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Isospin-symmetry-breaking corrections to superallowed Fermi β decay:
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We study the formalism to include isospin-symmetry-breaking corrections when extracting the up-down
Cabibbo-Kobayashi-Maskawa matrix element from superallowed 0+ → 0+ nuclear β decay. We show that
there are no first-order isospin-symmetry-breaking corrections to the relevant nuclear matrix elements. We
find corrections to the treatment of Towner and Hardy, and assess these using schematic models of increasing
complexity.
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I. INTRODUCTION

Superallowed Fermi β decay provides the most stringent
test of the conserved-vector-current (CVC) hypothesis, the
most precise value for the up-down Cabibbo-Kobayashi-
Maskawa (CKM) matrix element Vud, and the best limit on the
presence of scalar interactions. With the confirmation of CVC,
Vud can be extracted with great precision to test the Standard
Model [1–3]. For this, one needs to evaluate ∼1% theoretical
corrections that arise because of nucleus-dependent isospin-
symmetry-breaking (ISB) effects between the parent and
daughter states and because of radiative effects [4,5]. These
corrections are small, but significant, and their associated
theoretical errors at present dominate the uncertainty of Vud

because of the very high precision reached experimentally [6].
In the 2005 survey of Hardy and Towner [1], the results for

the set of superallowed 0+ → 0+ transitions were statistically
consistent, after including these theoretical corrections. How-
ever, Penning-trap measurements of the transition energy for
46V [7,8] moved this case to more than two standard deviations
away from the 2005 survey. This lead Towner and Hardy
(TH) [6] to reexamine their treatment of ISB corrections and
to include the contribution from core orbitals. The latter were
found to be especially important for 46V and this anomaly
disappeared.

In this article, we study the formalism to include ISB cor-
rections and contrast the TH treatment to exact results. Before
proceeding, we review the necessary theoretical background,
following the discussion in TH [6].

Superallowed 0+ → 0+ Fermi β decay depends only on
the vector part of weak interactions, and with CVC the decay
transition “f t value” should be independent of the nucleus:

f t = 2π3h̄7 ln 2

|MF |2G2
V m5

ec
4

= const., (1)

where GV is the vector coupling constant and MF is the
Fermi matrix element. CVC depends on the assumption of
isospin symmetry, which is not exact in nuclei, but broken
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by electromagnetic and quark mass effects. As a result, MF

is reduced from its symmetry value of M0 = √
2 for T = 1

parent and daughter states. Following TH, we introduce the
ISB corrections δC to the Fermi matrix element by

|MF |2 = |M0|2(1 − δC). (2)

In addition, there are radiative corrections to Eq. (1), but
we focus on δC here. These isospin corrections are ∼1%,
but must be calculated with a theoretical uncertainty of 10%
to guarantee a desired accuracy of 0.1%. This presents a
challenge for nuclear theory.

Hardy and Towner have shown [1,6] that the calculated
corrections eliminate much of the considerable scatter present
in the uncorrected ft values, and the statistical consistency
among the corrected values is evidence that the corrections
have been reasonably computed. However, the importance of
precisely testing the Standard Model stimulates us to undertake
a reevaluation. With this, we wish to start and stimulate further
efforts to systematically improve ISB corrections, based on an
accurate understanding of ISB in nuclear forces [9,10].

This article is organized as follows. In Sec. II, we show that
TH do not use the isospin operator to calculate δC (as mandated
by the Standard Model). To examine potential consequences
of this, we review the TH treatment in Sec. III. A complete
formalism is presented in Sec. IV, where we show that there
are no first-order ISB corrections to the relevant nuclear matrix
elements, which is also true for the work of TH. In Sec. V,
we compare the TH treatment to exact model results of
increasing complexity, which can guide future improvements.
We conclude in Sec. VI.

II. TOWNER AND HARDY APPROACH TO ISB
CORRECTIONS

In nuclei, the matrix elements of weak vector interactions
are not modified by nuclear forces, except for corrections due
to ISB effects. Therefore, one has to evaluate the contributions
from electromagnetic and charge-dependent strong interac-
tions to the Fermi matrix element MF = 〈f |τ+|i〉 between the
initial and final states for superallowed β decay, |i〉 and |f 〉,
respectively. Here τ+ is the isospin raising operator.
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Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑
α,β

〈f |a†
αaβ |i〉〈α|τ+|β〉, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element 〈α|τ+|β〉 is assumed to
be given by the expression

〈α|τ+|β〉 = δα,β

∫ ∞

0
Rn

α(r)Rp

β (r)r2dr ≡ δα,βrα, (4)

where Rn
α(r) and R

p

β (r) are the neutron and proton radial
wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α〉 and |β〉 are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑
α,β

δα,βrαa†
αaβ, (5)

τ− = τ
†
+ =

∑
α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑
β

|rβ |2a†
βaβ 	= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A − 1)-particle system, |π〉,
which leads to

MF =
∑
α,π

〈f |a†
α|π〉〈π |aα|i〉rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, 〈π |aα|i〉 = 〈f |a†

α|π〉∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑
α,π

|〈f |a†
α|π〉|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that 〈π |aα|i〉 =
〈f |a†

α|π〉∗ but rπ
α 	= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i〉 and |f 〉.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4–6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑
α,π

|〈f |a†
α|π〉|2rπ

α ,

= M0

(
1 − 1

M0

∑
α,π

|〈f |a†
α|π〉|2�π

α

)
, (11)

where �π
α = (1 − rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2

M0

∑
α,π

|〈f |a†
α|π〉|2�π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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For the radial integrals, TH use the strong constraint that
the asymptotic forms of all radial functions must match exper-
imentally measured neutron and proton separation energies. In
many cases, TH have to truncate the model space to keep the
calculations tractable. Their final values for δC2 range between
0.17 and 1.50% and increase with mass number (see Table III
in Ref. [6]).

B. Isospin-mixing correction δC1

The isospin-mixing correction δC1 is obtained by setting
all radial integrals to unity, but including ISB corrections to
the matrix elements of the creation and annihilation operators,
〈f |a†

α|π〉∗ and 〈π |aα|i〉. These arise because the neutron-rich
and proton-rich states are different. TH find that calculations
of δC1 are very sensitive to the details of the shell-model
computation, but try to reduce the model dependence by using
various experimental information [6].

To obtain δC1, TH use experimental single-particle energies
(on top of the core of the shell-model calculation), which
differ for neutrons and protons. In addition, they include a
two-body Coulomb interaction among the valence protons and
increase all T = 1 neutron-proton matrix elements (relative
to the neutron-neutron ones), so that the measured b and c

coefficients of the isobaric multiplet mass equation (IMME)
are reproduced. Finally, TH account for weak transitions that
can occur to non-analog 0+ states. The adopted values for δC1

range between 0.01 and 0.35% and also increase with mass
number (see Table III in Ref. [6]).

IV. EXACT FORMALISM AND THEOREMS FOR ISB
CORRECTIONS

In this section, we present an exact formalism, independent
of feasibility. We use this formalism to derive two theorems,
which show that there are no first-order ISB corrections to
Fermi matrix elements. This provides a perturbative expansion,
which allows for a simple estimate of δC .

We use the correct isospin operator

τ+ =
∑

α

a†
αbα, (13)

where α represents any single-particle basis and a†
α creates

neutrons and bα annihilates protons in state α. The Fermi
matrix element is then given by

MF = 〈f |τ+|i〉, (14)

with |i〉 and |f 〉 the exact initial and final eigenstates of
the full Hamiltonian H = H0 + VC , with energy Ei and Ef ,
respectively. Here VC denotes the sum of all interactions
that do not commute with the vector isospin operator T =∑A

i=1 τ i/2,

[H, T] = [VC, T] 	= 0 and [H0, T] = 0. (15)

We will use round bra and ket states to denote the eigenstates
of the isospin-symmetric part of the Hamiltonian, so H0|n) =
E(0)

n |n). Obtaining the states |n) requires a solution of the
A-body problem.

The full initial eigenstate |i〉 can then be written as

|i〉 =
√

Zi

[
|i) + 1

Ei − �iH�i

�iVc|i)
]
, (16)

with projector �i ≡ 1 − |i)(i| or, equivalently,

|i〉 =
√

Zi |i) + 1

Ei − �iH0�i

�iVc|i〉. (17)

Similarly, the full final eigenstate |f 〉 is given by

|f 〉 = √
Zf

[
|f ) + 1

Ef − �f H�f

�f Vc|f )

]
, (18)

with �f = 1 − |f )(f |. The factors Zi and Zf are taken to
be real and ensure that the full eigenstates |i〉 and |f 〉 are
normalized. As a result, it follows (due to the projection
operators) that the deviations of Zi and Zf from unity start at
second order in Vc.

We now evaluate Eq. (14) between the exact eigenstates
given by Eqs. (16) and (18). With (f |τ+�i = 0 and �f τ+|i) =
0, we obtain

MF = √
ZiZf

[
M0 + (f |Vc�f

1

Ef − �f H�f

× τ+
1

Ei − �iH�i

�iVc|i)
]
, (19)

where M0 = (f |τ+|i). Because Zi,f = 1 + O(V 2
C), it follows

that ISB contributions start at second order. This is our first
theorem and demonstrates that there are no first-order ISB
corrections to MF .

We obtain a simpler form by expanding in the difference
of the charge-dependent interactions �VC between the initial
proton-rich and final neutron-rich states. Hence, �VC includes
all charge-dependent interactions of the extra proton with the
other nucleons in the initial state. In this case, we have

|f 〉 = |f ) and |i〉 =
√

Z|i) + 1

Ei − �iH̃0�i

�i�VC |i〉,
(20)

where the first expression defines �VC and H̃0 includes the
effects of VC common to the initial and final states, for
example, the Coulomb interactions in the core.

In this case, the final state is an eigenstate of H̃0 and obeys
〈f |τ+�i = 0. As a result, it follows that

MF =
√

ZM0. (21)

This is our second theorem. As already shown, there are no
first-order ISB corrections to Fermi matrix elements, and in this
case δC = 1 − Z has a straightforward perturbative expansion
in �VC , starting at second order:

δC = (i|�VC�i

(
1

Ei − �iH̃0�i

)2

�i�VC |i)

+ 2 Re

[
(i|�VC�i

(
1

Ei − �iH̃0�i

)2

×�i�VC

1

Ei − �iH̃0�i

�i�VC |i)
]

+ · · · , (22)
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which follows from the normalization condition 〈i|i〉 = 1. To
second order in �VC , the full energy Ei can be taken as the
energy Ẽ

(0)
i of H̃0. Examining the third-order term of Eq. (22)1

also shows that it is impossible to separate δC into two distinct
terms. This is because it is not possible to distinguish whether
the middle �VC is part of a correction to an intermediate
state |π〉 or to the initial state |i〉. Finally, we note that the
two theorems are more general versions of the theorem of
Behrends-Sirlin [13] for CVC in nucleons and of Ademollo
and Gatto [14] for weak decays of kaons.

A. Simple estimate of δC

As an illustration of the above formalism, we calculate
δC for the case of a single particle outside an inert core of
charge Ze, assuming harmonic-oscillator single-particle wave
functions with oscillator frequency ω ≈ 39 MeVA−1/3. The
nuclear Coulomb potential arises from the convolution of
Ze2/(4π |r − r′|) with the charge density ρC(r ′). If we take
the latter to be a constant within r � R, the one-body Coulomb
potential takes the simple form

�VC(r) = Ze2

4πR

[
�(R − r)

(
3

2
− r2

2R2

)
+ �(r − R)

R

r

]
.

(23)

With R = 1.1 fmA1/3, we have Rω = 0.22, independent of A,
and therefore the correction scales as δC ∼ Z2. To make an
estimate, we take the state |i) to be in the single-particle orbit
with radial quantum number n = 0 and angular momentum l.
Using Eq. (22), we find

δC(l) = Z2e4

4(4π )2R2ω2

∑
n>0

1

n2

{∫
r2drR0l(r)

×
[
�(R − r)

(
3

2
− r2

2R2

)
+ �(r − R)

R

r

]
Rnl(r)

}2

.

(24)

We calculate the summation numerically taking R equal to the
oscillator length. This leads to

δC(0) = 0.0020%Z2 δC(1) = 0.0013%Z2

(25)
δC(2) = 0.00071%Z2 δC(3) = 0.00043%Z2.

For a Z = 20 core and l = 3, we find δC(3) = 0.17% and thus
δC = 3.33 × δC(3) = 0.57%, where the factor of 3.33 arises
from the Macfarlane-French sum rule [15] for the three protons
in the f7/2 orbit. This result is in qualitative agreement with
the TH contribution of 0.45% (see Table I for 46V in Ref. [6]).
This indicates that Eq. (21) could be a useful starting point for
realistic calculations.

1The full evaluation of third-order corrections requires a calculation
of Ei to first order in �VC .

V. SCHEMATIC MODELS

Next we present exact evaluations of the Fermi matrix
element for schematic models of increasing complexity and
compare our results to the treatment of TH.

A. One-body problem

Consider starting from the exact formalism. We can
derive an effective single-particle potential U + UC , where
UC accounts for charge-dependent effects and acts only on
protons. The single-particle potential is introduced to minimize
the effects of residual interactions

�V = V + VC − (U + UC). (26)

Then the Hamiltonian is given by

H = T + U + UC + �V = Hsp + �V. (27)

In the simplest case, we assume that the one-body Hamiltonian
Hsp is dominant. Thus we take the initial and final states to
consist of a single nucleon outside an inert core |0〉. The core
and nucleon have quantum numbers so that the coupled state
is 0+ with T = 1.

The one-body basis states can be taken as eigenstates
of the full single-particle Hamiltonian T + U + UC , which
we denote by |α〉, or by the eigenstates |̃α〉 of the isospin-
symmetric part T + U . Here UC is the difference between
the proton and neutron potentials, which corresponds to UC ≡
Up − Un + VC in the TH notation. The parent and daughter
states are then given by

|i〉 = b†α|0〉 and |f 〉 = a
†
α̃|0〉. (28)

It is convenient to express the isospin raising operator τ+
in a mixed representation. The creation operators of the two
bases are related by

a†
α =

∑
α̃

a
†
α̃ 〈̃α|α〉, (29)

and therefore the isospin operator of Eq. (13) reads

τ+ =
∑
α,̃α

a
†
α̃ 〈̃α|α〉bα. (30)

This equation leads to an expression for MF that is very similar
to Eq. (4) of TH with the important difference that the states
α and α̃ need not have the same radial quantum numbers:

MF /M0 =
∫

r2drR∗
α̃(r)Rα(r). (31)

B. One-body problem with a single core excitation

The simplest generalization of the previous problem is to
allow the core to have two states, a ground state and an excited
state. Then the exact eigenstate is a two-component wave
function, where the upper component represents the single
particle plus unexcited core and the lower component has
the core in the excited state. The core excitation need not have
angular momentum J = 0, but the coupled state is 0+ with
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T = 1. In this case, the Hamiltonian is given as a two-by-two
matrix:

H0 =
(

Hsp �V

�V Hsp

)
, (32)

where the second, lower component has a single-particle
energy higher than that of the upper component. The
eigenfunctions are given by two-component “spinor” wave
functions, for example, for the initial state:

〈r|i〉 =
(

αiUi(r)

βiLi(r)

)
, (33)

with normalizations given by∫
dr|Ui(r)|2 =

∫
dr|Li(r)|2 = 1 and α2

i + β2
i = 1,

(34)

and where we have taken α, β to be real for simplicity.
The presence of the charge-dependent interaction UC (in

Hsp) and of VC (in �V ) causes the initial and final state values
of α, β and their radial wave functions to differ. In this model,
the single-particle wave functions for i and f represent directly
the single proton and neutron. The exact value of MF is thus
given by

MF /M0 = αf αi

∫
drU ∗

f (r)Ui(r) + βf βi

∫
drL∗

f (r)Li(r),

(35)

because the core and its excitation are orthogonal. This may
be rewritten as

MF /M0 − 1 = −α2
i �

(1) − β2
i �

(2) + (αf − αi)αi(1 − �(1))

+ (βf − βi)βi(1 − �(2)), (36)

where in the TH notation

�(1) = 1 −
∫

drU ∗
f (r)Ui(r), (37)

�(2) = 1 −
∫

drL∗
f (r)Li(r). (38)

We next use the strategy of TH to evaluate this two-state core
model. The states |π〉 consist of the ground state core and its
excitation labeled by 1, 2. For each of these, there is only one
value for the single-particle index α. Therefore, the TH result
for this model reads

MTH
F

/
M0 − 1 ≈ −α2

i �
(1) − β2

i �(2)

+ (αf − αi)αi + (βf − βi)βi. (39)

The contributions on the first line of Eq. (39) correspond to
δC2 and the terms on the second line to δC1.

In comparison with the exact result, we observe that TH
neglect terms of order (αf − αi)�(1). The relevant radial
integrals are of infinite order in UC , so that setting them
to unity in evaluating the second line of Eq. (39) may be
significant relative to the required accuracy, in particular if the
neutron and proton separation energies are very different. In
addition, this schematic model indicates that the normalization
conventions of Eq. (34) are just a choice, so that the separation

into the two terms δC1, δC2 seems rather arbitrary. It is just as
reasonable to use the product αiUi(r) as the upper component
Ũi(r) and βiLi(r) as the lower component L̃i(r) with the
normalization

∫
dr(|Ũi(r)|2 + |L̃i(r)|2). For that convention,

the factors αi,f , βi,f would disappear from the formalism, and
the separation of δC into δC1, δC2 would be neither necessary
nor possible.

1. Evaluation using simple interactions

Let the state |f 〉 be governed by a harmonic oscillator
Hamiltonian H0,

H0 = p2

2m
+ 1

2
mω2r2, (40)

and the state |i〉 by the Hamiltonian H , with

H = H0 + VC. (41)

We use the inner form of the Coulomb potential, Eq. (23), to
obtain simple expressions that show the order of various terms,

VC(r) = − Ze2

4πR

r2

2R2
. (42)

This is a qualitative approximation that has been traditionally
used to assess the size of various effects [11].

In this case, the Coulomb interaction shifts the square of
the oscillator frequency from ω2 to ω2(1 − δ), where the shift
δ is given by

δ = Ze2

4πmω2R3
. (43)

We consider the two lowest states with n = 0, 1 and angular
momentum l = 0 to study the effects of configuration mixing.

Then for the final state single-particle basis, we have

(r|0) = 1

(πb2)3/4
e−r2/2b2

, (44)

(r|1) =
√

3

2

(
1 − 2r2

3b2

)
1

(πb2)3/4
e−r2/2b2

, (45)

with oscillator length b = (mω)−1/2. The initial state wave
functions (r|̃0) and (r|̃1) have the same form, but with oscillator
length

b̃2 = b2

1 − δ/2
. (46)

With this, we find the radial overlaps:

(0|̃0) =
[

1 − δ/2

(1 − δ/4)2

]3/4

= 1 − 3δ2

64
+ O(δ3), (47)

(1|̃1) = (1 − δ/2)3/4(1 − δ/2 − 3δ2/32)

(1 − δ/4)7/2
, (48)

(0|̃1) =
√

3δ(1 − δ/2)3/4

(2 − δ/2)5/2
, (49)

(1|̃0) = −(0|̃1). (50)
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Now consider configuration mixing between the states 0
and 1 by strong interactions. As as a result, we have

|f 〉 = α|0) + β|1), (51)

|i〉 = α̃|̃0) + β̃ |̃1), (52)

where we take α, β, α̃, and β̃ to be real for simplicity, and the
quantities α̃ − α and β̃ − β are of order δ2.

The Fermi matrix element is then given by

MF /M0 = αα̃(0|̃0) + ββ̃(1|̃1) + [αβ̃ − βα̃](0|̃1). (53)

The first two terms are equal to 1 + O(δ2). Because α̃ = α +
O(δ2) and similarly for β̃, the leading first-order part of (0|̃1)
[see Eq. (49)] thus cancels exactly, and the last two terms of
Eq. (53) start at order δ3. This validates that there are no
first-order ISB corrections to MF and shows that certain
approximations can violate our theorems.

C. Two interacting nucleons outside an inert core

Next we assume an inert core and two interacting nucleons
with total angular momentum J = 0. The initial state wave
function can have components spread over different single-
particle configurations with radial, orbital, and total quantum
numbers n, l, j :

|i〉 =
∑

n1,n2,l,j,m

〈j,m, j,−m|0, 0〉An1,n2,l,j

i b
†
n1lj,m

b
†
n2lj,−m|0〉.

(54)

For clarity, we have taken two protons (b†)2 on top of a 0+ core,
coupled to J = 0,MJ = 0. A similar expression for the final
state involves the amplitudes A

n1,n2,l,j

f , which differ because
of the effects of the charge-dependent interactions. In this way,
two-nucleon correlations are incorporated in a limiting case of
the formalism of Sec. IV.

The exact expression for MF is then given by

MF /M0 =
∑

n1,n
′
1,n2,l,j

A
n1,n2,l,j ∗
f A

n′
1,n2,l,j

i

×
∫

r2drR
n′

1l ∗
f (r)Rn1l

i (r), (55)

with radial wave functions Ri,f . For example, n1 could
correspond to states in the shell-model valence space and n′

1
to a high-lying shell due to strong interactions.

The TH approximation for MF would be

MTH
F

/
M0 ≈

model space∑
n1,n2,l,j

[∣∣An1,n2,l,j

i

∣∣2
(1 − �(n1lj ))

+ (
A

n1,n2,l,j ∗
f − A

n1,n2,l,j ∗
i

)
A

n1,n2,l,j

i

]
. (56)

We compare the exact result of Eq. (55) with the TH
approximation Eq. (56):

(i) We find corrections to the radial overlaps, because the
quantum numbers n1 and n′

1 need not be equal.
(ii) The exact result mixes in higher-lying configurations that

are not within the TH model space. To incorporate ISB
effects due to higher-lying states, one needs to evaluate

their contributions to charge-dependent effective interac-
tions. In particular, an interesting topic for future study
is the renormalization from long-range Coulomb effects.

(iii) As in the previous models, the radial integrals of Eq. (55)
are of infinite order in VC , so that setting them to unity
in evaluating δC2 might not be very accurate.

D. Two nucleons with a single core excitation

This model combines those of the two previous subsections.
The core can be excited so that the two interacting nucleons
are outside a core in its ground or excited state. Using the
previously adopted notation, the exact value of MF reads

MF /M0 =
∑

n1,n
′
1,n2,l,j

×
[
A

n1,n2,l,j ∗
f A

n′
1,n2,l,j

i

∫
r2drU

n′
1l ∗

f (r)Un1l
i (r)

+B
n1,n2,l,j ∗
f B

n′
1,n2,l,j

i

∫
r2drL

n′
1l ∗

f (r)Ln1l
i (r)

]
,

(57)

and the TH approximation would be

MTH
F

/
M0 ≈

modelspace∑
n1,n2,l,j

[∣∣An1,n2,l,j

i

∣∣2(
1 − �

(n1lj )
1

)
+ (

A
n1,n2,l,j ∗
f − A

n1,n2,l,j ∗
i

)
A

n1,n2,l,j

i

+ ∣∣Bn1,n2,l,j

i

∣∣2(
1 − �

(n1lj )
2

)
+(

B
n1,n2,l,j ∗
f − B

n1,n2,l,j ∗
i

)
B

n1,n2,l,j

i

]
. (58)

VI. CONCLUSIONS

Motivated by the recent experimental achievements on
0+ → 0+ nuclear β decay and by the work of Towner and
Hardy [6], we have studied the formalism to include ISB
corrections to Fermi matrix elements. This is a key challenge
for nuclear theory and pivotal for extracting the up-down CKM
matrix element, which provides precision tests of the Standard
Model.

We have shown that TH do not use the isospin operator of
the Standard Model to calculate ISB corrections. It is also true
that their separation δC = δC1 + δC2 is model dependent [4].
Using a complete formalism, we derived two theorems that
demonstrate there are no first-order ISB corrections to Fermi
matrix elements.

Towner and Hardy correctly include the leading part of
the Coulomb effects on the radial wave functions. We have
found corrections to the TH treatment and contrasted these to
exact results in schematic models of increasing complexity.
One of the differences is that the radial overlaps need not have
the same radial quantum numbers (as assumed in TH). This
mixing has also been pointed out in density-functional based
calculations of ISB corrections [16]. In addition, significant to
the required accuracy, there may be contributions from higher-
lying configurations that are outside the model space. This
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requires a careful inclusion into charge-dependent effective
interactions, where our accurate understanding of isospin-
symmetry breaking in nuclear forces can be very helpful, and
a careful study of truncation effects, where modern methods
can lead to improvements.

Numerical evaluations using the formalism presented here
are needed as a next step. We hope that our work stimulates fur-
ther efforts to make systematic improvements to the important
problem of ISB corrections to superallowed transitions.
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