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Trojan horse method applied to 9Be( p, α)6Li at astrophysical energies

Qun-Gang Wen, Cheng-Bo Li, Shu-Hua Zhou, Qiu-Ying Meng, Jing Zhou, Xiao-Mei Li, Shou-Yang Hu, and Yuan-Yong Fu
China Institute of Atomic Energy, P. O. Box 275(18), Beijing 102413, People’s Republic of China

C. Spitaleri, A. Tumino, R. G. Pizzone, and G. G. Rapisarda
Laboratori Nazionali del Sud-INFN, Catania, Italy

(Received 9 April 2008; revised manuscript received 20 June 2008; published 26 September 2008)

The low-energy bare-nucleus cross section for 9Be(p, α)6Li has been extracted by means of the Trojan horse
method (THM) applied to the 2H(9Be, α,6Li)n reaction at a beam energy of 9Be of 22.35 MeV. For the first
time, we assume an intermediate process, 9Be + 2H → 9Be + p + n, and considered this process as one criterion
of the quasifree condition. Accordingly, sequential decay processes were eliminated. The derived astrophysical
S(E) factor for the two-body process 9Be(p, α)6Li is compared with that obtained from direct experiments. We
have found good agreement between the two results, leading to an improved determination of the S(E) with
S(0) = 21.0 ± 0.8 MeV b. Furthermore, the electron screening potential energy Ue = 676 ± 86 eV has also been
extracted in a model-independent way by comparing the direct and THM data. The value is significantly higher
than that predicted by current theoretical models, whereas it is lower than Ue � 830 eV, which was extracted
from direct measurements with inclusion of the Ec.m. = −23 keV subthreshold resonance.
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I. INTRODUCTION

The abundances of light elements such as lithium, beryl-
lium, and boron have been increasingly used as diagnostics
between different scenarios for primordial or stellar nucle-
osynthesis [1]. In both stellar and primordial environments,
however, Li, Be, and B are mainly destroyed by proton-capture
reactions via the (p, α) channel with a Gamow energy EG

ranging from 10 keV (for stellar nucleosynthesis) to 100 keV
(for primordial nucleosynthesis). These energies are lower
than the Coulomb barrier EC which is usually on the order
of MeV, thus implying that the reactions take place via the
tunnel effect with the cross section at nano- or pico- barn. The
behavior of the direct cross sections is usually extrapolated
from higher energies to the astrophysical energy region by
using the definition of the astrophysical factor

S(E) = E[σ (E)] exp(2πη) (1)

(where η is the Sommerfeld parameter), which varies smoothly
with energies. Nevertheless, this extrapolation procedure can
introduce some uncertainties due to, for example, the presence
of unexpected subthreshold resonances or electron screening
effects [2].

Using the Trojan horse method (THM) [3,4], the quasifree
(QF) contribution of a suitable three-body reaction is selected
under appropriate kinematic conditions. The energy in the
entrance channel of the three-body reaction is chosen well
above the Coulomb barrier to extract the two-body cross
section at astrophysical energies free of Coulomb suppression.

The 9Be(p, α)6Li reaction via the THM has been studied
in Ref. [5], which has shown the presence of the expected
low-energy resonance at Ec.m. ∼ 0.27 MeV (corresponding
to the 6.87 MeV, Jπ = 1− level of 10B), but no information
has been extracted about either the S(E) factor or screening
effects. The present work aimed at extracting the S(E) factor
and screening effects. Here, for the first time, we assumed

that an intermediate process 9Be + 2H → 9Be + p + n exists
and considered that the process is a criterion of the quasifree
condition.

II. TROJAN HORSE METHOD

The basic idea of the THM is to extract a two-body

A + x → C + c (2)

reaction cross section from the QF contribution of a suitable
three-body

A + a → C + c + b (3)

reaction. The nucleus a is considered to be dominantly
composed of clusters x and b. After the breakup of a due to the
interaction with A, the two-body reaction occurs between the
transferred particle x and the nucleus A, whereas the nucleus b

acts as a spectator. The energy in the entrance channel A + a

can be chosen above the height of the Coulomb barrier, so
as to avoid a reduction in the cross section. At the same
time, the effective energy of the reaction between A and x

can be relatively small, mainly because of the binding energy
εa of a with respect to the x + b threshold [Eqs. (4) and (5)],
and the Fermi motion Exb of x inside a can compensate at
least partially for the A + x relative motion [Eq. (6)]. See also
Eq. (17).

E
QF
Ax = EAa

(
1 − µAa

µBb

µ2
bx

m2
x

)
− εa, (4)

εa = (mx + mb − ma)c2, (5)

EAx = E
qf

Ax ± Exb. (6)

Since the transferred particle x is hidden inside the nucleus
a and the collision of A and x takes place in the nuclear
interaction region, the two-body reaction isfree of Coulomb
suppression and, at the same time, not affected by electron
screening effects.
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FIG. 1. Coordinate momenta in the initial and final partitions of
the Trojan horse reaction, Eq. (3).

The relation of the three-body cross section to the two-
body cross section for partialwave l can be written as [4] (see
Fig. 1)

d3σ

dECc d�Bb d�Cc

= KF|W ( �QBb)|2Pl

dσl

d�
(Ax → Cc), (7)

where KF is the kinematical factor

KF = µAaµBbµCc

(2π )5h̄6

kBbkCc

kAa

16π2

k2
AxQ

2
Aa

vCc

vAx

k2
Ax

k2
Cc

= µAaµBbµAx

2π3h̄6

kBb

kAakAxQ
2
Aa

. (8)

The quantities �QAa and �QBb are given by

�QAa = �kAa − mA

mA + mx

�kBb, (9)

�QBb = �kBb − mb

mb + mx

�kAa, (10)

with the relative momenta h̄�kAa and h̄�kBb in the entrance and
exit channels, respectively.

The momentum amplitude W is introduced by a Fourier
transformation

Vxb(rxb)φa(�rxb) =
∫

d3q

(2π )3
W (�q) exp(i �q · �rxb)φxφb (11)

of the product of the ground state wave function φa and the
interaction potential Vxb. With the help of the Schrödinger
equation, the momentum amplitude W is related to the ground
state momentum wave function of the nucleus a

�a( �QBb) = 〈exp(i �QBb · �rxb)φxφb|φa(�rxb)〉, (12)

by

W ( �QBb) = −
(

εa + h̄2Q2
Bb

2µxb

)
�a( �QBb). (13)

The momentum h̄ �QBb is directly related to the momenta of
the spectator and the transferred particle after the breakup.
Neglecting the binding energy of the nuclei, the argument of
W can be well approximated by �QBb ≈ �kxb. For a target a at
rest, this is just the negative of the spectator recoil kb or the
momentum kx of the transferred particle x. Of course, in the
actual calculation, the full expression for �QBb is used.

In Eq. (7), Pl is the penetration function [4]

Pl(R, ηAx, kAx,QAa) → k2
AxR

2z2
l (QAaR)

[
F 2

l (ηAx ; kAxR)

+G2
l (ηAx ; kAxR)

]
, (14)

the Sommerfeld parameter ηAx = ZAZxe
2

h̄vAx
, Fl and Gl are the

regular and irregular Coulomb wave functions, and R is a
cutoff radius originating from the plane-wave and surface
approximations. In the present case, we have used for R

the sum of the nuclear radii, assuming for each nucleus,
r = r0A

1/3, with r0 = 1.4 fm.
Energy conservation in the two-body reaction (2) can be

expressed as

EAx = ECc − Q2, (15)

with the Q value

Q2 = (mA + mx − mC − mc)c2, (16)

and similarly (see Fig. 1)

EAa = ECc + EBb − Q3

= EAx + EBb + Q2 − Q3

= EAx + EBb + εa, (17)

with

Q3 = (mA + ma − mC − mc − mb)c2, (18)

in the case of the three-body reaction (3). In an experiment,
�pAa is fixed, and pBb, pCc, and pAx are functions of the
single variable ECc, while QAa and QBb are functions of two

variables ECc and θBb = arccos(
�kBb ·�kAa

|kBb|·|kAa | ); i.e., Eq. (7) can be
written as

d3σ

dECc d�Bb d�Cc

∝ f (ECc, θBb)
dσl

d�
(Ax → Cc). (19)

The aim of the present experiment was to extract the cross
section of the 9Be + p → 6Li + α reaction after selecting the
QF contribution of the 9Be + d → 6Li + α + n reaction. The
deuteron was used as the Trojan horse nucleus, due to its p + n

structure [6]; the proton acts as a participant, while the neutron
is a spectator to the virtual two-body reaction.

III. EXPERIMENTS

The experiment was performed at Beijing Tandem Accel-
erator National Laboratory, of the China Institute of Atomic
Energy. A beam of 9Be of 22.35 MeV was provided by the
HI-13 tandem accelerator. The beam intensity ranged between
10 and 20 nA. A strip of deuterated polyethylene target (CD2)
of about 155 µg/cm2 in thickness and 1.5 mm in width was
oriented with its surface perpendicular to the beam direction.
Using the strip target limited the horizontal width of the
beam spot in 1.5 mm to decrease the angle error. A silicon

E-E telescope, with a position-sensitive detector (PSD) as
E, was placed at about 250 mm from the target at an angle of
−30◦(±5◦) for a continuous monitoring of the target thickness
during the experiment. The particle detection was performed
by using two position-sensitive detectors. The two PSDs were
placed at opposite sides with respect to the beam direction at a

035805-2



TROJAN HORSE METHOD APPLIED TO 9Be (. . . PHYSICAL REVIEW C 78, 035805 (2008)

distance from the target d = 250 mm. The detection angle was
23◦(±5◦) (PSD1 for α detection) and −15◦(±5◦) (PSD2 for
6Li detection). The arrangement of the experimental setup was
chosen by means of Monte Carlo simulation to cover a region
of QF pairs. The trigger for the event acquisition was given
by the coincidence of two signals from the two PSDs. Energy
and position signals for the detected particles were processed
by standard electronics and sent to the acquisition system for
online monitoring and data storage for offline analysis.

To perform the position calibration, a grid with a number
of equally spaced slits was placed in front of each PSD. A
correspondence between the position signals from the PSDs
and the detection angles of the particles was then established.
The energy calibration was performed by means of a stan-
dard α source, the 12C(6Li, 6Li)12C and 197Au(6Li, 6Li)197Au
reactions with 6Li beam at 16 and 8 MeV, and the
197Au(9Be, 9Be)197Au reaction with 9Be beam at 22.35 MeV.

IV. DATA ANALYSIS

A. Three-body reaction identification

After position and energy calibration, we need to select
6Li and α particles detected in coincidence. A three-body
reaction satisfies Eq. (17). In the present experiment, the
relative energy of incident particles was fixed at E0. We
assume all those particles detected by PSD1 are α with physical
quantity footnotes being 1, all particles detected by PSD2 are
6Li with physical quantity footnotes being 2, and the third
particles calculated with 2H(9Be, α, 6Li)n three-body reaction
kinematic equations are n with physical quantity footnotes
being 3. In a two-dimensional plot of E1−23 (relative energy of
α and the whole of 6Li and n) vs E2−3(relative energy of 6Li
and n), the three-body events will fall in a line with a slope of
−45◦ when the events are consistent with the assumption we
made. From Fig. 2 we can find this line from the experimental
data. The corresponding Q-value spectrum is shown in Fig. 3,
where one can see a peak centered about −0.1 MeV according
to the expected theoretical value. Similarly E12−3 vs E1−2, or
E13−2 vs E1−3 fall in a line with a slope of −45◦.

FIG. 2. Kinematic locus of events E2−3 vs E1−23.
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FIG. 3. Q-value spectrum corresponding to the kinematic locus
of Fig. 2. The sharp peak, around −0.1 MeV, corresponds to the
three-body reaction 2H(9Be, α,6 Li)n.

Those events within the graphical cut in Fig. 2 were selected
as 2H(9Be, α,6 Li)n reaction events. The number of events for
PSD1 detecting α and PSD2 detecting 6Li is much larger than
that for the other way around. This case was considered when
we selected the angular ranges covered by PSD1 and PSD2.
By simulation, we can select events with PSD1 detecting 6Li
and PSD2 detecting α and eliminate them.

B. QF mechanism identification

1. Intermediate process

As shown in Fig. 4, the 9Be + 2H → 6Li + α + n reaction
can proceed through different reaction mechanisms. So we
need to select those events that fit with the process shown in
Fig. 4(a). To do so, we assume the reaction has an intermediate
process of 9Be + 2H → 9Be + p + n (see Fig. 5). So we have
the following equations

p2
Aa′

2µAa′
+ p2

bx

2µbx

= p2
Aa

2µAa

+ Q′, (20)

Q′ = (ma − mb − mx)c2, (21)

�pbx − mb

ma′
�pAa′ + mb�vc = �pb. (22)

In Eq. (22), �pb is the momentum of b(n) in the laboratory
system, and �vc = �pAa

ma
because a(2H) is at rest in the present

experiment.
Using Eqs. (20)–(22), we may calculate pAa′ or pbx with

b(n) momentum determined by the experimental data. We
assume that the intermediate process 9Be + 2H → 9Be + p +
n will occur if the value of pAa′ or pbx is positive real,
and we consider this intermediate process as one criterion
of the quasifree condition. As a result, one can clearly see in
Fig. 6 that those events belonging to the Fig. 4(b) process
are accordingly eliminated. After the quasifree conditions
selected, we cannot find obviously excited states in Fig. 7,
except a level of E6Li-n = 0.2 MeV in Fig. 7(b) belonging to
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FIG. 4. Different reaction mechanisms leading to the same final
state represented by pseudo-Feynman diagrams. A quasifree process
is shown in (a), while three different sequential decays are shown in
(b), (c), and (d).

the 7.45 MeV excited states of 7Li∗. However, it is in the energy
range of E6Li-α = 3.1–3.6 MeV, which exceeds the interest-
ing energy range of E6Li-α = 2.125–2.425 MeV [i.e., using
Eq. (23), Ec.m. = 0–0.3 MeV]. So the level does nothing to
the results.

FIG. 5. An intermediate process 9Be + 2H → 9Be + p + n. �vc is
the velocity in the center-of-mass coordinate.

FIG. 6. Solid histogram shows the results restricted by the condi-
tion that the assumed intermediate process 9Be + 2H → 9Be + p + n

is one criterion of the quasifree process. Without this restriction, the
energy region of the quasifree process overlaps with the energy region
of the sequential decay via the 5.92, 6.025, 6.127, 6.56, 6.87, and
7.00 (MeV) compound states in 10B (dashed histogram).

FIG. 7. (Color online) (a) α-n vs 6Li-α and (b) 6Li-n vs 6Li-α
relative energy two-dimensional plots after quasifree conditions are
selected. If there were levels of 5He∗, 7Li∗, or 10B∗, we should find
horizontal lines for 5He∗ and 7Li∗ or vertical lines for 10B∗ in this
plot. There is a level of E6Li-n = 0.2 MeV in (b) belonging to the
7.45 MeV excited states of 7Li∗, but it does nothing to the results.
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FIG. 8. Comparison between the experimental neutron momen-
tum distribution (square symbols) and theoretical Hulthen function
[7] (dashed line). The error bars are due to statistical errors.

2. Analysis of the neutron momentum distribution

The term Pl
dσl

d�
in Eq. (7) represents the nuclear part of

the differential cross section for the virtual two-body reaction
9Be(p, α)6Li that in post-collision prescription occurs at an
energy

Ec.m. = E6Li-α − Q2b, (23)

where E6Li-α is the 6Li-α relative energy and Q2b is the two-
body Q value.

To reconstruct the neutron momentum distribution, a small
6Li-α relative energy window (about 100 keV) was selected. In
such a small energy window, Pl

dσl

d�
can be considered constant.

Thus the experimental |W ( �QBb)|2 distribution was extracted
by dividing the three-body coincidence yield by the kinematic
factor. The result is compared with the theoretical one [7] in
Fig. 8. The agreement between experimental and theoretical
momentum distribution represents a very strong check for the
existence of the QF mechanism in the present data.

C. Validity tests for the THM and the astrophysical S(E) factor

After the identification of the QF events, it is necessary
to test the validity of the THM. The first test is represented
by the comparison between the indirectly extracted angular
distributions and the direct behavior. To get the indirect angular
distribution, i.e., the emission angle for the α particle in the
6Li-α center-of-mass system, the relevant angle was calculated
according to the relation [8]

θc.m. = arccos
(�vp − �vt ) · (�vC − �vc)

|�vp − �vt ||�vC − �vc| , (24)

where the vectors �vp, �vt , �vC , and �vc are the velocities of
projectiles, transferred protons, and outgoing α and 6Li
particles, respectively. These quantities can be calculated from
their corresponding momenta in the laboratory system, but the
transferred protons are of exception. The momentum of the
transferred protons is equal and opposite to �pbx (see Fig. 5)
because of the quasifree assumption mentioned above. The
angular distributions test was performed for different 6Li-α
relative energy intervals and normalized to the direct data [9].
An example of the results is shown in Fig. 9. The error bars
include both statistical and normalization errors. The two-body
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FIG. 9. Example of the angular distributions extracted at different
Ec.m. via the THM (dots). The solid lines through the data points are
χ 2-fit using linear function [9].

angular distribution is in arbitrary unit and agrees with the
behavior of the direct angular distribution [9].

A second validity test consists in the comparison between
the behavior of the indirect excitation function and the direct
one. Using Eq. (7), the quantity (dσ/d�) was extracted. The
resulted two-body cross sections σ (E) are shown in Fig. 10
(squares), where the direct data are also shown (open circles)
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FIG. 10. Comparison between the THM indirect excitation func-
tion (squares) for the 9Be(p, α)6Li reaction and the direct behavior
(open circles) [9].
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TABLE I. Astrophysical S factor for the 9Be(p, α)6Li via the
Trojan horse method.

Ec.m. (MeV) S(E) (MeV b) 
S(E) (MeV b)

0.0125 20.7 4
0.0375 21.3 4
0.0625 26.3 5
0.0875 30.7 5
0.1125 33.8 5
0.1375 41.6 6
0.1625 51.0 7
0.1875 60.6 8
0.2125 71.9 9
0.2375 84.6 10
0.2625 91.7 11
0.2875 89.7 11

[9]. The normalization to direct behavior was performed in the
energy range 75∼300 keV. The good agreement between the
two data sets is a necessary condition for the further extraction
of the astrophysical S(E) factor by means of the THM.

V. RESULTS AND DISCUSSION

The extracted bare-nucleus S(E) factor is shown in
Fig. 11 as full squares and summarized in Table I. The direct
data from Refs. [9,10] are also shown in Fig. 11. The behavior
of the indirect S(E) factor shows the presence of the expected
low-energy resonance at Ec.m. ∼ 0.27 MeV, corresponding to
the 6.87 MeV, Jπ = 1− level of 10B. Both data sets show a
similar energy dependence above ≈100 keV, while at lower
energies the direct data exhibit a strong increase. This can be
attributed to the electron screening effect, which is absent in
the indirect measurement.

The S(E) factor derived through the THM was fitted by a
fifth-order polynomial of the form

S(E) = S(0) + S1E + S2E
2 + S3E

3 + S4E
4 + S5E

5. (25)

The best fit is shown in Fig. 11 (solid line), and its coefficients
are listed in Table II. We can see the extracted S(E) factor
S(0) = 21.0 ± 0.8 MeV b.

The THM allows us to measure the bare astrophysical factor
Sb(E) [11], which can be compared with the screened (direct)
value Sd (E) to extract the associated screening potential
energy Ue by the equation [9,11]

Sd (E) = Sb(E) exp

(
πηUe

E

)
. (26)

Using Eq. (26), we deduced the screening potential energy
of Ue = 676 ± 86 eV, which is much higher than the value

TABLE II. Coefficients of the fifth-order polyno-
mial fit for the S(E) factor.

Coefficients Value Error

S(0) (MeV b) 21.0 ±0.8
S1 (b) −92.4 ±13.4
S2 (MeV−1 b) 4669 ±78.5
S3 (MeV−2 b) −4.413×104 ±331
S4 (MeV−3 b) 2.193×105 ±1251
S5 (MeV−4 b) −3.768×105 ±3483
χ 2/ndf 5.3/6

FIG. 11. (Color online) Bare-nucleus astrophysical S(E) factor
extracted via the THM (full squares) compared with the direct one
(open circles [9] and open triangles [10]); a fit to the indirect data
with a fifth-order polynomial [Eq.(25)] is also shown as a solid line.
The fit to determine Ue is shown as a dashed line.

one can expect from atomic physics models: Ue � 240 eV
(adiabatic limit [12]). And the result is lower than Ue �
830 eV, extracted from direct measurements with the inclusion
of the ER = −26 keV (i.e., Ec.m. = −23 keV) subthreshold
resonance � = 28 keV in the data analyses in Ref. [9]. The
subthreshold resonance corresponds to the 6.56 MeV level of
10B.
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