartree-
Fock plus pairing correlation (HFP) method that essentially
is an intermediate step from the HF approach toward the
full shell-model (SM) description. On one hand, we would
want to keep the simplicity and modest computer demands as
inherent properties of the mean-field approach. On the other
hand, we take into consideration pairing and other physical
effects beyond the simple HF, or mean field in general. We
check our approach for the sd-shell nuclei, where the SM with
large-scale diagonalization works perfectly [6] and can serve as
a searchlight illuminating the correct direction of motion. The

success of this attempt will allow the extension of the approach
to heavy nuclei, where the catastrophic growth of dimensions
makes the complete shell-model solution unrealistic.

The main direction of our approach can be historically
traced back to the old ideas of constructing the nuclear many-
body wave function using the correlated pairs as building
blocks. Along these lines one can recall the boson expansion
techniques [7,8] (for the latest review and further references
see Ref. [9]), interacting boson model [10], nucleon-pair
shell model [11], and many other attempts. Our emphasis is
quite different however. We consider as the fundamental basis
the Hartree-Fock theory and its inherent mean-field concept,
and we attempt here to introduce correlations using modern
shell-model capabilities.

II. OUTLINE OF THE METHOD

In the spirit of most mean-field approaches, we formulate
this method as a variational one. As in the shell model, we
assume a general form of the two-body Hamiltonian that
includes the single-particle term t and the (antisymmetrized)
two-body interaction V :

Ĥ =
∑

ik

tika
†
i ak + 1

4

∑

ijkl

Vijkla
†
i a

†
j akal. (1)

The variational wave function |�〉 is defined below. The wave
function and all properties of the system follow from the
minimization of the expectation value

〈�|Ĥ |�〉. (2)

For our test of the methods, we take for V the USDB interaction
from the sd-shell model [6]. It allows us to compare the results
obtained using our approximate method with the exact shell-
model calculations in the same single-particle model space.

The ground state wave function |�〉 for a fixed particle
number N can be presented as a superposition of basis states,

|�〉 =
∑

d∈D

Cd |d〉, (3)
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where each basis state |d〉 is a Slater determinant, which for
N fermions can be written as usual:

|d〉 = a†
ν1

a†
ν2

· · · a†
νN

|0〉. (4)

The single-particle states φν can be found with the help of the
variational principle as it is usually done in the HF method. The
approach is actually defined by the selection of the space D

spanned by the determinants |d〉. If we choose only one Slater
determinant as our variational wave function (3), we come to
the standard HF approximation. If the manifold D includes
all possible configurations, then we get the exact shell-model
solution.

In this article our choice is determined by the pairing
phenomenon that smears the Fermi surface and converts
the Fermi-gas ground state into a superposition of Slater
determinants. In the case of a spherical system with the
pairing forces taken as the J = 0, T = 1 part of the two-body
interaction (1), we have seniority s as a good quantum number.
For an even number of particles, the ground state has s = 0,
while for an odd number s = 1. In the even spherical case we
can construct the basis of Slater determinants |d〉 occupying
single-particle levels |jm〉 by pairs,

∏

j ;m>0

a
†
jma

†
jm̃|0〉, (5)

where a
†
jm̃ = (−1)j−ma

†
j−m is the creation operator for the

time-conjugate single-particle state with respect to a
†
jm.

The number of terms in the product in Eq. (5) is deter-
mined by the given number of particles. Here we omit all
quantum numbers except total angular momentum j and its
projection m.

The interaction of neutrons and protons through the mean
field does not affect the dimensionalities, but can break
spherical symmetry and bring in deformed mean fields. In
the case of a deformed nucleus, even if we had only the
J = 0 part of the two-body interaction (1) in the spherical
representation, we have to take into consideration a broader
class of pairs arising as a result of splitting and mixing of
the original spherical states by deformation. Here we limit
ourselves by the case of axially symmetric deformation, when
the single-particle orbitals |νm〉 are still characterized by the
angular momentum projection m along with other quantum
numbers ν.

For an even particle number we construct the “paired” basis
Slater determinants of the form

∏

ν,κ;m>0

a†
νma

†
κ−m|0〉. (6)

Using this form we hope to correctly account for pairing
correlations in the deformed basis. The dimension of this
space D is much reduced in comparison with the full shell
model. For an odd particle number, we use the same Eq. (6)
but add one additional creation operator that corresponds to
the odd particle. The odd particle can be placed in any empty
single-particle state, and the states are divided into classes with
a definite value of the angular momentum projection.

We can restrict the class of states in Eq. (6) further if we
consider time-reversal invariance in the density. For an even

particle number the basis states then take the form
∏

ν;m>0

a†
νma

†
ν−m|0〉. (7)

For an odd particle number, the density ρ with one additional
particle and the Hamiltonian, see below Eq. (10), already are
not time-reversal invariant. This means that for each single-
particle state we cannot find the exact time-reversal partner.
However, the violation of time-reversal invariance due to the
odd particle is not very large and we may use the space (7)
with one additional particle as an approximation.

The variation over amplitudes Cd with the additional
normalization condition of the wave function, 〈�|�〉 = 1,
leads us to the usual set of equations,

∑

d ′
〈d|Ĥ |d ′〉Cd ′ = ECd. (8)

The matrix elements 〈d|Ĥ |d ′〉 are calculated for the determi-
nants built on a given single-particle basis, and Eqs. (8) are
solved numerically. The mean-field basis is found from the
self-consistent HF equation

h(ρ)φν = ενφν, (9)

where

h(ρ) = t + V (ρ) (10)

is the single-particle HF Hamiltonian, εν are the single-
particle energies, and ρ is the density matrix self-consistently
determined by

ρij = 〈�|a†
j ai |�〉. (11)

The mean-field potential is given by its matrix elements,

Vij (ρ) =
∑

kl

Viklj ρlk. (12)

In this conventional mean-field formulation, the potential (12)
contains the direct and exchange contributions. The pairing
effects, with strict particle number conservation, are contained
in the superposition of the Slater determinants (3) used instead
of the single HF determinant.

The HFP scheme of solution is the following:

(i) Start with the spherical single-particle basis |jm〉.
(ii) Choose in this basis the initial diagonal density matrix

ρ corresponding to occupation numbers specific for
prolate or oblate shapes (pairs with small or large |m|,
respectively).

(iii) Solve the HF variational Eq. (9) and get the single-
particle spectrum (φν, εν), in general corresponding to
a deformed field.

(iv) Construct the “paired” class of many-body basis wave
functions according to Eq. (6) and calculate the matrix
elements of the Hamiltonian H.

(v) Solve the variational Eq. (8) and obtain the ground state
wave function.

(vi) Calculate the next-step density matrix (11).
(vii) Repeat the procedure starting from Step 3 until

convergence.
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The converged results will certainly be a local minimum
of Eq. (2). Exploration of different starting choices in Step 2
is needed to find a global minimum. In our study here we
start with a spherical single-particle basis (because the USDB
interaction is so defined) but in principle any convenient axial
basis could be used. In the end, the ground state energy can be
found as the Hamiltonian expectation value over the resulting
ground state wave function |�〉,

EHFP = 〈�|Ĥ |�〉. (13)

In the current application of our method we make a simpli-
fying approximation treating protons and neutrons separately.
It means that, though we consider the full two-body interaction
(1) including the Tz = 0 part, the variational function (3) is
constructed as the product of proton and neutron parts,

|�〉 = |P 〉 · |N〉. (14)

Each part of this wave function can be build as a superposition
of Slater determinants: |p〉, |n〉, which include only one sort
of particle and have the same form as in Eq. (6),

|P 〉 =
∑

p∈Dp

Cp|p〉, (15)

|N〉 =
∑

n∈Dn

Cn|n〉, (16)

where Dp and Dn are dimensions of the proton and neutron
spaces, respectively.

Thus variation over amplitudes Cp and Cn leads to the
two sets of equations - for protons and neutrons separately.
These equations have the same structure as Eq. (8). The
only difference is that for the protons we use an effective
Hamiltonian Ĥp that equals to the total Hamiltonian (1)
averaged over the neutron part of the wave function, and similar
for the neutrons, Ĥn:

Ĥp = 〈N |Ĥ |N〉, Ĥn = 〈P |Ĥ |P 〉. (17)

Clearly we are losing here the proton-neutron correlations
although their mutual contributions to the mean field are fully
accounted for. We consider the effect of the Tz = 0 part in
Sec. IV.

III. RESULTS

We performed calculations of ground state energies for all
nuclei within the sd-shell region, from 17O to 39Ca. Our results
[12] are summarized in Figs. 1–5. In Figs. 1 and 2 we show
the energy gain from HFP compared to HF,

Ecorr = EHF − EHFP. (18)

Typical values are one to a few MeV. One observes the well-
known odd-even staggering that is characteristic of pairing. In
the conventional HFB approach, the pairing correlation is zero
for many of these nuclei, including cases such as 24O, where the
spherical shell gap is too large, and cases such as 20Ne, 24Mg,
and 28Si, where the deformed shell gap is too large to support
the BCS-type pairing. The HFP method gives some correlation
energy for all sd-shell nuclei for which there are at least two
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FIG. 1. Pairing correlation energy Eq. (18) for all sd-shell nuclei.

active particles (9 < N < 19 or 9 < Z < 19). In the practical
solution of the equations we find that many sd-shell nuclei
have two or three energy minima. To have some confidence
that we have found the lowest energy solution we start with
several initial values of the density matrix including those that
are prolate and oblate deformed, spherical, and random.

In Figs. 3 and 4 we show the difference between the HFP
result and the exact shell-model energy both obtained with the
USDB Hamiltonian. For comparison of the methods, the full
solution for the ground state of 28Si must take into account
93,710 M-scheme Slater determinants. When projected onto
good J = 0 there are 9216 states, and when projected onto
good J = 0, T = 0 there are 839 states. The HFP method
requires 92 determinants for protons and 92 for neutrons.

We have repeated the calculations for all nuclei using the
simplified time-reversal basis-state approximation discussed
in connection with Eq. (7). This leads to a decrease in the
matrix dimension, for example, for 28Si from 92 to 20. The
energy difference between the full calculation with Eq. (6)
and the reduced calculation with Eq. (7) is 300 keV for 28Si.
For all nuclei, typical differences are 100–300 keV with the
largest exception being 800 keV for an odd-odd nucleus.
The reduction in matrix dimension with the time-reversal
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FIG. 2. Four selected cuts on the correlation energies displayed
in Fig. 1.

044304-3



SEN’KOV, BERTSCH, BROWN, LUO, AND ZELEVINSKY PHYSICAL REVIEW C 78, 044304 (2008)

6

8

10

12

14

16

18

20

22

6 8 10 12 14 16 18 20 22

P
ro

to
n 

N
um

be
r

Neutron Number

 6

 5

 4

 3

 2

 1

 0

Binding Energy Difference (MeV)

FIG. 3. Energy difference between the exact results and our HFP
model for all sd-shell nuclei.

restriction may be useful when the HFP method is applied
to heavy nuclei where the matrix dimensions are of the order
of 10,000.

The HFP solution is very close to the exact solution around
the edges of the sd-shell (see Fig. 4). These nuclei are spherical
and the HFP method is equivalent to the spherical exact-pairing
method discussed in Refs. [4] and [5]. The largest deviation
from exact is for nuclei near the middle of the sd-shell. There
are still pairing contributions for deformed nuclei, but the
result is different from the naive expectation of just adding
“spherical” contributions. For example, as shown in Fig. 2,
the correlation energy is only about 400 keV for the deformed
20Ne, compared to a total of about 3.4 MeV that would be
obtained just from adding the 1.7 MeV correlation energies
obtained for two neutrons and two protons in a spherical basis
(e.g., 18O and 18Ne). But as discussed below in Sec. IV, the
pairing correlation contribution to the energies of deformed
nuclei with N = Z is increased by the proton-neutron T = 1
pairing and by angular-momentum projection.

Finally in Fig. 5 we show the intrinsic quadrupole moment
obtained for the lowest energy solutions for all sd-shell nuclei.
One observes the well-known region of strongly deformed
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FIG. 4. Four selected cuts on the energy difference between the
exact results and our HFP model displayed in Fig. 3.
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FIG. 5. Intrinsic quadrupole moment Q, in units b2 (b is the
oscillator parameter), for the lowest energy configuration for all
sd-shell nuclei.

prolate nuclei near 24Mg. 28Si is the most strongly oblately
deformed, and there is an island of weak oblate deformation
around 31Si. It would be interesting to use our sd-shell sandbox
to clarify the general question of why most nuclei are prolate
deformed [13], by exploring the HFP results with different
(but realistic) Hamiltonians.

IV. PROTON-NEUTRON, T = 1 PAIRING

The HFP results discussed above contain the pairing
correlations due to the neutron-neutron (NN) and proton-
proton (PP) two-body interactions. These are the contributions
traditionally contained in Hartree-Fock plus pairing models.
But for nuclei with N = Z (and those near N = Z) one
should also include proton-neutron (PN) pairing. To see
how this contribution enters we have carried out the full
sd-shell calculations in a proton-neutron basis with the USDB
Hamiltonian with and without the off-diagonal J = 0, T =
1 PN two-body matrix elements. The energy difference
between these two calculations is shown in Figs. 6 and 7
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FIG. 6. Energy gain from PN T = 1 correlations.

044304-4



MANY-BODY APPROXIMATIONS IN THE sd-SHELL . . . PHYSICAL REVIEW C 78, 044304 (2008)

0.0

0.5

1.0

1.5

2.0

-6 -4 -2 0 2 4 6

E
ne

rg
y 

ga
in

 (
M

eV
)

(N−Z)

N + Z = 28 

FIG. 7. Energy gain from PN T = 1 correlations for N + Z = 28.

as the energy gain from PN T = 1 pairing. One observes
an energy gain strongly peaked at N = Z. The dependence
on |N − Z| is similar in structure and magnitude to the
Wigner term added as corrections to FRDM [14] and HFB
[15] fits to nuclear masses. Thus as suggested in Ref. [15],
part of the Wigner term can be attributed to PN T = 1
pairing. Contributions of the PN T = 0 interactions to the
Wigner-type mass corrections as discussed in Ref. [16] are also
important.

For states with T = 0 and T = 1/2, isospin symmetry
requires that the NN, PP, and PN contributions to T = 1
pairing are all equal. Thus it is trivial to add PN pairing to
HFP by simply multiplying the PP + NN contribution by 3/2.
For higher T there is no exact result, but because the PN
pairing contribution is small, it might be approximated or
ignored. We note in this context that the PP + NN pairing
contribution obtained from the energy gain in HFP over
HF (Figs. 1 and 2) for T = 0 and T = 1/2 is smaller
than two times the PN contribution obtained from exact
calculations shown in Figs. 6 and 7. This is related to the
angular momentum nonconservation in HFP for deformed
nuclei. Pairing is reduced in the intrinsic HFP state due
to the mixture of higher-J states that have smaller pairing
correlations.

V. CONCLUSION

We have extended the exact pairing method developed for
spherical nuclei [4,5] to a deformed basis. We have formulated
a method called HFP in which the Hamiltonian is diagonalized
in a deformed paired basis separately for protons and neutrons.
The HFP method gives a pairing correlation energy even in
cases where the BCS or HFB approximations would give zero
when the energy gap at the Fermi surface is large. In light
to medium heavy nuclei HFP can improve the binding energy
calculation for a given pairing Hamiltonian by up to 2 MeV. We
have also discussed the role of J = 0, T = 1 pairing between
protons and neutrons and have shown that it contributes most
strongly to nuclei with T = 0 and T = 1/2 and contributes
to the Wigner term for nuclear binding energy which is often
added on an ad hoc basis to HF and FRDM models. It can
be calculated exactly in HFP for T = 0 and T = 1/2, can be
neglected for T > 2, and could be approximated for T = 1
and T = 3/2.

Obviously, the HFP is still far from adequate away from
semi-magic nuclei. The method might be further improved by
using the exact but more complicated variational approach
relating the single-particle basis to the full set of the co-
efficients of the superposition (3). The angular momentum
nonconservation is certainly a significant deficiency of the
wave function that, when repaired, will introduce additional
correlation energy. There are a number of ways that rotational
correlation energies can be calculated, and we are optimistic
that HFP wave functions can be used as a better starting point.
Effective Hamiltonians for the HFB solution are explored
in Ref. [17]. Finally, some improvement may follow from
including the nonaxial configurations with the pairing between
more general time-conjugate orbitals (most probably, the mean
field in 24Mg is triaxial [18,19]).
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