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The availability of new, high-intensity, cold and thermal neutron sources has opened the possibility of
performing high-precision fundamental neutron physics experiments, including measurements that study the
hadronic weak interaction and standard model test measurements, using neutron β decay. The observables in
these experiments are usually correlated with the direction of neutron polarization and are often very small
(10−8 → 10−6). Mott-Schwinger scattering of polarized neutrons can produce spin-dependent shifts in beam
centroids, which has the potential to produce significant systematic effects for these types of experiments. An
accurate calculation of this process for neutral atoms and basic molecules has not been carried out for low neutron
energies. In this work, we derive a general expression for the electromagnetic (Mott-Schwinger) contributions
to the analyzing power for low-energy neutron scattering. We obtain numerical results for 11 nuclei in the range
of A = 1 to A = 208 and provide a series of graphs for easy reference and interpolation between A values. We
also estimate the contribution of spin-dependent nucleon-nucleon forces and apply our results to determine the
analyzing power of parahydrogen. Numerical calculations are performed to determine the analyzing power for
the parahydrogen molecule and are compared to results obtained using analytical expressions.
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I. INTRODUCTION

High-precision fundamental neutron physics experiments
are currently in operation or are being designed and con-
structed to study the interaction between hadrons and test
the standard model of electroweak interactions at low energy
[1–3]. These experiments often involve a beam of polarized
neutrons, which is used to search for neutron spin-correlated
changes in observables at the ppm to ppb level [4–6]. To
observe effects at this small scale, experiments need to
have excellent control of systematic effects. Spin-orbit terms
in the interaction of a neutron with a molecule or atom will give
rise to a shift in the beam centroid that is correlated with the
neutron polarization, as a transversely polarized neutron beam
traverses an experiment. Since many of the observables that
are measured in these types of experiments depend on relative
angles between reaction products and spatial asymmetries with
respect to beam polarization, knowledge of average beam
position and the size of any neutron spin correlated beam
motion is crucial in the suppression of systematic effects.

For instance, the NPDGamma experiment [7–11] measures
the parity-violating spatial γ -ray asymmetry from the capture
of cold, polarized neutrons on the protons in a liquid hydrogen
target in the reaction �n + p → d + γ . The measured asym-
metry is in the angular correlation between the neutron spin
and the momentum direction of the outgoing γ ray (sn · kγ ).
Although knowledge of the analyzing power for neutrons
scattering from molecular hydrogen is therefore important
for quantifying the resulting uncertainty in NPDGamma, the
importance of this effect clearly extends to any experiment
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performing measurements of small observables in which
polarized neutrons are used. Another specific example arises
in the measurement of the angular correlations in neutron
β decay. The purpose of this article, which was motivated
by the need to understand the systematic errors introduced by
this process, is to calculate the analyzing power of neutron-
parahydrogen and neutron-atom scattering theoretically and
to provide a reference for experimentalists, allowing them to
estimate this effect quickly, for a particular design. The article
also shows that the effect vanishes for very low energy neutrons
typically referred to as ultracold neutrons.

Spin-orbit terms appear in both the strong and electromag-
netic interactions of polarized neutrons with parahydrogen.
The general features of the electromagnetic contribution have
been well-known since the classic paper of Schwinger [12],
who examined the case of the scattering of an energetic
neutron from a proton. The effect has also been experimentally
observed [13] and is of a particular significance in neutron
diffraction techniques [14] and neutron polarization [15].

To evaluate the systematic effects arising from these
interactions, in the types of experiments discussed above, we
have extended Schwinger’s analysis to the case of a polarized
neutron scattering at very low energy (in the range of zero to
25 meV) from a molecule or neutral atom, taking into account
the screening due to the electron cloud.

Since the neutrons used in these experiments are of very
low kinetic energy, our calculations will be done entirely
in the nonrelativistic approximation. For our numerical cal-
culations, we evaluate our expression both for scattering from
the hydrogen molecule (H2) in the para state (parahydrogen)
and also for several atoms under more general conditions.
Our derivations are exact for the ideal gas elements and
are expected to be a good approximation for all other
elements.
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The remainder of this article is organized as follows. In
Sec. II we first establish a set of general expressions that are
valid for the description of the relationship between the ana-
lyzing power and the neutron-nucleus spin-orbit interaction,
as well as for parahydrogen. We consider contributions from
both the electromagnetic (Mott-Schwinger) and the strong
interaction. In Sec. III we apply this analysis to the hydrogen
atom and extend the predictions to larger nuclei under the
approximation that these can be treated as noninteracting. In
this section we make use of the fact that the strong spin-orbit
force is negligible for an atom at low energy. Using phase-shift
calculations, we show that that one obtains an expression for
the analyzing power, for unscreened nuclei, which is identical
to the one obtained by Schwinger [12] and others for higher
energy neutrons [16–18]. This is remarkable, because the
Born approximation is, strictly speaking, valid only at higher
energies. However, we show that the reason for this result is
due to the long range of the electromagnetic interaction.

In Sec. IV we apply the formalism to parahydrogen, now
including the spin-orbit contribution arising from the strong
interaction. We discuss our results in Sec. V.

II. GENERAL EQUATIONS FOR POLARIZED NEUTRON
SCATTERING

We are interested in the evaluation of the analyzing power,
A(θ ), for the scattering of a neutral, spin 1/2 particle with
incident �pi and final �pf momenta from an atom or molecule
when the particle is polarized along the direction n̂ = �pf ×
�pi/| �pf × �pi | normal to the scattering plane, as depicted in
Fig. 1.

A = dσ/d�+ − dσ/d�−
dσ/d�+ + dσ/d�−

. (1)

Here, the subscripts + and − refer to the sign of the product
�s · n̂ = cos(α), with �s being the spin of the incident particle.

In our case, we may consider both the atom and the
hydrogen molecule to be spinless for the purpose of calculating
the transverse asymmetry. This is correct for parahydrogen
since the two protons of the molecule are in a spin singlet
state. It can be done for (J �= 0) atoms bearing in mind
that at the low incident neutron energies considered here
the spin-orbit component of the strong interaction contributes
mostly in P waves, where the phase shifts vanish as k3 and
are therefore negligible in comparison to the Mott-Schwinger
effect. It should be noted, however, that substantially larger

pf

pi
θ

α s

n

FIG. 1. Scattering diagram for Mott-Schwinger scattering of
polarized neutrons. The effect vanishes for longitudinal polarization
(�s).

orbital angular momenta are involved for parahydrogen, since
the scattering takes place coherently from both protons, and
therefore the contribution of the strong spin-orbit force is much
larger.

For a spinless target, the asymmetry in Eq. (1) is conven-
tionally expressed in terms of the coherent g(θ ) and incoherent
h(θ ) scattering amplitudes which related to the S matrix
as [19]

S = g(θ ) + ih(θ )�s · n̂, (2)

In terms of the S matrix, the differential cross section is
given by

dσ

d�±
= χ

†
±S†Sχ±. (3)

Where χ± is the wave function defining the spin state of the
incident neutron. The analyzing power may then be written in
terms of the usual scattering amplitudes [20],

A(θ ) = −2Im[g(θ )h∗(θ )]

|g(θ )|2 + |h(θ )|2 . (4)

g(θ ) = 1

2ik
�j	(2j + 1)(e2iδj	 − 1)P	(cos θ ) (5)

h(θ ) = − sin θ

ik
�	(e2iδ	+ − e2iδ	− )

d

d(cos θ )
P	(cos θ ). (6)

Where δj	 is the phase shift for a neutron with total angular
momentum j and orbital angular momentum 	. δ	+ and δ	−
refer to phase shifts in states for which j = 	 + 1

2 and 	 − 1
2 ,

respectively.
By expressing A(θ ) in terms of the scattering phase shifts,

we can relate it directly to VnZ as

sin δj	 = −2mk

h̄2

∫ ∞

0
r2dr j	(kr)V j	

nZu
(+)
j	 (k; r) (7)

where u
(+)
j	 (k; r) is the outgoing solution to the Schrödinger

equation, and V
j	

nZ is the potential for a neutron in a state
characterized by (j, 	). We begin with an exact expression for
the phase shift, to avoid making any assumption about the
validity of the Born approximation for this problem.

The dynamics for neutron-atom (nZ) scattering is deter-
mined by the interaction Hamiltonian VnZ = Vs + H ′, where
Vs , represents the strong interaction acting between the
incident neutron and the target nucleus, and

H ′ = −�µ · �B, (8)

is the electromagnetic energy arising from the coupling
between the magnetic moment �µ = gµN �σ of the neutron
and the magnetic field �B = �E × �v/c2 it experiences in its
rest frame as it moves in the electric field of the atom, with
relative velocity v. Here, g = −1.91316 is the reduced neutron
gyromagnetic ratio and µN = eh̄/2Mp.

Because the electric field is given in terms of the Coulomb
potential of the scatterer Ve by E = −∇Ve,H

′ in Eq. (8) may
be expressed as

H ′ = − 1

m
V (r) �L · �s. (9)
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Where

V (r) = − b

er

∂Ve

∂r
≡ −1

r

∂Vb

∂r
, (10)

b = gαh̄c/Mc2, Vb(r) is the electromagnetic potential with
b replacing the charge e,m is the reduced mass of the
neutron-nucleus system, and L = �r × �p is the orbital angular
momentum of the neutron. For the hydrogen atom, b 	
−0.002933 fm, and for the parahydrogen molecule b is smaller
by about 2/3. It is assumed throughout that the potentials are
spherically symmetric.

It is clear from Eq. (6) that, for scattering, any term in
the interaction between the incident neutron and the target that
gives rise to a difference in the partial waves (j, 	) = (	 + 1

2 , j )
and (	 − 1

2 , j ) will produce a nonvanishing analyzing power.
Generally, this requires a spin-dependent interaction, and the
prototypical term is the spin-orbit interaction such as that given
in Eq. (9). With this in mind, we may approximate Eq. (7) by

sin δj	 = sin δ
(NN)
j	 − 2mk

h̄2

∫ ∞

0
r2drj	(kr)δV j	

nHu
(+)
j	 (k; r)

(11)

where δ
(NN)
j	 is the phase shift for a neutron scattering due to

the strong interaction Vs and V
j	

nZ is the contribution of H ′ in
the state characterized by (j, 	),

δV
j	

nZ ≡ 〈j	|H ′|j	〉 = − 1

m
V (r)χ (j, l), (12)

where

χ (j, l) ≡
(

	, j = 	+
−(	 + 1), j = 	−

)
. (13)

To obtain the first term in Eq. (11) we have replaced
u

(+)
j	 (k; r) by u

(+)
j	NN (k; r), the solution to the Schrödinger

equation without H ′. Since H ′ is small compared to Vs , this is
a reasonable approximation.

Equation (11) is the general expression we will use
to calculate the analyzing power for a neutron scattering
from neutral atoms (Sec. III) and parahydrogen (Sec. IV).
Because we are ignoring the spin-dependent part of the strong
interaction for atoms, we take the form of the interaction to be

V
j	

nZ = V (0)
s + V (1)

(
	, j = 	+

−(	 + 1), j = 	−

)
(14)

with the strong interaction potential without the spin-
dependent terms [V (0)

s ] and V (1) = V (1)
em ≡ − 1

m
V (r) given

by Eq. (9). This allows us to focus on A(θ ) arising from
Mott-Schwinger effects. Although Schwinger discussed the
electromagnetic effect earlier, he considered only the case of
a neutron scattering from a proton. For the purposes of this
study, we will need to generalize this and consider neutron
scattering from electrically neutral systems.

A. Electromagnetic interaction formulas

It is instructive to consider the solution to the Schrödinger
equation in the WKB approximation, where we observe, at
the low energies of interest in this work, that the classical

turning point rclass is well beyond the range rs of the nuclear
force, rs ≈ 1.4 fm. We can confirm this for a 15 meV neutron
noting that rclass ≈ [	(	 + 1)]1/2λ, where λ = h̄/(2mE)1/2. For
	 = 1, rclass ≈ 5.25 × 104 fm = 0.53Å. Because the region for
r < rclass is classically excluded, and 2V (r)  	(	 + 1)/r2

for r > rclass, these observations suggest that the centrifugal
barrier dominates the interactions and we can safely replace

u
(+)
j	 (k; r) → j	(kr), 	 > 0 (15)

in Eq. (11). Although the neutron can penetrate into the
region r < rclass quantum mechanically, there is actually very
little penetration into the region where V (r) and Vs(r) are
appreciable (except for 	 = 0). The replacement in Eq. (15)
is actually valid even at higher energies as well for 	 > 0,
because the centrifugal barrier dominates the electromagnetic
interaction for essentially all r > rs .

The fact that the substitution in Eq. (15) is justified for
	 > 0 makes it possible to find a simple, general expression
for h(θ ) defined in Eq. (6), because S waves do not contribute
here. Making use of the fact that δj	 is small at the low
energies we are considering, we may write the electromagnetic
contribution Eq. (6) as

hem(θ ) = −2 sin θ

k
�	(δ	+ − δ	−)

d

d(cos θ )
P	(cos θ ). (16)

Now, making use of Eqs. (11), (12), and (15) , we find that
Eq. (16) becomes

hem(θ ) = 4
d

dθ
�	(2	 + 1)

∫ ∞

0
r2dr j 2

	 (kr)V (r)P	(cos θ ).

(17)

Assuming V (r) is spherically symmetric, and making use of
the partial wave expansion of a plane wave, we may write

G̃(q) ≡ 4π�	>0(2	 + 1)
∫ ∞

0
r2drj 2

	 (kr)V (r)P	(cos θ )

= 4π

∫ ∞

0
r2drV (r)

[
j0(qr) − j 2

0 (kr)
]
, (18)

where q = 2k sin(θ/2) is the momentum transfer. Using the
definition Eq. (10), integrating by parts, Eq. (17) becomes

hem(θ ) = 4
∫ ∞

0
r2drV (r)

d

dθ
j0(qr)

= −2 cot(θ/2)
∫ ∞

0
dx sin(x)

x

q
Vb(x/q). (19)

Alternatively, is useful to note that hem(θ ) can be expressed
directly in terms of the charge density. To see how this goes,
we convert the derivative with respect to θ in Eq. (19) to a
derivative with respect to r and use Eq. (10)

hem(θ ) = −2 cot(θ/2)
∫ ∞

0
r2dr

dVb(r)

dr

d

dr
j0(qr). (20)
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Now, integrating by parts, we obtain

hem(θ ) = 2 cot(θ/2)

[
r2 dVb(r)

dr
j0(qr)

]∣∣∣∣∣
r=0

+ 2 cot(θ/2)
∫ ∞

0
r2j0(qr)dr

[
1

r2

d

dr
r2 dVb(r)

dr

]
.

(21)

Using Poisson’s equation, ∇2Ve = −4πρe(r), Eq. (21)
becomes

hem(θ ) = 2 cot(θ/2)

[
r2 dVb(r)

dr
j0(qr)

]∣∣∣∣∣
r=0

− 8π cot(θ/2)
∫ ∞

0+
r2j0(qr)drρb(r), (22)

where ρb(r) is defined as the charge density with b replacing
e and where the lower limit of the integration 0+ is meant
to indicate the range of integration avoids the origin, thus
implying that a point charge at the origin does not contribute
to the integral (the first term in Eq. (22) takes such contributions
into account). The result in Eq. (22) is actually quite general
and applies to any spherically symmetric system of charge
density ρe(r).

B. Strong interaction

The strong neutron-nucleus interaction is spin dependent
and g(θ ) must take into account the scattering lengths for
the various spin states of the n-N pair. For the scattering from
hydrogen, for example, we have to add both the singlet [a(1S0)]
and triplet [a(3S1)] scattering lengths. An additional issue with
g(θ ) is the fact that the inelastic channel is open. According
to the optical theorem this contributes to the imaginary part
of the total scattering amplitude g(θ ) = gst

el(θ ) + gst
in(θ ). At

low energy, the neutron capture effect will become relevant
and the Mott-Schwinger asymmetry then arises from an
interference between the elastic electromagnetic scattering
with all nonelastic strong processes, incorporating reactions
such as (n, n′), (n, α), (n, γ ), and so on. We refer to any process
in which the incident neutron is completely removed as a
capture process. At the low energies we are concerned with
here, the capture process dominates and we want to estimate
the energy at which this contribution becomes important and
also to estimate its size.

Because we are considering low energy, the only relevant
contributions to g(θ ) are in S waves, and we write the elastic
contribution as

gst
el(θ ) = 1

k

[
P (S = 0)

[
δ0

(
1S0

) + iδ2
0

(
1S0

)]
+P (S = 1)

[
δ0

(
3S1

) + iδ2
0

(
3S1

)]]
, (23)

where P (S) is the projection operator onto spin S.
The cross section for the contribution of the inelastic chan-

nel is σin = 4πac/k, where ac is the neutron capture amplitude.
For neutron capture the resulting compound nucleus is bound
and the cross section manifests a “1/v” singularity. This makes

the inelastic process dominate the imaginary part of the elastic
scattering amplitude at sufficiently low energy. Generally, all
exothermic inelastic processes, in which the incident neutron
is not removed (such as: n + A → n′ + A + γ ) also have
this “1/v” cross-section behavior, but the amplitudes for such
processes are very small at the low energies considered here.
We obtain from the optical theorem,

gst
in(θ ) = iacP (S = 0). (24)

We will ignore the real part of gst
in(θ ).

1. Strong scattering from hydrogen

For this case, because the capture cross section is an electric
dipole transition, the reaction is dominated by S = 0 n-N pairs.
Averaging g(θ ) over the spin of the proton of the hydrogen
atom and expressing the S wave phase shifts in terms of the
singlet δ0 = −a(1S0)k and triplet δ1 = −a(3S1)k scattering
lengths, we find

〈g(θ )〉 = −1

4

[
a
(1

S0
) + 3a

(3
S1

)]
+ i

4

{
ac + k

[
a2

(1
S0

) + 3a2
(3

S1
)]}

. (25)

For |g(θ )|2, the two spin states contribute incoherently, giving

|g(θ )|2 =
∣∣∣∣δ0 + iδ2

0

k
+ iac

∣∣∣∣
2

P (S = 0)

+
∣∣∣∣δ1 + iδ2

1

k

∣∣∣∣
2

P (S = 1). (26)

Averaging over the spin of the proton of the hydrogen atom,
we find

〈|g(θ )|2〉 = 1
4

∣∣a(1
S0

) + ika2(1
S0

) + iac

∣∣2

+ 3
4

∣∣a(3
S1

) + ika2
(3

S1
)∣∣2

. (27)

The contribution of the imaginary part of the amplitude in
Eq. (27) is unimportant at the low energies of interest here.

We may now calculate magnitudes by taking a(1S0) =
−23.7 fm and a(3S1) = 5.4 fm. This gives

〈g(θ )〉(fm) = 1.87 + i

4
(ac + 652k) (28)

and

〈|g(θ )|2〉(fm2) = 163. (29)

The importance of the inelastic contribution may be esti-
mated by asking when ac/4 becomes comparable to 162k in
Eq. (28). For atomic hydrogen, using ac = 9 × 10−5 fm from
the capture cross section measured for thermal neutrons [21],
this happens for neutron energies of about 4 × 10−4 meV,
which is small compared to cold neutron energies.

However, for the more realistic case of molecular hydrogen,
the parahydrogen scattering cross section is actually signifi-
cantly smaller than the one calculated above [22] and becomes
comparable to the capture cross section at about 1 meV, which
is in the thermal energy range. In general, the significance
of the inelastic contribution will vary from one material to
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TABLE I. Various targets and the relevant data used for the calculation. For 3He, 10B, and 11B, the free scattering lengths were taken
directly from measured values in Refs. [25,26]. All others were calculated from the bound scattering lengths, found in Ref. [23].

Z J π
i

2J++1SJ+
2J−+1SJ− bc (fm) bic (fm) g+ g− a+ (fm) a− (fm) ac (fm) Ref.

1H 1 1/2+ 3S1
1S0 −3.74 25.263 3/4 1/4 5.423 −23.748 9.0 × 10−5 [23]

3He 1 1/2+ 3S1
1S0 5.74 −2.5 3/4 1/4 3.5 6.1 1.48 [23,25]

4He 2 0+ 2S1/2 3.26 0 1 0 2.6 0 2.0 × 10−8 [23]
10B 5 3+ 8S7/2

6S5/2 −0.1 −4.7 4/7 3/7 −3.8 4.7 1.1 [23,26]
11B 5 3/2− 5S2

3S1 6.65 −1.3 5/8 3/8 5.1 7.6 1.5 × 10−6 [23,26]
12C 6 0+ 2S1/2 6.65 0 1 0 6.14 0 9.8 × 10−7 [23]
20Ne 10 0+ 2S1/2 4.63 0 1 0 4.4 0 1.0 × 10−5 [23]
27Al 13 5/2+ 7S3

5S2 3.45 0.26 7/12 5/12 3.54 3.04 6.4 × 10−5 [23]
28Si 14 0+ 2S1/2 4.11 0 1 0 3.97 0 4.9 × 10−5 [23]
40Ar 18 0+ 2S1/2 1.83 0 1 0 1.79 0 1.8 × 10−4 [23]
56Fe 26 0+ 2S1/2 9.94 0 1 0 9.77 0 9.0 × 10−3 [23]
120Sn 50 0+ 2S1/2 6.49 0 1 0 6.44 0 3.9 × 10−5 [23]
208Pb 82 0+ 2S1/2 9.5 0 1 0 9.45 0 1.3 × 10−7 [23]

another, due to the varying size of the capture cross section
and, therefore, the inelastic strong amplitudes are taken into
account for all atomic targets considered here, as well as for the
parahydrogen case. At very low energies (i.e., those relevant to
ultracold neutrons) the strong inelastic amplitudes completely
dominate.

In addition, because the spin-orbit effects in the strong
interaction need to be considered explicitly for parahydrogen,
we will take V (1) = V (1)

em + V (1)
s , where V (1)

s is the contribution
to the spin-orbit interaction arising from the strong interaction.
We therefore need to make additional calculations for the
strong scattering contribution to A(θ ) for parahydrogen. These
calculations are described separately in Sec. IV C.

2. Strong scattering from heavier atoms

To calculate the contribution from the strong interaction
to 〈g(θ )〉 and 〈|g(θ )|2〉, we obtain the free scattering lengths
(a+, a−) from the bound coherent (bc) and incoherent (bic)
scattering lengths [23], using the relations [24,25]

bc = α + 1

α
(g+a+ + g−a−)

bic = α + 1

α

√
g+g− (a+ − a−) ,

and

g+ = J + 1

2J + 1
for J + 1

2

g− = J

2J + 1
for J − 1

2
.

where α is the nucleus-neutron mass ratio.
For J = 0 targets with neutron-nucleus orbital angular

momentum L = 0 the incoherent bound scattering length is
zero and we obtain only one free scattering length from

bc = α + 1

α
a+ = α + 1

α
a
(2

S 1
2

)
,

which is a doublet. A few targets with J �= 0 have been
evaluated, because they are often used in experiments.

III. ANALYZING POWER FOR MOTT-SCHWINGER
SCATTERING

Using the theory we have developed, we calculate A(θ )
in this section for scattering from the hydrogen atom and
heaver atoms, and then in Sec. IV we consider parahydrogen
as a special case. The Mott-Schwinger analyzing power is
evaluated in this section for the targets listed in Table I, which
also shows the bound coherent, incoherent, and free scattering
lengths used in the numerical calculations.

A. Atomic hydrogen

We begin with the calculation for atomic hydrogen, which
has a charge density given by

ρe(r) = eδ3(r) − e
1

πa3
0

e−2r/a0 , (30)

if screening by the electrons is taken into account. Here, a0 =
h̄2/mee

2 = 0.593Å is the Bohr radius.
The potential energy is then

Ve(r) =
∫

ρe(r ′)
|�r − �r ′|d

3r ′ = e

r
e−2r/a0

(
1 + r

a0

)
, (31)

and V (r) in Eq. (10) is given by

V (r) = b

a2
0r

3
e−2r/a0

(
a2

0 + 2ra0 + 2r2
)
. (32)

1. Without screening

If we ignore the screening due to the electron cloud around
the proton, we reduce the problem to the case considered by
Schwinger [12]. In the absence of screening, V (r) = b/r3, and
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we may evaluate Eq. (11), using Eq. (15) to obtain

δj	 = δNN
j	 + kb

( −1
	+1 , j = 	+

1
	
, j = 	−

)
, (33)

where we have made use of the fact that at the low energies
we are interested in here, the phase shifts are all quite small.

Because of the short range of the nucleon-nucleon interac-
tion, the strong-interaction phase shifts have the dependence

δNN
j,l = αj,lk

2l+1. (34)

Note that, in contrast, the phase shifts arising from the
electromagnetic interaction have a linear dependence on k,
which reflects the relatively long-range character of this
interaction.

Then, according to our assumptions for scattering from
individual atoms, the function h(θ ) in Eq. (19) receives
contributions from the electromagnetic terms only. We find,
using either Eq. (19) or (22), or making use of analytical
expressions [27] for the sums over the Legendre polynomials
using Eqs. (33) and (16),

h(θ ) ≡ hem(θ ) = −2b cot(θ/2) (35)

From Eqs. (35), (28), and (29) we find [with k expressed in
fm−1 and b given below Eq. (10)],

A(θ ) = b cot(θ/2)
ac + 652k

163
. (36)

Obviously, |h(θ )|2 in the denominator of Eq. (4) is negligible
except at very small angles. However, it is always included in
the numerical calculations.

The electromagnetic spin-orbit terms do not contribute to
g(θ ) to leading order in b, but to O(b2) we find that gem has a
linear dependence on k,

gem(θ ) = −2ikb2[1 + 2 ln sin(θ/2)] + O(k2). (37)

Equation (37) is obtained by using the same analytical
expressions [27] for the sums over Legendre polynomials that
appear in Eq. (5) using Eq. (33).

2. With screening

It should be clear that the contribution gem(θ )  gst(θ ), so
we do not have to include form-factor effects in the evaluation
for g(θ ). For hem(θ ) we find immediately from Eqs. (22), (30),
and (31),

hem = −2b cot(θ/2)[ka0 sin(θ/2)]2 2 + [ka0 sin(θ/2)]2

{1 + [ka0 sin(θ/2)]2}2
.

(38)

The result in Eq. (35) may also be obtained as the limit of
Eq. (38) taking the Bohr radius a0 to infinity. Equation (38)
is finite for large q because the charge distribution for the
proton has been taken to be concentrated at the origin; for
parahydrogen this is not the case, and hem in that case also
vanishes at large momentum transfer.

Results for the angle and energy dependence of atomic
hydrogen with and without screening are shown in Fig. 2.
Comparing the top and bottom panels in the figure, one sees

FIG. 2. Analyzing power for the unscreened hydrogen atom
(a) and for hydrogen with electron screening (b). The magnitude of
the analyzing power is shown. The sign of the asymmetry is negative.

that electron screening has a large effect on the analyzing
power.

B. Numerical results for larger atoms

Because of the low neutron energies involved in this
study, up to 25 meV, the natural unit for momenta is the
inverse of the Bohr radius a0. The momenta of interest to
cold neutron experiments are therefore 0 � ka0 � 2.1, and for
these momenta Eq. (38) gives hem ≈ −b(ka0)2θ , which can
be quite small at forward angles. The result is very different
from the usual Mott-Schwinger result in Eq. (35) because the
neutron sees the entire charge of the atom at these energies and
therefore screening is maximally effective. At higher energies,
though, the situation is obviously quite different.

For the electromagnetic contribution the extension to larger
atoms is straightforward and achieved by substitution of a0 =
0.593Z−1/3Å in Eq. (32), which is valid assuming that the
atom is in its ground (L = 0) state. The contributions due to
the strong interaction was discussed above in Sec. (II B 2).

Numerical results for the angle and energy dependence
for the analyzing power A(θ ), calculated from Eqs. (4), (28),
(29), (37), and (38) are shown below in Figs. 3 through 10.
Naturally, we use the theory with screening included, because
the atoms in experiments we envision are mostly neutral with
their electron cloud completely intact.

Given that measurements of Mott-Schwinger scattering
are technically difficult, we present results of extensive
theoretical evaluations, which we hope will both motivate
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FIG. 3. Analyzing power for 3He (a) and 4He (b) with electron
screening. The magnitude of the analyzing power is shown. The sign
of the asymmetry is negative.

FIG. 4. Analyzing power for 10B (a) and 11B (b) with electron
screening. The magnitude of the analyzing power is shown. The sign
of the asymmetry is negative.

FIG. 5. Analyzing power for 12C (a) and 20Ne (b) with electron
screening. The magnitude of the analyzing power is shown. The sign
of the asymmetry is negative.

FIG. 6. Analyzing power for 27Al (a) and 28Si (b) with electron
screening. The magnitude of the analyzing power is shown. The sign
of the asymmetry is negative.
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FIG. 7. Analyzing power for 40Ar (a) and 56Fe (b) with electron
screening. The magnitude of the analyzing power is shown. The sign
of the asymmetry is negative.

FIG. 8. Analyzing power for 120Sn (a) and 208Pb (b) with electron
screening. The magnitude of the analyzing power is shown. The sign
of the asymmetry is negative.

new measurements needed to to confirm the theory as well
as facilitate extraction of relevant characteristics from the
theory for evaluating systematic errors in future precision
experiments. We first show, in Figs. 3–8 contour plots of the
analyzing power as a function of energy and angle to give
a rather complete picture of Mott-Schwinger scattering for
individual atoms.

Figures 9 and 10 are provided for direct comparison of
the angular and energy dependence of A(θ ) for a the heavier
atoms. It is clearly seen that the A dependence of the angular
distributions is far from linear in A with 56Fe and 4He
having the largest cross sections (10B and 3He are excluded
here). The plots also show clear changes in energy and angle
dependence across the mass range. The general dependence of
the analyzing power on A originates in the interplay between
the size of the spin-dependent interaction and the capture cross
section, as seen more explicitly in Fig. 11 below. The figure
shows the overall Z dependence of the analyzing power, which
follows that of the electromagnetic spin-dependent scattering
amplitude, with the exception of 40Ar and 56Fe (shown) as well
as 10B and 3He (not shown), which have much larger analyzing
powers due to their significantly larger capture cross section.

IV. ANALYZING POWER FOR A NEUTRON SCATTERING
FROM PARAHYDROGEN

For parahydrogen we make the adiabatic approximation,
which entails first evaluating the interactions in the body-
fixed frame and then projecting into the laboratory frame by
averaging over all directions of the axis of the parahydrogen
molecule. Then, because the two protons of parahydrogen are
in a spin singlet state, the interaction with the incident neutron
in the laboratory frame will still have the form

VnH (r, a) = V (0)
s (r, a) + V (1)(r, a)L · σn/2, (39)

where the interaction V (0)
s is, as before, the central part of

the strong interaction, and V (1) = V (1)
em + V (1)

s now contains
spin-orbit terms from both the strong and electromagnetic
interactions. The spin of the protons in parahydrogen disappear
from the contribution of the strong interaction V (1)

s when the
spin average of the nucleon-nucleon spin orbit interaction is
taken because the two protons are in a spin-singlet state.

In contrast to the case of the hydrogen atom, for parahy-
drogen the value of h(θ ) now has two contributions, h(θ ) =
hem(θ ) + hs(θ ). We examine hem and hs in Secs. IV B and
IV C, respectively. The calculation in Sec. IV B of hem(θ ) for
parahydrogen is similar to that for atomic hydrogen, except that
one uses the charge density corresponding to the parahydrogen
molecule. We next turn to the derivation of this density.

A. Structure of parahydrogen

The wave function for the electrons of parahydrogen that
we use is given in Ref. [28], namely

φs(1, 2) = 1√
2(1 + �)

[u(|�r1 − �a|)u(|�r2

+ �a|) + u(|�r2 − �a|)u(|�r1 + �a|)]|χ〉, (40)
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FIG. 9. Analyzing power vs. scattering angle for various targets and for energies between ≈0.1 and 25 meV, with electron screening. The
magnitude of the analyzing power is shown. The sign of the asymmetry is negative.

where we have used the knowledge that the two protons of
parahydrogen are in a spin singlet state,

|χ〉 = 1√
2

(|1/2〉1| − 1/2〉2 − | − 1/2〉1|1/2〉2), (41)

so that the spatial wave function is antisymmetric under
exchange of the electrons. In Eq. (40), � is the overlap integral,

� ≡
∫

(u(|�r1 − �a|)u(|�r2 + �a|))2d3r. (42)

and
u(r) = 1√

πa3
0

e−r/a0 (43)
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FIG. 10. Analyzing power vs. neutron energy for various targets at 10◦ and 20◦ scattering angle, with electron screening. The magnitude
of the analyzing power is shown. The sign of the asymmetry is negative.

is the lowest hydrogenic electron orbit. The integral in
Eq. (42) is most easily obtained analytically in prolate spherical
coordinates [29]; performing the integral thus gives � ≡
�(ρ) ≡ e−2ρ(1 + ρ + ρ2/3)2 with ρ = 2a/a0.

We assume the two protons are rigidly fixed a distance 2a ≈
0.74Å apart [29], and we place the origin of the coordinate
system midway between the two protons. The charge density

in the body-fixed frame is

ρe(�r, �a) = eδ3(�r − �a) + eδ3(�r + �a) + ρe−
e (�r, �a), (44)

where ρe−
(�r, �a) is the charge density of the electrons in

parahydrogen. Using the wave function in Eq. (40), we find
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which come as a result of their large capture
cross section. The elastic electromagnetic scat-
tering amplitude is not displayed here, because it
contributes only in second order and is therefore
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that that

ρe−
e (�r, �a) = e

πa3
0(1 + �)

(e−2|�r−�a|/a0 + e−2|�r+�a|/a0

+ 2�1/2e−(|�r−�a)|+|�r+�a|)/a0 ). (45)

We project out the spherically symmetric component of the
charge density by taking

ρe(r, a) =
∫

d�a

4π
ρe(�r, �a). (46)

Using the charge density in Eq. (45), we obtain

ρe(r, a) = e
δ(r − a)

2πr2
− eθ (r > a)

ρ̃(1)(r, a)

1 + �

− eθ (r < a)
ρ̃(1)(a, r)

1 + �
− 2e

�1/2

1 + �
ρ(2)(r, a), (47)

where

ρ̃(1)(r, a) = 1

4πraa2
0

[(2(r − a) + a0)e−2(r−a)/a0

− (2(r + a) + a0)e−2(r+a)/a0 ] (48)

and

ρ(2)(r, a) ≡ 1

πa3
0

∫
d�a

4π
e−(|�r−�a)|+|�r+�a|)/a0

≈ �1/2

2πa2a0

e−2
√

r2+a2/a0

K2(ρ)
, (49)

where K	 is a McDonald function.
Equation (49) has the following features in common with

the exact ρ(2)(r, a): it is correct in the limit r → ∞; it is
very nearly correct in the limit r → 0; it is correct when r

is aligned along a; and it preserves the normalization of the
electron density. It also has the desirable feature that with it, the
contribution of Eq. (47) to hem using Eq. (22) can be evaluated
analytically. The integral and the analytical approximation are
compared in Fig. 12.

B. Contribution from the electromagnetic interaction

It is instructive to examine the electromagnetic potential
arising from the two protons in the laboratory frame,

V p
e (r, a) = e

∫
d�a

4π

(
1

|�r − �a| + 1

|�r + �a|
)

= 2e

r>

.

(50)

We note that the potential corresponds to that of a charged
shell of radius a, and we may make a similar observation
for the parahydrogen molecule that we made earlier from
consideration of the Schrödinger equation, for the hydrogen
atom. Thus, also for this case, the centrifugal barrier dominates
the spin-orbit interaction (at least in the absence of the strong
interaction), and we can again safely make the replacement
given in Eq. (15). Note that the classical turning point for
	 = 1, rclass ≈ 0.64Å, is smaller than it was for the hydrogen
atom because of the larger reduced mass for the parahydrogen
molecule. However, it still lies well outside the radius a of the
shell of the proton charge. Thus, Eqs. (19) and (22) apply as
well to parahydrogen.
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FIG. 12. Comparison between the numeric integration and an
analytic approximation for part of the liquid hydrogen electron charge
density.
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FIG. 13. Comparison of hem as calculated from the analytical approximation using Eq. (49) (large open squares) and the numerical
integration of Eq. (47) (small solid squares).

We find it most convenient to use Eq. (22) for the
calculation. Our result for the Mott-Schwinger contribution
to hem for parahydrogen is thus found from

hem = −8πb cot(θ/2)
∫ ∞

0
r2ρb(r, a)j0(qr)dr. (51)

Using Eq. (47) and Eq. (49), we find∫ ∞

0
r2ρb(r, a)j0(qr)

= b
j0(qa)

2π

[
1 − 1

(1 + �)
(
1 + q2a2

0
4

)2

]

− b�

1 + �

K2
(

a
a0

√
4 + q2a2

0

)
2πK2(ρ)

1

1 + q2a2
0

4

. (52)

Figure 13 compares the results for hem obtained using
the analytical approximation [Eq. (49)] and the numeric
integration of Eq. (47). The two methods are almost exact
for scattering angles of θ = 45◦ or more and give reasonable
agreement down to θ = 30◦ above energies of 30 meV. Note,
that hem changes sign as the angle and neutron energy increases
and that the analytical approximation does so at different
energies and angles, as opposed to the exact value. However,
for experiments using higher neutron energies or larger
scattering angles, Eq. (49) provides a good approximation.
Because the analytical formula is easily evaluated it provides
a useful method for obtaining predictions in regions where it
is valid, which can be easily determined from Fig. 13.

C. Contributions of the strong interaction

The strong interaction must be considered both for the spin-
spin and spin-orbit contributions.
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1. Contribution of the strong spin-orbit force

We assume that the spin-orbit contributions to the nucleon-
nucleon phase shifts of the strong interaction can be calculated
from the potential

V LS
NN (r) = v(r)L · S, (53)

where

v(r) = λLS
e−µr

µr
, (54)

and where S is the spin of the nucleon-nucleon pair. The range,
defined by µ = 760 MeV/h̄c, is given by the mass of the ρ

meson, which is the dominant piece of the strong spin-orbit
interaction. We assume that λLS has been defined so that it
reproduces the spin-orbit contribution to the nucleon-nucleon
phase shifts in the Born approximation,

δ
(LS)
JL = −2mk

h̄2

∫ ∞

0
r2drj 2

L(kr)v(r)〈JL|L · S|JL〉. (55)

where J and L are, respectively, the total angular momentum
and orbital angular momentum of the nucleon-nucleon system.
We find that the spin-orbit contribution to the low-energy
P wave phase shifts can be reproduced by the expression

δLS
JL (expt) = 0.0298 k3〈JL|L · S|JL〉, (56)

where k is expressed in units of fm−1. We find that λLS =
1577 MeV.

The quantity V (1)
s (�r, �a) ≡< 0|[V LS

NN (|�r + �a|) + V LS
NN (|�r −

�a|)]|χ〉, the spin-orbit interaction in the ground state of
parahydrogen, is then

i

h̄
V (1)

s (�r, �a) = (v(|�r − �a|) + v(|�r + �a|))σ · r × ∂

∂r

+ [v(|�r + �a|) − v(|�r − �a|)]σ · a × ∂

∂r
. (57)

We obtain V (1)
s (r, a) by averaging over the direction of �a,

V (1)
s (r, a)L · σn

2
=

∫
�a

4π
V (1)(�r, �a), (58)

finding

V (1)
s (r, a) = −2λLS

[
j0(iµr)h(1)

0 (iµa)

− 3j1(iµr)h(1)
1 (iµa)

]
, r < a (59)

and

V (1)
s (r, a) = −2λLS

[
j0(iµa)h(1)

0 (iµr)

− 3j1(iµa)h(1)
1 (iµr)

]
, r > a. (60)

Because the Bessel functions drop exponentially away from
r = a, Eqs. (59) and (60) lead to

V (1)
s (r, a) ≈ − 2λLS

(µr)(µa)
e−µ|r−a|. (61)

Note that this potential is not small compared to the centrifugal
barrier, 2mV (1)

s (r, a) � 	/r2. However, the fact that a0µ ≈
2 × 105 � 1 means that the spin-orbit potential is quite small
(the important scale is the magnitude of the potential on the
shell times the thickness of the shell), implying that the Born

approximation is still valid for parahydrogen when the strong
interaction is considered. The same considerations apply for
the central part of the interaction. Thus, we are justified to
continue using the Born approximation for our calculations.

In the Born approximation, the quantity hs(θ ) is evaluated
from Eq. (61) using an expression similar to Eq. (19),

hs(θ ) = −4m

h̄2

∫ ∞

0
r2drV (1)

s (r, a)
d

dθ
j0(qr)

≈ 8mλLS

h̄2µ3
a

d

dθ
j0(qa), (62)

Using the fact that a0 � 1, we find that for small θ ,

hs(θ ) ≈ 8mλLS

[
− 2(ka)(kaθ )

3

]
2

µ3
. (63)

The contribution of hs(θ ) is more important for parahydrogen
than it is for the hydrogen atom because of the higher angular
momentum (	 ≈ ka) involved here.

2. Contribution of the strong central force

As in the case of the spin-orbit force, we assume that the
contributions of the central interaction to the nucleon-nucleon
phase shifts of the strong interaction can be calculated from
the potential

V
(0)
NN (r) = v(r), (64)

where

v(r) = λ
e−µr

µr
, (65)

and

λ = λ0P (S = 0) + λ1P (S = 1). (66)

Although the central interaction has a strong repulsive core
followed by a region of attraction, at the low energies we
consider here we do not need to consider this level of detail.
We take the range defined by µ = 760 MeV/h̄c to be the same
as for the spin-orbit force, because the core is dominated by
the ω meson, which has nearly the same mass as the ρ. We
assume that λ0 and λ1 have been defined so that they reproduce
the 1S0- and 3S0-wave contributions to the nucleon-nucleon
phase shifts in the Born approximation,

δ0P (S = 0) + δ1P (S = 1) = −2mk

h̄2

∫ ∞

0
r2drj 2

0 (kr)v(r).

(67)

The quantity V (0)
s (�r, �a), the central component of the strong

interaction in the ground state of parahydrogen, is then

V (0)
s (�r, �a) ≡ 〈0|[V (0)

NN (|�r + �a|) + V
(0)
NN (|�r − �a|)]|0〉. (68)

We obtain V (0)
s (r, a) by averaging over the direction of �a,

V (0)
s (r, a) =

∫
d�a

4π
V (0)(�r, �a), (69)
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finding

V (0)
s (r, a) = −2

λ0 + 3λ1

4
j0(iµr)h(1)

0 (iµa), r < a (70)

and

V (0)
s (r, a) = −2

λ0 + 3λ1

4
j0(iµa)h(1)

0 (iµr), r > a. (71)

Because the Bessel functions drop exponentially away from
r = a, Eqs. (70) and (71) lead to

V (0)
s (r, a) = λ0 + 3λ1

4

1

(µa)(µr)
e−µ|r−a|. (72)

Using Eqs. (5), (11), and (18), we find that gs(θ ) may be
calculated from Eq. (69) using

gs(θ ) = −4m

h̄2

∫ ∞

0
r2drV (0)

s (r, a)j0(qr)

≈ −4m

h̄2 j0(qa)
∫ ∞

0
r2drV (0)

s (r, a). (73)

This may be related back to the phase shifts using Eq. (67),

gs(θ ) ≈ −4m

h̄2 j0(qa)
∫ ∞

0
r2drV (0)

s (r, a)

≈ −2
a
(1

S0
) + 3a

(3
S1

)
4

j0(qa). (74)

Comparing this to Eq. (25), we see that the scattering is the
same as that from two protons but modified by the form factor
arising from the fact that the protons are on a spherical shell
of radius a. However, |gs(θ )|2,

|gs(θ )|2 = 4

[
a
(1

S0
) + 3a

(3
S1

)
4

]2

j 2
0 (qa), (75)

which differs from Eq. (27) because in parahydrogen the
scattering takes place coherently from the two protons.
Because the scattering is purely elastic at these energies (if
we ignore the capture reaction), we may get the imaginary
part of gs(0) from the optical theorem,

Imgs(0) = k

4π

∫
d�|gs(θ )|2

= 4k

2(ka)2

[
a
(1

S0
) + 3a

(3
S1

)
4

]2 ∫ 2ka

0

dx

x
sin2(x).

(76)

Alternatively, one may evaluate g(θ ) from Eq. (5) expanded
to second order in the phase shift of neutron-parahydrogen
scattering,

g(θ ) = 1

k

∑
	

(2	 + 1)
(
δ	 + iδ2

	

)
P	(cos θ ), (77)

with

δ	 = −2mk

h̄2

∫ ∞

0
r2drj 2

	 (kr)V (0)
s (r, a)

≈ −4m

h̄2 j 2
	 (qa)

∫ ∞

0
r2drV (0)

s (r, a), (78)

FIG. 14. Analyzing power parahydrogen, with electron screen-
ing. The magnitude of the analyzing power is shown. The sign of the
asymmetry is negative.

again noting that the integral may be done analytically using
the expression for V (0)

s in Eq. (72). The form factor is clearly
going to be different for the real and imaginary parts of g(θ ),
and the sum over 	 for the imaginary part will require a
straightforward numerical evaluation.

3. Numerical results

We may obtain the analyzing power for parahydrogen using
Eq. (4) from Eqs. (76), (75), (63), (51), and (53). The results
are shown in Figs. 14 and 15. Note that the analyzing power

FIG. 15. Analyzing power for parahydrogen, with electron
screening.
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changes sign at small angles (θ <∼ 1◦) for all energies over
which it was calculated in Figs. 14 and 15.

V. DISCUSSION

If an experimental observable depends on both the neutron
polarization direction as well as the relative position of the
neutron or the uniformity of neutron positions in a volume
with respect to polarization then the Mott-Schwinger-induced
beam steering may become a systematic effect that must be
taken into account. This is especially true for high-precision
measurements and observables that are very small.

Our results show that the Mott-Schwinger analyzing power
is generally small at the low energies treated here, mostly pro-
ducing ppm-level asymmetries in the number of transversely
scattered neutrons, with respect to the neutron polarization.
The exceptions are 3He and 10B, due to their large capture
cross sections. The evaluation of (J �= 0) targets is not strictly
valid using the current formalism, but we assert that the results
obtained for these targets still provide a good estimate at these
low energies.

Our calculations of the analyzing power of a “bare” proton,
the calculation first done by Schwinger [12], and the hydrogen
atom (Figs. 2 and 3), show that electron screening has a large

effect on the predicted size of the asymmetry as well as its
energy and angular dependence. The results for parahydrogen
predict an asymmetry that is two orders of magnitude larger
than it is for the hydrogen atom by itself but comparable to the
asymmetry for the unscreened proton.

Experimentally, the scattered neutrons are not always
detected directly. It is very often the case that only secondary
particles are detected, either directly from neutron decay or
from decaying nuclei after neutron induced excitation. In this
case the resulting expected asymmetry must be calculated from
an integral over all scattering angles, weighted by a solid angle
that depends on the particular detector geometry. In such cases,
the systematic effects from Mott-Schwinger scattering could
be either significantly enhanced or reduced, depending on the
detector geometry.
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