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The (π−, K+) reaction on 28Si and the �-nucleus potential
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We calculate in the impulse approximation the kaon spectrum from the (π−, K+) reaction on 28Si. The strength
V� of the real part of the single particle potential of the � hyperons produced in the reaction is obtained from the
Nijmegen model F of the baryon-baryon interaction, and the strength W� of the imaginary (absorptive) part is
determined by the �N cross sections for the �� conversion and also for the elastic �N scattering (this elastic
scattering introduces a strong dependence of W� on the � momentum). The momentum dependence of V� is
also considered. Our calculated inclusive kaon spectrum agrees reasonably with the spectrum measured at KEK.
The strengths of the real and absorptive � potentials used in the present calculation are compatible with these
strengths determined in the analyses of � atoms and of the strangeness exchange reactions.
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Our knowledge of the single particle (s.p.) potential U� =
V� − iW� of the � hyperon in nuclear matter comes from
the analyses of � atoms [1,2], of the strangeness exchange
(K−, π ) reactions [3,4], and of the hyperon-nucleon scattering
data, to which the hyperon-nucleon interaction potential may
be fitted [5–8] (and with this potential one may calculate U�

[9–11]). All these analyses lead to the conclusion that the �N

interaction is well represented by the Nijmegen model F of the
baryon-baryon interaction [6], which leads to a repulsive V�

with the strength of about 25 MeV at the equilibrium density
of nuclear matter [11,12].

Recently, a new source of information on U� became
available: the final state interaction of � hyperons in the
associated production reaction (π,K+). The first measurement
of the inclusive K+ spectrum from the (π−,K+) reaction on
the 28Si target was performed in KEK at a pion momentum
of 1.2 GeV/c [13–15]. The existing impulse approximation
analyses [13,15,16] of this KEK experiment imply a repulsive
V� with a surprisingly great strength of about 100 MeV, which
is inconsistent with the previous estimates.

In the present article we show that the inconsistency may
disappear if we consider (i) the contribution of the elastic �N

scattering to W� (and not only of the �� conversion) and
(ii) the dependence of V� on the � momentum.

In our discussion we apply the simple impulse approxima-
tion described in Ref. [16] and described in more detail in
Ref. [17].1 We apply the local density approximation and treat
each point of the nuclear core as a piece of nuclear matter with
the local nucleon density ρ. For W� we use the expression
in terms of the total cross sections for the �� conversion
process �N → �N ′ and for the �N total elastic (including
charge exchange) scattering:

W� = Wc + We, (1)

Wc = ρ
h̄2

4µ�N

〈k�NQ�σ (�−p → �n)〉, (2)

1Notice that the conclusions of Ref. [17] are not correct because
they were reached by a comparison with the KEK results presented
in Ref. [13] in a figure that contained an error (corrected in Ref. [14]).

We = ρ
h̄2

4µ�N

〈k�NQ�[σ (�−n → �−n)

+ σ (�−p → �−p) + σ (�−p → �0n)]〉, (3)

where 〈 〉 denotes the average value in the Fermi sea, h̄kYN

is the relative YN momentum (Y = �,�), µYN is the YN

reduced mass, and QY is the exclusion principle operator in
the YN channel (a projection operator onto nucleon states
above the Fermi sea). Relations (1)–(3) were derived in
Ref. [18] (see also Ref. [9]) within the low order Brueckner
(LOB) theory with two coupled channels YN , by applying the
optical theorem, in which terms with squares of the reaction
matrix were approximated by the corresponding cross sections
(|K�N,�N |2 by �N elastic cross section, |K�N,�N |2 by ��

conversion cross section).
Notice that in the case of the nucleon optical potential VN +

iWN only the elastic NN scattering contributes to WN , and
the situation is similar to that in the case of the contribution
We to W� . A semiclassical expression for WN , analogous to
expression (3), was first proposed by Goldberger [19] for high
incident energies and was shown later by Lane and Wandel [20]
to be applicable also at lower energies. (The problem of the
accuracy of expression (2)—discussed by Gal [21]—appears
similar.)

In applying expressions (2) and (3), we used for the ��

conversion cross section the parametrization of Gal et al. [22],
and for the cross sections appearing in expression (3) we used
the cross sections tabulated by Rijken [23]. We consider the
case of the (π−,K+) reaction on the 28Si target: π− +28 Si →
K+ + 27Al ⊗ �−. In our simple model the 27 nucleons in
the final state are distributed uniformly within the sphere of
radius R = 3.7559 fm, with the corresponding density ρ =
0.122 fm−3.

The exclusion principle operators QY , approximated in
expressions (2) and (3) by their averages over the angle
between the (conserved) total and relative YN momenta,
depend on the YN momenta in the final state of the ��

conversion and �N elastic scattering. These relative YN

momenta are determined by the energy conservation equation,
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which in the case of the �� conversion has the form

e�(k�) + eN (kN ) + (M� − MN )c2 = e�(k′
�) + eN (k′

N ),

(4)

where e�(k�), eN (kN ), and e�(k′
�), eN (k′

N ) are the s.p. ener-
gies of the particles, respectively, in the initial and final state
of the �� conversion process �N → �N ′. In the case of the
�N elastic scattering the energy conservation has a similar
form (without, of course, the mass difference term). For the
s.p. energies of the hyperons, we use the form

eY (kY ) = εY (kY ) + DY , (5)

where εY denotes the hyperon kinetic energy and DY denotes
its s.p. potential. At the equilibrium density ρ0 = 0.166 fm−3

of nuclear matter, for DY implied by the Nijmegen model
F of the baryon-baryon interaction [6], the following values
were obtained in Refs. [12] and [24]: D0

� = 23.5 MeV, D0
� =

−31.4 MeV. At the density ρ = 0.122 fm−3, we use the values
D� = 17.25 MeV and D� = −23.05 MeV, obtained by linear
interpolation of the values at ρ0. For the nucleon s.p. energy
eN (k′

N ) for k′
N > kF (kF is the Fermi momentum of nuclear

matter), we use the form

eN (k′
N ) = εN (k′

N ) − εN (kF ) + eN (kF ) (6)

and adjust eN (kN < kF ) to ρ0 = 0.166 fm−3 and to the energy
−15.8 MeV per nucleon of nuclear matter at the equilibrium
density ρ0.

Our procedure of determining the absorptive potential of
� in nuclear matter is described in detail in Appendix A of
Ref. [2]. Our results obtained for Wc,We, and W� for nuclear
matter at the density ρ = 0.122 fm−3 are shown in Fig. 1. With
increasing momentum k� the �� conversion cross section
decreases, on the other hand the suppression of Wc by the
exclusion principle weakens. As the net result Wc does not
change very much with k� . The same two mechanisms act
in the case of We. Here, however, the action of the exclusion
principle is much more pronounced: at k� = 0 the suppression
of We is complete. At higher momenta, where the Pauli
blocking is not important, the total elastic cross section is much
bigger than the conversion cross section, and we have We �
Wc, and consequently W� � Wc. Notice that the action of the
absorptive potential W� on the � wave function (decrease of
this wave function) is similar to the action of a repulsive V� .

FIG. 1. The absorptive potential W� and its components Wc and
We in nuclear matter of density ρ = 0.122 fm−3 (in the case of ν = 1).

We expect, therefore, to achieve with strong absorption the
same final effect with a relatively weaker repulsion.

To describe the associated production reaction on the 28Si
target we consider the (π−,K+) reaction in which the pion
π− with momentum kπ hits a proton in the 28Si target in the
state ψP and emerges in the final state as kaon K+ moving
in the direction k̂K with energy EK , whereas the hit proton
emerges in the final state as a �− hyperon with momentum
k� . We apply the simple impulse approximation described
in Ref. [17], with K+ and π− plane waves, assume a zero
range spin independent interaction for the elementary process
π−P → K+�− (with transition matrix t adjusted to the total
cross section for this process measured in Ref. [25]), and obtain

d3σ

dk̂�dk̂KdEK

= EKEπM�c2kKk�

(2π )5(h̄c)6kπ

×
∣∣∣∣t

∫
dr exp(−iqr)ψ�,k�

(r)(−)∗ψP (r)

∣∣∣∣
2

,

(7)

where the momentum transfer q = kK − kπ and ψ�,k�
(r)(−)

is the � scattering wave function that is the solution of the s.p.
Schrödinger equation with the s.p. potential

U�(r) = (V0 − iW0)θ (R − r), (8)

where for W0 we use the nuclear matter results for W�

presented in Fig. 1 and for V0 the value D� = 17.25 MeV.
The Coulomb interaction of �− may be taken into account
by a proper change in V0. For the proton s.p. potential VP (r),
which determines ψP , we also assume the square well form
with the radius R (and with a spin-orbit term). The parameters
of VP (r) are adjusted to the proton separation energies (in
particular R = 3.7559 fm). The Coulomb interaction of the
target proton is not taken into account explicitly. Its average
value inside the nucleus is 6 MeV, and we assume that it is
included in the depth of VP (r).

In the inclusive KEK experiments [13–15] only the energy
spectrum of kaons at fixed k̂� was measured. To obtain this
energy spectrum, we have to integrate the cross section (7)
over k̂� .

We present our results for the inclusive cross section as a
function of B� , the separation (binding) energy of � from the
hypernuclear system produced. B� is related to � momentum
k� .2 Thus the value of k� that we need to calculate W0 is
determined by B� .

So far, the real s.p. � potential V0 = D� has been assumed
to be independent of the � momentum k� (whereas our
imaginary � potential W� depends strongly on k�—see
Fig. 1). In the case of nucleon s.p. potential in nuclear
matter, with increasing nucleon momentum, the potential
becomes less attractive. This is so because at high momenta
the nucleon-nucleon interaction is dominated by the hard
core repulsion. This dependence of the nucleon s.p. potential
on the nucleon momentum may be described by replacing
in Eq. (6) the nucleon mass MN by the effective nucleon

2In the simplest case when the kaon hits the least bound proton in the
silicon target (proton in the d5/2 state), we have −B� = h̄2k2

�/2M� .
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FIG. 2. Kaon spectrum from (π−,K+) reaction on 28Si at θK =
6◦ at pπ = 1.2 GeV/c. See text for explanation.

mass M∗
N = νNMN , or equivalently the kinetic energies εN

by εN/νN . In the Nijmegen model F the YN interactions
have repulsive hard cores similar to the cores in the NN

interaction, and we expect a similar momentum dependence
of the s.p. potential of the Y hyperon as in the case of
the nucleon potential, and we describe this dependence by
replacing in Eq. (5) the hyperon mass MY by the effective mass
M∗

Y = νY MY , or equivalently the kinetic energy εY by εY /νY .
In this way the Y s.p. potential VY = eY (kY ) − εY (kY ) =
DY (kY ) + (1/νY − 1)εY (kY ) acquires a momentum dependent
component that for ν < 1 is repulsive. Now in Eq. (8), we
use for V0 the value D� + (1/ν� − 1)ε�(k�). We assume
that νN = ν� = ν� = ν = 0.7. Whereas our value of νN is
compatible with the empirical energy dependence of VN [26],
values of ν� and ν� are not well known (although our value of
ν� is supported by early estimates [10,27]).3 Consequently, our
result obtained with ν = 0.7 represents only a rough estimate
of the effect of the momentum dependence of the s.p. potentials
V�, V�, and VN on the observed K+ spectrum.

3The result ν�(k� = 0) = 1.14 was obtained in Ref. [10] with model
D of the Nijmegen interaction, rejected in all analyses mentioned at
the beginning of this report. Furthermore ν� obtained in Ref. [10]
is varying with k� , and ν�(k� 	 1.6 fm−1) = 1. An extrapolation to
k� >∼ 1.6 fm−1 suggests that ν�(k� >∼ 1.6 fm−1) < 1. In our analysis
of KEK data 0 < k� < 3.7 fm−1, and the range of small � momenta
turns out to be relatively unimportant. Consequently the assumption
ν� = 0.7 appears a reasonable approximation, consistent with the
dominant role of the hard core in the �N interaction at high momenta.

Our results for the kaon spectrum from (π−,K+) reaction
on 28Si at θK = 6◦ at pπ = 1.2 GeV/c together with the
experimental results of Ref. [15] are shown in Fig. 2. In the
case of curves A and B, the momentum dependence of the s.p.
potentials was not considered, i.e, we assumed ν = 1. In calcu-
lating curves A and B, we used for W0 the nuclear matter results
for Wc and W� = Wc + We, respectively [see Eqs. (1)–(3)].
The momentum dependence of the s.p. potentials was con-
sidered in the case of curve C, with ν = 0.7 (and with
W0 = W�).

The data points in Fig. 2 at positive values of B� correspond
to reactions with emission of � hyperons (except for the final
� bound state possible only for attractive V�). In the present
article, we do not consider processes with emission of �

hyperons, and consequently, our calculated curves in Fig. 2
start at −B� = 0.

The distortion of the pion and kaon waves, neglected
in our simple plane wave impulse approximation, obvi-
ously diminishes the cross section for the associated �

production. As was noticed already in Ref. [13], the dis-
tortion effect reduces the magnitude of the inclusive spec-
trum but does not affect the spectrum shape very much.
Consequently, the distortion effect is expected to push
curves B and C down into the range of the experimental
data.

We conclude that we are able to reproduce the kaon
spectrum from the (π−,K+) reaction observed at KEK,
assuming for V� the strength implied by the model F of the
Nijmegen baron-baryon interaction, and for W� the strength
determined from the �N scattering cross section.

Comparing curves A and B, we see that to obtain this result
it is essential to include into W� not only the contribution Wc

of the �� conversion cross section but also the contribution
We of the elastic �N scattering, which introduces a strong de-
pendence of W� on � momentum and reduces the magnitude
of our calculated kaon spectrum A to that of the spectrum B.
Similar is the effect of the momentum dependence of the real
� potential V� , illustrated by the comparison of curves B and
C.

Notice that at low k� we have W� 	 Wc and V� 	 D� ,
and these strengths of the absorptive and real � potential are
compatible with these strengths determined in the analyses
of � atoms and of the strangeness exchange reactions, where
mainly low values of k� are relevant.
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