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Nuclear α-particle condensates: Definitions, occurrence conditions, and consequences
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There has been a recent flurry of interest in the possibility of condensates of α particles in nuclei. In this Rapid
Communication we discuss occurrence conditions for such states. Using the quantality condition of Mottelson we
show that condensates are only marginally expected in α-particle states. We proceed to demonstrate that few-body
nuclear condensates are ill defined and emphasize the conflict between α-localization and α-condensate formation.
We also explore the connection between Ikeda diagrams, linear chains, and Tonks-Girardeau gases. Our findings
show that no new information is contained in the approximations of nuclear states as α-cluster condensates.
Furthermore, condensates of more than three α particles are very unlikely to exist due to couplings to other
degrees of freedom.
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Introduction. The idea of α particles as essential con-
stituents in the structure of nuclei arises from the small radius,
the relatively large binding, and the spin saturation of both
neutrons and protons. Attempts were made in the early days of
nuclear physics to construct nuclear structure from α particles
and valence nucleons [1–3]. In general these attempts were
largely unsuccessful because the nucleon distances within and
between different α particles are comparable. Thus there are
no compelling reasons for clusterization of nucleons into α

particles.
However, α-cluster models were able to explain many

properties of specific light nuclei [4]. This was highlighted
by the prediction of a 3α-structure near threshold [5] which is
crucial for the nuclear synthesis of the heavy elements in stars.
This Hoyle state was soon found experimentally [6] and its
properties established in a microscopic cluster model [7] where
it was first characterized as a “gaslike” structure. This structure
is confirmed in details in numerous theoretical works [8–10].
A radius about 30% larger than that of the ground state of 12C
is also reproduced by use of an approximate wave function
consisting of an antisymmetrized product of three Gaussians
each containing an α particle [11]. Moreover, the ground state
of 8Be was in the same approximation described as a gaslike
structure of two α particles [12], and the established structure
[13,14] was again essentially recovered. The fundamental
continuum resonance properties were suppressed by use of
boxlike boundary conditions effectively supplying a confining
external field.

These approximations were presented as novel discoveries
of condensates consisting of two and three α particles. The
last 5 years have witnessed surprisingly large efforts invested
in both investigations of the accuracy of the approximation in
Ref. [11] and extensions to similar simple models for other nu-
clei [15,16]. The aim seems to be a search for α-cluster conden-
sates in nuclei. The inspiration is from atomic physics where
Bose-Einstein condensates (BEC) of cold atoms are routinely
made and manipulated by external fields [17]. Related theo-
retical investigations are also abundant; see, e.g., the review in
Ref. [18].

The concept of BEC is well-defined for macroscopic
systems of cold atoms and molecules. Extensions to self-bound

quantum systems with a small number of particles are not
straightforward. The purpose of this Rapid Communication is
to discuss the concept of few-body nuclear condensates, give
definitions, compare to cold atomic gases, show the conflict
between localized α-cluster models and α condensation, derive
occurrence conditions, and investigate consequences.

Concepts. To find α-cluster condensates in nuclei two
conditions must be met, i.e., (i) the nucleons must be confined
in α clusters and (ii) these α particles must form a condensate.
Although α-cluster models in general are unsuccessful we
shall assume that (i) holds. In addition, to ensure nucleon
antisymmetry, the α-α distance must, on average, be larger
than the diameter of the α particle.

The classic definition of an ideal Bose-Einstein condensate
is a collection of identical particles in the same quantum state.
This implies that the independent particle model gives an
accurate description that obviously is true for noninteracting
particles in an external field. For interacting particles the
mean-field description is valid when Mottelson’s quantality
condition is met [19], i.e.,

�Mot = h̄2

mc2
min|Vmin| > 0.1 − 0.2, (1)

where m is the mass of the particles and cmin is the distance
between two particles when the total two-body potential has
its minimum value Vmin. When �Mot is small the attractive
potential dominates over the kinetic energy and the particles
are confined to the attractive pockets, i.e., localization or solid
structure. When �Mot is large the particles cannot be confined
by the attraction and the mean-field model is appropriate.

The condition for Bose-Einstein condensates is that the
deBroglie wavelength λdB of the motion must be larger than
the distance cmin to the nearest neighbor, i.e.,

1 < �bec ≡ λdB

cmin
= 2πh̄

cmin
√

2m|Vmin|
= π

√
2�Mot. (2)

Thus �2
bec = 2π2�Mot implying that the quantality inequality

in Eq. (1) separating solid and mean-field structures is
equivalent to the condition for breakdown of the classical gas
regime in statistical mechanics.
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We can evaluate these conditions for the α-α potential
V without any bound states parametrized in Ref. [20] as an
attractive and a repulsive Gaussian of different ranges (ra, rr )
and strengths (Va, Vr ), i.e.,

V (r) = Vr exp
(−r2

/
r2
r

) − Va exp
(−r2

/
r2
a

)
, (3)

where the minimum Vmin ≈ 5–8 MeV (including the Coulomb
energy of ≈2 MeV) for cmin ≈ 2.5–3.0 fm and �Mot ≈
0.1–0.2. Thus α particles would be in the mean-field range
but with a strong tendency to localize.

Symmetry requirements. Wave functions describing self-
bound few-body structures must be invariant under translations
and rotations. The connection to conditions for condensate
formation is most easily illustrated by use of an N -body wave
function � expressed as products of identical Gaussian single-
particle wave functions, i.e.,

�({r i }) = (b
√

π )−3N/2 exp

[
−

N∑
i=1

r2
i

/
(2b2)

]
, (4)

where r i is the ith coordinate. This as well as all other
mean-field wave functions violate translation invariance or,
equivalently, momentum conservation, which is restored by
integrating �({r i − R′}) exp(i P · R′) over all R′. The solution
�int of lowest energy has P = 0 which for Eq. (4) results in

�int({r i }) = (b
√

π )−3(N−1)/2 exp[−ρ2/(2b2)], (5)

ρ2 ≡
N∑

i=1

q2
i = 1

N

∑
i<j

r2
ij =

N∑
i=1

r2
i − N R2, (6)

qi ≡ r i − R, r ij ≡ r i − r j , R ≡ 1

N

N∑
i=1

r i , (7)

where the coordinates now are measured from the common
center-of-mass (c.m.) R. This wave function is invariant under
rotations around the center-of-mass.

In contrast to the mean-field solution the particles can
be correlated and the wave function �loc in a body-fixed
coordinate system localized in distributions around preferred
points Rk , i.e.

�loc({r i }) ∝
∑

p

exp

{
−

N∑
i=1

[r i − Rp(i)]
2/(2B2)

}
, (8)

where the normalization is omitted and full symmetry is
achieved by the summation over all permutations p of the
set of numbers {1, 2, . . . , N}. The translational invariance is
restored precisely as for Eq. (4), i.e., the wave function is
obtained from Eq. (8) by the substitution r i → qi in Eq. (6)
and a corresponding change of normalization constant. The
rotational invariance is broken for �loc in Eq. (8) but recovered
for states of zero angular momentum by linear combinations
of all spatial rotations of �loc.

Condensate assessment. To decide if a given wave function
describes a condensate we apply different available definitions.
We illustrate again with Gaussian wave functions which
overestimates the degree of factorization of the N -body wave
function. One necessary criterion for a condensate is that the

one-body density matrix must have an eigenvalue λ compa-
rable in size to N [21]. For a mean-field product solution the
condensate fraction is cf = λ/N = 1. However, the one-body
density matrix is ill defined for self-bound systems of a finite
number of particles. This is due to the center-of-mass motion
that decouples completely for correct translationally invariant
solutions. An appropriate center-of-mass wave function could
be chosen to allow the usual definition of the one-body density
matrix. The choice could be such that the condensate fraction
cf is optimized that would be equivalent to adding an external
field as in atomic physics. For Eq. (5) this recovers the
product wave function of all coordinates in Eq. (4) where
the center-of-mass motion is completely ignored.

Instead of using all particle coordinates relative coordinates
could be used and an internal one-body density matrix,
n(q, q ′), defined in Refs. [15,22–24]. Following Ref. [24],
i.e., inserting qN = −∑N−1

i=1 qi in Eq. (5), we get

n(q, q ′) ∝
∫

d3q2d
3q3 · · · d3qN−1|�int|2

∝ exp

[
− q2 + q ′2

b2
+ (N − 2)(q ′ + q)2

(N − 1)4b2

]
, (9)

where q and q ′ refer to q1. The condensate fraction ob-
tained through the largest eigenvalue is then [25] cf = 8/(1 +√

2 − 2/N )3, which decreases with N from 1 for N = 2
toward about 0.57 for large N . However, the choice of
internal coordinates is arbitrary [25] and we could as well
choose q1 supplemented by a set of N − 1 independent Jacobi
coordinates. Then the density matrix corresponding to Eq. (5)
would factorize and give cf = 1.

For α clusters these options can by appropriate choices
lead to large condensate fractions for rather accurate cluster
wave functions. This is because approximate factorization
easily arises at smaller distances where the potential minimum
resembles a harmonic oscillator and the related s-wave
solutions resemble Gaussians.

Instead of using the eigenvalues of the density matrix a
condensate criterion could be that the one-body (internal)
density matrix should factorize at large distances [21]. This
criterion is extremely difficult to fulfill because the correct
nuclear wave functions never factorize at large distances
as shown in Ref. [26]. Thus, at best only properties at
intermediate distances could possess condensate properties
with this criterion.

Yet another condensate criterion is that all particles occupy
the same quantum state [25]. This implies that removal of
one particle should leave the single-particle wave functions
completely unchanged. However, for a finite number of
particles the remaining interacting particles would reorganize
into a different structure. This criterion would be extremely
difficult to test directly.

Localization. The α-cluster models and the quantality
parameter in Eqs. (1) and (2) suggest that localization, or
crystal features of the wave function, may be important. The
resulting condensate fraction depends strongly on the degree
of localization as we can see explicitly by computing the
one-body density matrix for Eq. (8). We assume very narrow
nonoverlapping Gaussians and an appropriate center-of-mass
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motion and obtain

n(r, r ′) = (B
√

π )−3/2
N∑

k=1

exp{−[(r − Rk)2

+ (r ′ − Rk)2]/(2B2)}, (10)

which has N equally large eigenvalues while all others are
zero. This is a condensate fraction of 1/N corresponding to
one single-particle state for each of the N particles. However,
after restoration of rotational symmetry only eigenvalues zero
remain. If the widths, B, of the Gaussians increase and they
begin to overlap with each other one eigenvalue separates out
and becomes finite. Increasing the width leads to increasing
overlap with a product wave function like Eq. (4). We can
quantify by computing the overlap between the factorized and
localized wave functions in Eqs. (4) and (8), i.e.,

〈�|�loc〉 =
(

2bB

b2 + B2

)3N/2

exp

(
−

∑N
k=1 R2

k

2b2 + 2B2

)
, (11)

which only is close to unity when b ∼ B and either Ri/B 
 1
or Ri/b 
 1. Equation (11) is also obtained by replacing
�loc with the rotationally invariant wave function. Thus a
substantial condensate fraction requires that the overlap with
Eq. (4) is large. However, the spatial extension must be large
to ensure definition (i) of nonoverlapping α particles.

Condensates from cluster models. The well-known struc-
ture of the Hoyle state in 12C has about 90% overlap with
α particles in relative s waves around the center-of-mass
[15,22,23,27]. This corresponds to an eigenvalue of about
0.7 [22,23] in agreement with our upper bound of cf = 0.80
derived from Eq. (5). At the same time α-cluster models show
α-particle density distributions localized around specific points
in space [27]. Reconciling these results, where apparently both
the localization and large condensate fraction are present in
the same wave function, is possible only with large widths
of the localized wave in Eq. (8). This effectively recovers
the independent particle wave function in Eq. (4) where the
α particles are sufficiently separated to remove the need for
nucleon antisymmetrization. These arguments show that the
α-condensate states proposed should be regarded as merely an
approximation to existing nuclear α-cluster states.

A crucial question is whether a condensate structure can be
experimentally distinguished from other structures. To address
this question computed and measured electron scattering on
12C was compared in Ref. [27]. The conclusions are that
α-cluster models of the Brink-type [4] and the α-condensate
states of Ref. [11] predict virtually indistinguishable cross
sections and charge distributions. In addition, these models
and results from more elaborate microscopic calculations [27]
give precisely the same charge density at large distances. Thus
the classical cluster parametrization supplemented by nucleon
antisymmetry [11] is apparently accurate to about 90% for the
Hoyle state. However, it is important to realize that fulfilling an
ambiguous definition has very little to do with true condensates
that can be diagnosed only through properties of the wave
functions and not by density distributions. In particular,
observable coherence properties of the many-body states are
necessary to separate cluster states from condensates. Both

this and the localization discussion above strongly indicate
that no new consequences arise from approximating cluster
states with “condensates.”

Condensate identity. The approximation as a condensate
wave function of a quantum state rapidly gets invalid with
increasing nuclear mass. This is seen from a sequence of
four arguments. First the approximation as a condensate wave
function is related to a restricted part of the full Hilbert space.
Variational computations of condensates assume a class of
wave functions with parameters determined by minimizing
the energy. When the Hilbert space is extended to include
other degrees of freedom the solution must remain essentially
unchanged. An analogy is found in the s-wave neutron
strength function that is broad and distributed over a large
number of many-body states. This is reflected in the lack of
neutron halo states at excitations around the neutron binding
energy Bn [28,29]. To maintain the condensate character, the
residual coupling Vc,n of an α-condensate state |c〉 to the true
many-body continuum nuclear states |n〉 must all be smaller
than their energy difference [29].

The second argument in the sequence is that this approxima-
tion gets increasingly worse with increasing excitation energy
because the density of states increases. A “clean” condensate
wave function must be more and more “smeared out” over
the true many-body states and at some excitation energy the
condensate wave function no longer describes a state of the
nucleus. Third, α condensates are postulated at the threshold
for disintegration into α particles. Fourth, this is at an excitation
energy E∗ of about 7 MeV for 12C and increasing by about
7 MeV for each additional α particle, i.e., E∗ ≈ 7(A/4 −
2) MeV.

We first estimate an average Vav of Vc,n by using a nucleon-
nucleon potential of range b and strength V0 between the
two states with similar radii R = bA1/3. Both residual kinetic
and potential energy contributions are then proportional to the
number of nucleons A, i.e., |Vav| ≈ AS0. The radii in |c〉 and
|n〉 must be comparable if the attraction of short range has to
keep the condensate spatially confined in competition with the
repulsive Coulomb interaction. The condition for maintaining
the condensate character is then |Vav| < D, where D is the
average level spacing.

We also estimate Vav by replacing |c〉 by the state |α, (A −
4)〉, consisting of an α particle and the ground state, |(A −
4)〉, of the (A − 4) system. These wave functions are similar,
because the condensate consists of α particles, but they are
clearly not identical, because the ground state of A-4 cannot be
accurately described by an α-cluster model. However, they are
similar in the approximations of harmonic oscillator potentials
or Gaussian wave functions. The differences in the coupling
matrix elements from using |c〉 and |α, (A − 4)〉 can then on
average be expected to deviate much less than an order of
magnitude. With many states |n〉 in the average this leads as
in Refs. [29,30] to the estimate of Vav ≈ Wα , where Wα is
the strength of the imaginary part of the α-nucleus optical
potential. As in Ref. [29] we conclude that the condensate
resembles one of the many-body states when Wα < D.

From the imaginary α-nucleus potential we can estimate
the spreading width �α of an α-particle state on the true
many-nucleon states. For nucleons the spreading width of a
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single-particle state of energy ε, �sp, is in Fermi-liquid trans-
port theory [31–33] found to be �sp = [(ε − µ)2 + π2T 2]/�0

where µ is the Fermi level and T the temperature. The
constant �0 is related to the imaginary potential and the
estimate ≈33-MeV results in �sp ≈ 1.5 MeV for T = 0 and
an energy equal to the nucleon separation energy [32,33].
Analogously we estimate �α for α particles moving in the
medium of nucleons. The α-nucleus separation energy is
about 7 MeV, which with �0 ≈ 33 MeV again results in �α =
1.5 MeV for T = 0. The finite temperature is obtained from
the average excitation energy, E∗ = aT 2

c , at the threshold for
fragmentation into free α particles. With the level-density
parameter a = A/10 MeV we get Tc ≈ 4 MeV

√
1 − 8/A,

where A is the nucleon number. In total we get the estimate
�α ≈ 6 MeV almost independent of nucleon number. This
corresponds to a strength Wα ≈ 3 MeV for the appropriate
increasing excitation energy.

We estimate D in the Fermi gas model adjusted phe-
nomenologically to excitation energies E∗ ≈ Bn, i.e., D ≈
D0 exp[−2

√
a(E∗ − 2	)], where 	 ≈ 12 MeV/

√
A is the

pairing gap 	. The level spacing, D0 ≈ 20 MeV/A, for E∗ =
2	 is essentially equal to the single-particle level spacing
which is the correct limit. The extremely simple expression
for D can only be an average over many nuclei at energies
where many excited states are present.

The conditions |Vav| < D and Wα < D are then

S0A or Wα < D0 exp[−2
√

a(E∗ − 2	)]. (12)

A very low limit of both S0 and Wα is 1 MeV [34]. With
a very small value of E∗ = 2	 we get the conservative
estimate of preservation of condensate identity A <

√
20 < 5

or A < 20, respectively. The spreading width estimate, even
reduced by a factor of 2, is also larger than the level distance
for A < 14. These estimates are valid when a sufficient
number of excited states contributes in the average around
the threshold energy. This is fulfilled for all nuclei heavier
than 12C, including 16O. These conditions for survival of
the condensate structures are almost always violated, and the
violation increases exponentially with excitation energy.

Tonks-Giradeau structures. The linear chain structures of
α particles at the breakup threshold, Ikeda diagrams [35], are
conceptually similar to the one-dimensional atomic conden-
sates called Tonks-Giradeau structures [36,37]. The latter have
been realized with bosonic Rubidium atoms in optical traps
that have strong repulsive interactions in the 1D geometry.
This near impenetrability makes the system behave like a 1D
Fermi gas in many aspects. This is analoguous to impenetrable

α particles in 1D cluster structures. The corresponding states
have been searched for and for many years the Hoyle state
in 12C was the favorite candidate. This state is now claimed
as a condensate with a completely different structure. No
observable has been found to distinguish between these
structures that in any case both are approximated as three-body
cluster states.

To assess whether such linear structures could exist in nuclei
we turn to the two conditions in Eqs. (1) and (2). The α-α
Coulomb energy is unimportant compared to V in Eq. (3).
It does not change the condition but it also cannot provide
the confining external field allowing a mean-field condensate-
like solution. Hence a linear chain structure is possible only
with localized α particles. The linear chain structure may also
be destroyed by couplings to other degrees of freedom. As
for three-dimensional condensates we estimate the survival
probability to be very small for any excitation energy above
2	.

Conclusions. The existence of Bose-Einstein condensates
of α particles assumes first that nucleons clusterize into
α particles and, second, that a condensate is formed. The
quantality condition of Mottelson indicates that α particles
marginally prefer independent particle motion over correla-
tion. We show that definitions of condensates of very few
particles are ambiguous and lead to disparate condensate
fractions. The origin is conflicts among mean-field solutions,
correlations, and translational or rotational symmetries and
between definitions related to short- and long-range behavior.
The differences between nuclear and atomic condensates are
few versus macroscopic number of particles, dilute versus high
density, self-bound system versus external confining field, and
ambiguous versus rigorous definitions.

In conclusion, we have found that the concept of a nuclear
condensate is of little use. The recent theoretical claims of
nuclear α condensates refer to well-known cluster states and
can be regarded as merely an approximation to such states.
No observable differences can be constructed to distinguish
these alleged novel structures from ordinary cluster states.
Occurrence of one- and three-dimensional nuclear condensates
of more than three particles at higher excitation energies are
very unlikely. They would either be completely unstable and
vanished into the continuum, or the α-condensate structure
would cease to exist due to spreading over many-nucleon
states. In any case if traces remain they are nothing else than
parts of ordinary α-cluster states.

Discussions with H.O.U. Fynbo and M. Thøgersen are
highly appreciated.
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