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The implication of chiral symmetry for the pion-induced dissociation of the J/ψ is examined in detail. It
is shown how the low-energy dynamics of pions, constrained by chiral symmetry, affect the dissociation cross
section. The derived soft-pion theorem is then integrated into a Lagrangian model that includes also abnormal
parity content and chiral-symmetric form factors. Dissociation by the ρ meson is also considered.
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I. INTRODUCTION

It is predicted that at very high energy densities, confined
hadronic matter melts into a novel form: the quark-gluon
plasma (QGP). Several signatures to characterize its properties
within the context of heavy-ion collisions have been proposed.
One of these, initially championed by Matsui and Satz [1],
is charmonium suppression. It rests on the observation that
correlated c̄c pairs created in the earliest stage of the collisions
through hard scatterings probe all subsequent stages of the
system evolution. In particular, if a QGP is formed, they argued
that the observed yield should be suppressed because of color
screening [1]. The current view includes not only suppression
but also the regeneration of charmonium [2–4]. Moreover,
recent lattice data suggest that the J/ψ may survive in the
plasma well above TC [5,6], implying that that there could be
no direct QGP suppression of this meson [7]; see, however,
Ref. [8].

Before a claim of any definite QGP effects is made, it is
essential to verify that the results cannot be reproduced by
more mundane nuclear effects. Of all possible mechanisms,
charmonium dissociation by nucleons is probably the most
important one. Indeed, it is seen to be sufficient to explain the
suppression patterns observed at the SPS not only for p+A

systems but also O+U and S+U collisions [9]. For heavier
systems, nuclear suppression is not sufficient to account for
experimental observations. For example, in Pb+Pb collisions
at SPS, an abnormal suppression is observed. One possible
cause of the charmonium suppression could of course be
screening [10]. But dissociation by light-meson comovers can
also go a long way in explaining the observed data [11–21].

In most phenomenological studies, the dissociation cross
section by comovers is a model parameter, and little is said
about the underlying microscopic mechanisms. Because ex-
perimental information about dissociation processes is scarce,
one has to rely on theoretical studies. Several approaches are
possible. One model calculates the dissociation cross sections
by using constituent quarks and a nonrelativistic potential
[21–24]. The dissociation processes then arise through the
exchange of quarks. A fully relativistic constituent quark
model can also be constructed based on an extension of the
Nambu-Jona Lasino (NJL) model to the charm sector [25–30].
Dissociation then occurs through quark and meson exchanges.
Being nonrenormalizable, the model requires the specification
of an ultraviolet loop cutoff. One can circumvent the need of

such a cutoff by introducing form factors at the quark level.
This leads to the extended nonlocal NJL model of Ref. [31].
Another model relies rather on extrapolations of QCD sum rule
(QCDSR) results to extract momentum-dependent vertices
[32–39]. Finally, phenomenological Lagrangians [40–45] can
be utilized. There, to account for the composite nature of the
mesons, ad hoc form factors are often introduced.

These models then produce cross sections ranging from
submillibarn to a few millibarns. Moreover, their energy
behavior can be quite different [46]. This is compounded by
the fact that in many models, chiral symmetry is not clearly
implemented. As pointed out in Ref. [47] in the context of the
Lagrangian-type models, chiral symmetry implies that for the
normal parity content of the process J/ψ + π → (D∗ + D̄) +
(D̄∗ + D) the pion should decouple in the soft-momentum
limit leading to a vanishing amplitude. Because this process is
considered to be dominant, owing to the abundance of pions,
quantifying this effect is therefore important.

In Ref. [48], the effect of implementing chiral symmetry in a
simple Lagrangian model without form factors was considered
in contrast with previous phenomenological Lagrangians [40–
45]. It was shown there that for the J/ψ + π → (D∗ + D̄) +
(D̄∗ + D) process a reduction at threshold did occur. It is the
purpose of this article to propose an improved Lagrangian
model that incorporates not only chiral symmetry and form
factors but also other dissociation channels, i.e., the so-called
abnormal parity processes [45]. The ρ-induced dissociation
cross sections will also be evaluated to assess the relative
importance of dissociation by other light resonances.

This article is organized as follows: we first discuss
the soft-pion theorem. The relevant degrees of freedom are
then introduced, and these enable us to write down chiral
Lagrangian densities. Inelastic cross sections are extracted and
the soft-pion theorem is explicitly verified. Once parameters
are fixed and symmetry preserving form factors are introduced,
the relative strengths of chiral symmetry, abnormal parity
content, and ρ-dissociation effects on the cross sections are
presented and discussed.

II. DECOUPLING OF PIONS IN THE
SOFT-MOMENTUM LIMIT

First, consider the case where the chiral symmetry is exact.
The axial current for the Goldstone realization of the chiral
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symmetry [49] is

Aµ(x) = f 0
π ∂µπ + · · · , (1)

where f 0
π is the pion decay constant in the chiral limit. Using

the LSZ reduction formulas [50] and following Weinberg [51],
the expectation value of the current between an arbitrary in and
out state becomes∫

d4x〈α|Aµ(x)|β〉 e−ip·x = pµf 0
π

p2
iM0π

β→α + N µ
β→α, (2)

where M0π
β→α is the transition amplitude in the chiral limit for

the absorption of an incoming pion with momentum p, and
N µ

β→α are the regular terms near the pion pole. Contracting the
pion momentum on both side yields the current conservation
condition:

〈α|pµAµ(p)|β〉 = f 0
π iM0π

β→α + pµN µ
β→α = 0. (3)

Under the assumption that N µ
β→α is regular near the pion pole,

the pion then decouples in the soft-momentum limit giving

M0π
β→α → 0. (4)

This constraint, first studied by Adler [52], is an example of
how the chiral symmetry manifests itself in the Goldstone
mode for low-energy scattering. A general proof with many
pions can be obtained [51].

Knowing that chiral symmetry is only partially conserved,
let us now consider how the above theorem is modified. Under
the PCAC hypothesis [49], the current matrix elements now
become

〈α|Aµ(p)|β〉 = pµfπ

p2 − m2
π

iMπ
β→α + N µ

β→α, (5)

where fπ is the decay constant for an explicitly broken chiral
symmetry. Assuming that the explicit chiral breaking occurs
only through a m2

π dependence the pion-absorption transition
amplitude reduces to

lim
p→0

Mπ
β→α = lim

p→0
M0π

β→α → 0. (6)

This is a strong version of the smoothness assumption [53,54]
that requires that the amplitude does not change significantly
from p2 = m2

π to p2 = 0.
The above two derivations assume that no other singularities

exist besides that provided by the pion pole, or in other words,
that N µ

β→α is regular. This is in general not true [51,54].
Figure 1 shows the basic subdiagram where an initial off-shell
particle absorbs a pion and then emits an on-shell particle.
These two particles could for example be mesons. If the two
particles have the same mass, then a kinematical singularity

φ

π

p

p

k ψ

FIG. 1. Exception to the decoupling theorem due to a kinematic
singularity.

will develop in the soft-pion limit, i.e., the denominator of the
incoming particle propagator becomes

lim
p→0

(k − p)2 − M2

= lim
p→0

k2 − 2k × p + p2 − M2 → k2 − M2 → 0,

where M is the mass of the two particles and k2 = M2 because
the outgoing particle is on shell.

This singularity can occur in two cases. First, when the
incoming and outgoing particles have degenerate masses
as it is sometimes realized for a chirally restored vacuum
(e.g., σ and π mesons are degenerate). The other case
manifests itself for abnormal parity interactions which permit
the absorption/emission of a pion from a single particle.
An example of such a process is between a pion and an
isospin-doublet vector meson with negative parity, V , i.e.,

LπV V = gεµναβ∂µVντ · π∂αV
†
β , (7)

where εµναβ is the four-dimensional antisymmetric tensor.
This interaction will then generate a singularity for soft-pion
kinematics because the incoming and outgoing particles are
identical.

III. DEGREES OF FREEDOM AND CHIRAL SYMMETRY

We now wish to build a chirally invariant Lagrangian. Doing
so will ensure that the soft-pion limit is exhibited by the model.
The principal difficulty is to identify the relevant degrees of
freedom. In the final stage of a heavy-ion collision, the relative
momentum of the J/ψ and a light meson is of the order of
a few GeV: the charmonium dissociation is thus expected to
be dominated by those processes with the smallest excitation
threshold, i.e., cross sections with the lowest-mass final states.
Therefore, it is sufficient to consider the dissociation processes
into the lowest-mass open charmed mesons resulting from the
interactions between the J/ψ,D,D∗, and the light mesons.

This point is incorrect if chiral symmetry is to be main-
tained. Indeed, as pointed out in Ref. [48] inclusion of the
chiral partners is essential for the decoupling theorem to hold.
It is thus expected that the chiral partners, even though they do
not appear in the final states, still can play an important role
through exchange diagrams. With this in mind, identifying the
chiral partners of the D and D∗ mesons is essential. Because
they are pseudoscalar and vector mesons, respectively, their
chiral partners are expected to be scalar and axial-vector
particles. Moreover, under the heavy-quark spin symmetry,
they should have similar masses. We see from Ref. [55] that
the D∗

0 and D1 mesons are candidates for the scalar and axial
partners, respectively.1

Introducing the chiral partners amounts to having a linear
realization of chiral symmetry. One could also decide not to
introduce these additional mesons, and consider a nonlinear
realization of chiral symmetry by letting, for example, the
chiral partner masses go to infinity. The D and D∗ would have

1Ref. [55] states that the quantum numbers of the D∗
0 and D1 mesons

have to be confirmed.
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nonlinear transformation properties under the axial subgroup.
This approach is the one used in building the Lagrangians
incorporating heavy-quark spin-flavor symmetry [26]. For this
study, the linear representation will be used. The open charmed
mesons will be then the D,D∗,D∗

0 , and D1.
To build a chiral invariant Lagrangian, it is convenient to

define chiral fields. In Appendix A these are identified by
considering the various possible quark bilinears. Knowing the
transformation properties under chiral symmetry of the light
and heavy quarks then permit to determine that of the mesons.
The chiral fields are then found to be

W = σ + iπ, (8)

W † = σ − iπ, (9)

AR,L = ρ ± a1, (10)

DR,L = D∗
0 ± iD, (11)

D∗
R,L = D∗ ± D1, (12)

where W and AR,L are isospin triplets and DR,L and D∗
R,L are

isospin doublets.

IV. LAGRANGIAN DENSITIES

We first write down the free field Lagrangian by defining
the following field strengths:

F
µν

R,L = ∂µAν
R,L − ∂νA

µ

R,L (13)

for an arbitrary left- and right-handed vector field. Then,
starting from the linear σ model, the free field Lagrangian
reads

L0 = 1

4
T r[∂µW∂µW †] − 1

4
µ2T r[WW †]

+ fπm2
π

4
T r[W + W †] − 1

16
T r

[
FL

µνF
µν

L + FR
µνF

µν

R

]
+ m2

0

4
T r

[
ALµA

µ

L + ARµA
µ

R

]
+ 1

2
(∂µDL∂µD̄L + ∂µDR∂µD̄R)

− M2

2
(DLD̄L + DRD̄R) − 1

8

(
F

D∗
L

µν F
µν

D̄∗
L

+ F
D∗

R
µν F

µν

D̄∗
R

)
+ M∗2

2

(
D

∗µ

L D̄∗
Lµ + D

∗µ

R D̄∗
Rµ

)
, (14)

where M and M∗ are the degenerate masses of open charmed
mesons and m0 that of the ρ and a1 mesons. Degeneracies
will be lifted by spontaneous chiral symmetry breaking once
the interactions are included, as in the linear σ model [49],
which will result in mass splittings between D and D∗

0 as well
as between D1. A pion mass has also been included with the
third term, and thus chiral symmetry is explicitly broken.

For the interactions, the working assumption here will
be that only the three- and four-point interactions with the
lowest number of derivatives are to be considered.2 Because

2This assumption is strictly valid only if all terms with higher powers
of derivative are suppressed for the considered kinematical regime
[53].

the Lagrangian density is of dimension four and the mesonic
fields are of dimension one, the three-point interactions will
have couplings scaling as M1−n, where M is an arbitrary
mass scale and n is the number of derivatives, whereas the
four-point interactions having one more field operator will
scale as M−n. Furthermore, only the minimal interactions
with the chiral partners of the D and D∗ mesons will be
added to maintain chiral symmetry. Practically, this implies
that all the interactions with D∗

0 and D1 fields will be generated
by the spontaneous chiral symmetry breaking. Moreover,
only the three- and four-point interaction terms necessary to
contruct the amplitudes with the considered final states are
explicitly written down. Finally, aside from the requirement
that the Lagrangian density be real, the other tools used to
construct the phenomenological Lagrangian are parity and
charge conjugation invariances (which are valid symmetries
of quantum chromodynamics). The effects of these discrete
transformations on the field content, as well as the resulting
interactions, are listed in Appendix B.

The next step is to make explicit the spontaneous chiral
symmetry breaking by shifting the σ field in W by σ → σ +
σ0 as in the linear sigma model. Doing so yields the new free
field Lagrangian

L0 = 1
2∂µπ∂µπ − m2

ππ2 + 1
2∂µσ∂µσ − m2

σ σ 2

− 1
8T r

[
Fµν

ρ F ρ
µν

] + 1
4m2

0T r
[
ρ2

µ

] − 1
8T r

[
Fµν

a1
Fa1

µν

]
+ 1

4m2
0T r

[
a2

1µ

] + ∂µD∂µD̄ − (M2 − 2�σ0)DD̄

+ ∂µD∗
0∂

µD̄∗
0 − (M2 + 2�σ0)D∗

0D̄
∗
0

− 1
4FD∗

µν F
µν

D̄∗ + (M∗2 − 2�∗σ0)D∗
µD̄∗µ

− 1
4FD1

µν F
µν

D̄1
+ (M∗2 + 2�∗σ0)D1µD̄

µ

1

+ ig
(0)
WDD∗σ0(∂µD∗

0D̄
∗µ − D∗µ∂µD̄∗

0 )

+ g
(0)
WDD∗σ0

(
∂µDD̄

µ

1 − D
µ

1 ∂µD̄
)
, (15)

where the expressions for mπ and mσ are the same as for
the linear σ model [49], and g

(0)
WDD∗ ,�, and �∗ are coupling

constants. We note that the introduction of interactions
generate mass splittings between the D and D∗

0 mesons and
between the D∗ and D1 mesons respectively; thus lifting the
mass degeneracies. The D meson masses then read

m2
D = M2 − 2�σ0, m2

D∗
0
= M2 + 2�σ0,

m2
D∗ = M∗2 − 2�∗σ0, m2

D1
= M∗2 + 2�∗σ0.

Moreover, the introduction of the interactions induces mixing
between D∗

0 and D∗ fields and between D and D1 fields.
To cast the Lagrangian into a canonical form would thus
require making field redefinitions. These are involved and
would lead to additional interactions with higher powers of
momentum, which is contrary to the original assumption of
limiting possible interactions to those with the lowest powers
of momentum. Moreover, the nonchiral invariant model of
Ref. [45] with which we wish to make comparison has no
such mixings. For this study, the coupling constant g

(0)
WDD∗ is

thus set to zero removing the mixing. Finally, in this model,
the ρ and a1 mesons have degenerate masses. This is of no
importance here because we wish to compute only the cross
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FIG. 2. Diagrams for π + ψ dissocia-
tion.

sections with the two lightest mesons, namely the π and ρ.
In Appendix B, the relevant interactions for the J/ψ meson
by a pion or a ρ meson are listed. They include normal and
abnormal interactions. As discussed in Sec. II, the latter are
expected to circumvent the low-energy theorem.

V. INELASTIC SCATTERING AMPLITUDES

All amplitudes discussed in this section are explicitly
written down in Appendix C.

A. π + J/ψ

The pion dissociation of the J/ψ proceeds through three
processes, namely:

M1 =
∑

i

Mρ

1iερ(pψ ), (16)

M2 = ε∗
µ(pD∗)

∑
i

Mµρ

2i ερ(pψ ), (17)

M3 = ε∗
µ(pD∗)ε∗

ν (pD̄∗)
∑

i

Mµνρ

3i ερ(pψ ), (18)

where ερ(pψ ), ε∗
µ(pD∗ ), and ε∗

ν (pD̄∗) are the polarization
vectors for the J/ψ,D∗, and D̄∗ mesons, respectively. The
first and last amplitudes arise only due to abnormal parity inter-
actions, whereas M2 contains one abnormal parity exchange
process [Fig. 2(b)]. Note also that the amplitude for the final
state D̄∗D is obtained from the conjugate of amplitude M2.

B. ρ + J/ψ

For the ρ-meson-induced dissociation, three processes are
examined:

M4 =
∑

i

Mδρ

4i ερ(pψ )εδ(pρ) (19)
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M5 = ε∗
µ(pD∗ )

∑
i

Mµδρ

5i ερ(pψ )εδ(pρ), (20)

M6 = ε∗
µ(pD∗ )ε∗

ν (pD̄∗)
∑

i

Mµνδρ

6i ερ(pψ )εδ(pρ), (21)

where εδ(pρ) is the polarization vector of the ρ meson.
Again, the conjugate of M5 gives the amplitude for the D̄∗D
final state. It is important to note that the chiral symmetry
constraint does not introduce additional amplitudes involving
the exchange of the D∗

0 and the D1 as in the case of the
dissociation with pions. Consequently, the diagrams are the
same as in Ref. [45], and we expect the results to agree.

C. Soft-pion limit

We now wish to demonstrate the soft-pion theorem for
the dissociation of J/ψ meson by a pion into a D∗-D̄ final
state. It is expected that this property of chiral symmetry
will soften the threshold behavior. Explicitly, this will be due
to a cancellation of the contact term for the normal-parity
subprocesses. The caveat here is of course that abnormal-parity
interactions circumvent the theorem and it will still be possible
to have a contact behavior near the threshold due to these
[Eq. (C5)].

With this in mind and in the chiral limit, i.e, for massless
pions, we let the pion momentum go to zero. It is trivial to
see that the first subamplitude (Fig. 2), due to the exchange
of a D meson [Eq. (C4)] decouples when the vector mesons
are on–shell since their polarization vector then satisfies the
orthogonality condition, i.e., ε(p) × p = 0. Similarly, the
u-channel D∗ exchange amplitude goes to zero. We are thus
left with three normal parity amplitudes, including a contact
term. In the soft-pion limit we have

M2e → (2�∗)(2gWψDD∗σ0)

m2
D∗ − m2

D1

gµα

(
gαβ − pD∗αpD∗β

m2
D1

)
gβρ,

(22)

and

M2f → (2�)(2gWψDD∗σ0)

m2
D − m2

D∗
0

gµρ. (23)

Remembering that the the mass splittings between the
D mesons are due to spontaneous chiral symmetry breaking,
we can further write

M2e → − (2�)(2gWψDD∗σ0)

4�∗σ0
gµρ = −gWψDD∗gµρ (24)

and

M2f → − (2�)(2gWψDD∗σ0)

4�σ0
gµρ = −gWψDD∗gµρ (25)

where for the amplitude M2e the orthogonality condition has
been used to remove the term proportional to the product of
four-vectors. Adding these two contributions to the contact
term of M2d leads to the desired result for the normal parity
content. Because the contraction of the two ε-tensors results
into a sum of products of the metric tensors, the leading

behavior near the threshold for the process π + ψ → D̄ + D∗
will be given by the amplitude M2b.

A remark is in order regarding the chiral limit. Relaxing
this assumption will make the amplitudes M2e and M2f

depend on the pion mass. It is trivial to see that these can
be mapped smoothly into the chiral amplitudes considered
above by letting the pion mass go to zero, thus satisfying the
smoothness assumption of the decoupling theorem.

VI. CROSS SECTIONS FOR DISSOCIATION PROCESSES

A. Introducing symmetry conserving form factors

To complete the description of the phenomenological
model, form factors must be introduced to account for the
substructure of mesons. A Lorentz-invariant three-point form
factor is introduced, namely

FM
3 (q2) = �2

�2 + ∣∣q2 − m2
M

∣∣ , (26)

where q2 is the virtuality, mM is the meson mass, and � is
the range parameter. The cutoff parameter will be set to two
different values, namely 1 and 2 GeV, as in previous studies
[41,43,45]. These can be justified by noting that the typical
hadronic scale is about 1 GeV and the exchanged mesons,
which are open charmed mesons here, have masses of about
2 GeV. One could relax the universality condition by introduc-
ing a different cutoff parameter for each interaction, but the
assumption of a common � is a realistic first approximation
because the exchanged mesons are all D mesons.

The astute reader will note that the coupling constants
should strictly be defined at the point where the form factor
is one, i.e., q2 = m2

M . This is not the case for all the coupling
values extracted in Ref. [45] that are used here. Indeed, the
three-point couplings involving a ρ or a J/ψ meson are
evaluated with these particles at zero virtuality. Nevertheless,
it will still be assumed that the couplings extracted with the ρ

or the J/ψ meson off-shell are the same as those on-shell.
A form factor for the four-point interactions is also

introduced. Here, a dipole form is chosen, namely

F4(s, t) = �2

�2 + ∣∣t − M2
0

∣∣ �2

�2 + ∣∣u − M2
0

∣∣ , (27)

where s + t + u = m2
1 + m2

2 + m2
3 + m2

4 and M0 is a mass
scale. This latter parameter is given by the average of the
D and D∗ masses, i.e., M0 = 1.94 GeV. The four-point form
factor is then equal to 1 when t = u = M2

0 . Strictly speaking
the normalization, i.e., the coupling constant, is defined at this
point.

The above discussion omits the constraint due to chiral
symmetry. Indeed, some of the three-point form factors are
determined by four-point form factors. This is the case for
all three-point interactions generated by underlying four-point
interactions, i.e., which have a W -field factor (see Appendix B
for details). Specifically, let us consider the WψDD∗ in-
teraction from which the πψDD∗, ψDD1, and ψD∗D∗

0
interactions are generated after spontaneous chiral symmetry
breaking. The three-point form factors can then be extracted
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FIG. 3. (Color online) Dissociation
cross sections without form factors.

from the four-point form factor by letting the pion momentum
go to zero. Specifically, assume that the D∗ and D mesons are
off- and on-shell, respectively, then setting the pion momentum
to zero yields the desired form factor for the ψD∗D∗

0 :

lim
pπ →0

F4(s, t) = �2

�2 + ∣∣m2
D∗ − M2

0

∣∣ �2

�2 + ∣∣u − M2
0

∣∣
= γD∗F0

3 (u) (28)

where the index on the three-point form factor indicates that
the parameter mM is set to M0, and γM = F0

3 (m2
M ). Taking the

D meson off-shell and keeping the D∗ on-shell gives the form
factor for ψDD1 interaction. The same argument applies for
the abnormal parity ψD∗D1 and ψD∗

0D interactions.
There is also another subtlety when it comes to the

interactions generating the mass splittings of the D mesons,
i.e., those coming from LWDD and LWD∗D∗ . Indeed, the
interaction form factors will now appear in the mass shifts
leading to self-consistent equations. For example, for the
D∗-D1 mass splitting, we have

m2
D1

− m2
D∗ = 2�∗σ0 lim

pπ →0

(
FD1

3 (q2) + FD∗
3 (q2)

)
= 4�∗σ0

�2

�2 + ∣∣m2
D1

− m2
D∗

∣∣ . (29)

From these, we see that the values of the interaction strengths,
�∗ and �, are functions of both the cutoff parameter and the
mass scale.

In light of these modifications, we re-examined the soft-
pion limit for the M2 amplitude. M2d is now given by

lim
pπ →0

M2d = 2gWψDD∗γD∗γDgµρ, (30)

whereas M2e and M2f reduce to

lim
pπ →0

M{2e,2f } = lim
pπ →0

(
γDF0

3 (t)FD1
3 (t)

)
× (2�∗)(2gWψDD∗σ0)

m2
D∗ − m2

D1

gµρ

= −γDγD∗gWψDD∗gµρ, (31)

where Eq. (29) has been used to go from the first line to the
second.

B. Results

The cross sections are first studied without form factors.
The parameters used in the calculation can be found in
Appendix D. The six cross sections are presented in Fig. 3
where the solid curves are the cross sections including all
subamplitudes. Overall, near threshold both dissociation by a
pion and by a ρ meson are of the same order of magnitude;
the pion dissociation starts to dominate over the ρ dissociation
beyond 4 GeV.

The effect of introducing chiral symmetry can be assessed
by considering the pion absorption into the (D̄ + D∗) +
(D̄∗ + D) final state. The leading contribution to this process
is due to the subamplitude M2b, which arises because of the
abnormal parity content in the Lagrangian. This is made clear
in both Figs. 3 and 4. Indeed, at a value of the center-of-mass
energy of 3.9 GeV, excluding this subamplitude reduces the
cross section by 65%. In contrast, removing M2e and M2f ,
i.e., the subamplitudes necessary to maintain chiral symmetry,
increases the cross section by only 27%. Although omitting
the chiral constraint increases the cross section, as expected
from the soft-pion theorem, the effect is subleading compared
to the inclusion of abnormal parity interactions. Moreover, the
presence of abnormal parity content makes the dissociation
into D̄D and D̄∗D∗ pairs possible, which further increases the
total pion-absorption cross section.
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FIG. 4. (Color online) Effects of chi-
ral symmetry and abnormal parity content
on the π + J/ψ → (D̄ + D∗) + (D̄∗ + D)
cross section. The dotted, dashed, and dot-
dashed lines correspond to cross sections with-
out the abnormal parity subamplitude, without
the two subamplitudes due to chiral symmetry
and without all three subamplitudes. The total
inclusive cross section with all contributions
is shown with the solid lines.

Turning to ρ dissociation, the initial expectation is that
the results of Ref. [45] should be reproduced because no
additional interactions are introduced in applying the chiral
symmetry constraint. All three pion-absorption cross sections
are monotonically increasing with

√
s and featureless as in

Ref. [45]. However, the three ρ-dissociation cross sections
differ qualitatively in shape when compared to results from
Ref. [45]. In spite of the fact that the interactions and the
squared subamplitudes are the same, the relative phases and,
consequently, the interference patterns are different, leading
to the observed dissimilarities.

The above discussion is valid only when form factors are
omitted. In Fig. 5, cross sections with and without form

factors are compared. Two cases of the cutoff parameter
are considered, namely 1 and 2 GeV. As expected, for
decreasing � the suppression is increased. Overall, it is clear
that the magnitudes of the two dissociation channels are set
by the functional forms of the form factors and the values
of the parameters. With this caveat, the inclusive pion-
dissociation cross section is of the order of a few millibarns
near threshold for a cutoff of 2 GeV, and a fraction of millibarn
for � = 1 GeV.

Finally, the relative effect of chiral symmetry as the cutoff
is lowered is shown in Fig. 4. At

√
s = 3.9 GeV, the

cross section for � = 1 GeV increases by 51% when the
subamplitudes due to chiral symmetry are neglected, whereas
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FIG. 5. (Color online) Comparison of
the dissociation cross sections with and
without form factors. The dotted, dashed,
and dot-dashed lines correspond to dissoci-
ation into D̄ + D, (D̄ + D∗) + (D̄∗ + D),
and D̄∗ + D∗. The total inclusive cross
sections are given by the solid lines; cusps
are due to channels opening.
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it decreases by 72% when the abnormal parity content is
omitted.

VII. CONCLUSION AND OUTLOOK

We presented an extension of the work done in Ref. [48]
where, in addition introducing chiral symmetric interactions,
abnormal parity content and ρ mesons are also included.
The former is important because the soft-pion theorem is
circumvented in this case, whereas the latter is a first
step toward assessing the relative importance of the J/ψ

dissociation by other light resonances. To account for the
quark substructure of mesons, ad hoc mesonic form factors
were also added. Comparing the ρ-induced dissociation with
the pion ones shed no more light than what was found in
Ref. [45]. Any statements about the relative strength between
π - and ρ-induced dissociation depend heavily on the choice
of form factors and the techniques used to fix their absolute
normalizations and are thus model dependent.

We also conclude that there are some indications that
the introduction of chiral symmetry does reduce the cross
section of π + J/ψ → (D̄ + D∗) + (D + D̄∗) but also that
the implementation of abnormal parity content is proba-
bly as or even more important because it increases not
only the maximum reached by the π + J/ψ → (D̄ + D∗) +
(D + D̄∗) cross section, but also it allows new decay channels,
such as π + J/ψ → D̄∗ + D∗, to open.

In the future, the J/ψ-dissociation rates will be integrated
in an evolving hot and dense medium. Introducing other light
mesons, such as the ω, as well as higher charmonium reso-
nances will also be considered to improve the phenomenologi-
cal description. Moreover, adding final states incorporating D∗

0
and D1 mesons and evaluating the cross sections for the inverse
reactions will also figure with the additional developments.
Then, contact with the phenomenology measured at the CERN
Super Proton Synchrotron and at the Relativistic Heavy Ion
Collider will be made.
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APPENDIX A: FIELD REPRESENTATIONS AND
CHIRAL SYMMETRY

To write down all the possible invariant interactions
between the mesons, it is essential to know their chiral
transformation properties. Obviously, for the J/ψ meson
this is trivial as it is a singlet of the chiral group. For the
π, ρ,D,D∗, and their chiral partners, it is convenient to define
chiral fields.

The field representations of the π and σ mesons are given
by

W = σ + iπ (A1)

W † = σ − iπ. (A2)

Their transformation properties under the SUL(2) × SUR(2)
group can be assessed by coupling the chiral meson fields to
quark bilinears of corresponding parity giving

q̄ (σ + iγ5π ) q, (A3)

where π = τ aπa . Projecting the quark fields into their left-
and right-handed representations yields

q̄(σ + iγ5π )q = q̄LWqR + q̄RW †qL. (A4)

Under a chiral transformation of the light quark fields as
defined by

qR,L → UR,LqR,L = e−iτ i εi
R,LqR,L, (A5)

where τ i are the SU(2) Pauli matrices satisfying the normal-
ization condition T r

(
τ iτ j

) = 2δij , the chiral mesonic fields
have to transform as

W → ULWU
†
R (A6)

W † → URWU
†
L (A7)

for the interaction to be invariant.
The spin-1 light mesons will not be introduced as gauge

bosons as in Ref. [48]. Applying the same technique as for the
σ and π fields yields the interaction

q̄ (�ρ + /a1γ5) q = q̄LALqL + q̄RARqR, (A8)

where now ρµ = ρa
µτ a = 1

2 (AR + AL) and a1µ = aa
1µτa =

1
2 (AR − AL). From these we infer that

AL
µ → ULAL

µU
†
L (A9)

AR
µ → URAR

µU
†
R, (A10)

which do not transform as gauge bosons.
Turning now to the open charmed mesons, we consider first

the D and D∗
0 isospin doublet fields and their conjugates that

are written as

D̄T = (D̄0,D−), D = (D0,D+)
(A11)

D̄∗T
0 = (

D̄∗0
0 ,D∗−

0

)
, D∗

0 = (
D∗0

0 ,D∗+
0

)
,

where T is the transposition operator. These can be rearranged
into

D̄R,L = (
D̄∗

0 ∓ iD̄
)
, DR,L = (D∗

0 ± iD). (A12)

Because the open charmed mesons have only one light valence
quark, they are expected to transform under chiral symmetry
according to

D̄R,L → UR,LD̄R,L
(A13)

DR,L → DR,LU
†
R,L,

which can be made explicit by considering the coupling to the
quark bilinears:

Q̄(D∗
0 + iDγ5)q = Q̄LDRqR + Q̄RDLqL

(A14)
q̄(D̄∗

0 + iD̄γ5)Q = q̄LD̄LQR + q̄RD̄RQL.

Similarly, the D∗ and D1 fields can be cast into chiral forms
yielding

D̄∗
R,L = (D̄∗ ± D̄1), D∗

R,L = (D∗ ± D1) (A15)
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TABLE I. Field transformation properties under parity and charge conjugation.

ψµ(J/ψ) W (W †) DR,L(D̄R,L) D
∗µ

R,L(D̄∗µ

R,L) A
µ

R,L ∂µ εµναβ

P −ψµ W †(W ) DL,R(D̄L,R) −D
∗µ

L,R(−D̄
∗µ

L,R) −A
µ

L,R −∂µ −εµναβ

C −ψµ W ∗(WT ) D̄T
R,L(DT

R,L) −D̄
∗µT

R,L (−D
∗µT

R,L ) −A
µT

R,L +∂µ −εµναβ

and the quark-meson interactions then read

Q̄( �D∗ + �D1γ5)q = Q̄LD∗
RqR + Q̄RD∗

LqL
(A16)

q̄( �D̄∗ + �D̄1γ5)Q = q̄LD̄∗
LQL + q̄RD̄∗

RqR

from which transformation properties similar to Eq. (A13) are
deduced.

APPENDIX B: CHIRAL INVARIANT INTERACTIONS

Table I lists the chiral field properties under discrete
transformations. They are particularly useful to fix the relative
signs of the interaction terms. Moreover, the concepts of
normal and abnormal parity interactions are also introduced as
a classification. Abnormal parity interactions have an ε-tensor
factor.

The three-point normal-parity interactions are then:

LWDD = −�(DLWD̄R + DRW †D̄L) (B1)

LWD∗D∗ = −�∗(D∗µ

L WD̄∗
Rµ + D

∗µ

R W †D̄∗
Lµ

)
(B2)

LWDD∗ = ig
(0)
WDD∗

(
∂µDLWD̄

∗µ

R + ∂µDRW †D̄∗µ

L

)
+ ig

(1)
WDD∗

(
DL∂µWD̄

∗µ

R + DR∂µW †D̄∗µ

L

)
+ h.c. (B3)

LψD∗D∗ = ig
(0)
ψD∗D∗∂µψν

(
D

∗µ

R D̄∗ν
R + D

∗µ

L D̄∗ν
L

)
+ ig

(1)
ψD∗D∗ψµ

(
∂µD∗

RνD̄
∗ν
R + ∂µD∗

LνD̄
∗ν
L

)
+ ig

(2)
ψD∗D∗ψµ

(
∂νD

∗µ

R D̄∗ν
R + ∂νD

∗µ

L D̄∗ν
L

)
+ h.c., (B4)

LAD∗D∗ = ig
(0)
AD∗D∗

(
D∗ν

R ∂µARνD̄
∗µ

R + D∗ν
L ∂µALνD̄

∗µ

L

)
+ ig

(1)
AD∗D∗

(
D∗

RνARµ∂µD̄∗ν
R + D∗

LνALµ∂µD̄∗ν
L

)
+ ig

(2)
AD∗D∗

(
D

∗µ

R ARν∂µD̄∗ν
R + D

∗µ

L ALν∂µD̄∗ν
L

)
+ h.c., (B5)

LψDD = igψDDψµ(∂µDRD̄R + ∂µDLD̄L) + h.c.,

LADD = igADD

(
DRA

µ

R∂µD̄R + DLA
µ

L∂µD̄L

)
+ h.c. (B6)

whereas the four-point interactions read

LWWWW = − 1
16λ2(T r[WW †])2, (B7)

LWψDD∗ = gWψDD∗ψµ(DLWD̄∗
Rµ + DRW †D̄∗

Lµ)

+ h.c., (B8)

LAψDD = gAψDDψµ

(
DRA

µ

RD̄R + DLA
µ

LD̄L

)
(B9)

LAψD∗D∗ = g
(0)
AψD∗D∗ψµ

(
D∗ν

R A
µ

RD̄∗
Rν + D∗ν

L A
µ

LD̄∗
Lν

)
+ g

(1)
AψD∗D∗ψµ

(
D∗ν

R Aν
RD̄∗Rµ + D∗ν

L Aν
LD̄∗Lµ

+ h.c.
)

(B10)

where h.c. refers to the Hermitian conjugate. All the coupling
constants are dimensionless with the exception of � and �∗,
which have dimension of mass.

Abnormal-parity interactions cannot be written down di-
rectly at this point as there remains an ambiguity in their
definitions. Indeed, the interaction forms are not unique as
there is a nontrivial relation called the Schouten’s identity,
relating different matrix elements [31,56]. To build the
interactions, the gauged Wess-Zumino Lagrangian is used as
a guide as in Ref. [45]. The three-point interactions are then:

LWD∗D∗

= igWD∗D∗εµναβ(∂µD∗
LνW∂αD̄∗

Rβ − ∂µD∗
RνW

†∂αD̄∗
Lβ),

(B11)

LψDD∗

= igψDD∗εµναβ∂µψν(∂αD∗
LβD̄L − ∂αD∗

RβD̄R) + h.c.,

(B12)

LADD∗

= igADD∗εµναβ(∂µD∗
Lν∂αALβD̄L − ∂µD∗

Rν∂αARβD̄R)

+ h.c. (B13)

and the four-point interactions are given by

LWψDD

= gWψDDεµναβψµ(∂νDL∂αW∂βD̄R − ∂νDR∂αW †∂βD̄L),

(B14)

LWψD∗D∗

= −g
(0)
WψD∗D∗ε

µναβψµ(D∗
Lν∂αWD̄∗

Rβ − D∗
Rν∂αW †D̄∗

Lβ)

− g
(1)
WψD∗D∗ε

µναβ∂µψν(D∗
LαWD̄∗

Rβ − D∗
RαW †D̄∗

Lβ),

(B15)

LAψDD∗

= g
(0)
AψDD∗ε

µναβψµ(∂νDRARαD̄∗
Rβ − ∂νDLALαD̄∗

Lβ)

− g
(1)
AψDD∗ε

µναβψµ(DRARν∂αD̄∗
Rβ − DLALν∂αD̄∗

Lβ)

+ h.c. (B16)

where all couplings scale as M−1 with the exception of gWψDD ,
which behaves as M−3.

Once chiral symmetry is spontaneously broken the relevant
normal-parity interactions become

LπDD∗
0

= −2�(D∗
0πD̄ + DπD̄∗

0 ), (B17)

LπD∗D1 = −2�∗i
(
D∗

µπD̄
µ

1 − D
µ

1 πD̄∗
µ

)
, (B18)

LπDD∗ = 2ig
(0)
WDD∗ (∂µDπD̄∗µ − D∗µπ∂µD̄)

+ 2ig
(1)
WDD∗ (D∂µπD̄∗µ − D∗µ∂µπD̄), (B19)

LψD∗D∗ = 2ig
(0)
ψD∗D∗∂µψν(D∗µD̄∗ν − D∗νD̄∗µ)
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+ 2ig
(1)
ψD∗D∗ψµ(∂µD∗

ν D̄
∗ν − D∗

ν ∂
µD̄∗ν)

+ 2ig
(2)
ψD∗D∗ψµ(∂νD

∗µD̄∗ν − D∗ν∂νD̄
∗µ), (B20)

LρD∗D∗ = 2ig
(0)
AD∗D∗ (D∗ν∂µρνD̄

∗µ − D∗µ∂µρνD̄
∗ν)

+ 2ig
(1)
AD∗D∗ (D∗

νρµ∂µD̄∗ν − ∂µD∗
νρµD̄∗ν)

+ 2ig
(2)
AD∗D∗ (D∗µρν∂µD̄∗ν − ∂µD∗νρνD̄

∗µ),

(B21)

LψDD = 2igψDDψµ(∂µDD̄ − ∂µDD̄), (B22)

LρDD = 2igADD(Dρµ∂µD̄ − ∂µDρµD̄), (B23)

LψD∗
0D∗ = 2gWψDD∗σ0ψ

µ(D∗
0D̄

∗
µ + D∗

µD̄∗
0 ), (B24)

LψDD1 = 2igWψDD∗σ0ψµ

(
D

µ

1 D̄ − DD̄
µ

1

)
, (B25)

for three-point normal-parity interactions and

LπψDD∗ = 2gWψDD∗ψµ(DπD̄∗
µ + D∗

µπD̄), (B26)

LρψDD = 2gAψDDψµDρµD̄, (B27)

LρψD∗D∗ = 2g
(0)
AψD∗D∗ψ

µD∗νρµD̄∗
ν

+ 2g
(1)
AψD∗D∗ψ

µ(D∗
µρνD̄∗

ν + D∗νρνD̄
∗ν). (B28)

for the four-point normal-parity interactions. The last two
three-point interactions are induced from LWψDD∗ . These play
an essential role in showing the decoupling of the pion from
the dissociation amplitude in the soft-momentum limit. As
mentioned in Sec. IV, the coupling constant g

(0)
WDD∗ is set to

zero to remove the mixing between the various D mesons.
Furthermore, we drop the index on the remaining coupling
constant g

(1)
WDD∗ → gWDD∗ . For the sake of making more

transparent the correspondence with Ref. [45], we further
set g

(0,2)
{ψ,A}D∗D∗ = −g

(1)
{ψ,A}D∗D∗ → g{ψ,A}D∗D∗ and g

(i)
AψD∗D∗ →

gAψD∗D∗ .
Similarly, the abnormal parity content is

LπD∗D∗ = −2gWD∗D∗εµναβ∂µD∗
νπ∂αD̄∗

β, (B29)

LψDD∗ = −2gψDD∗εµναβ∂µψν(∂αD∗
βD̄ + D∂αD̄∗

β), (B30)

LρDD∗ = −2gADD∗εµναβ(∂αD∗
β∂µρνD̄ + D∂µρν∂αD̄∗

β),

(B31)

LψD∗D1 = 2gWψD∗D1σ0ε
µναβ∂µψν(D1αD̄∗

β − D∗
αD̄1β),

(B32)

where the last interaction is generated by LWAD∗D∗ and

LπψDD = −2igWψDDεµναβψµ∂νD∂απ∂βD̄, (B33)

LπψD∗D∗ = −2ig
(0)
WψD∗D∗ε

µναβψµD∗
ν ∂απD̄∗

β

− 2ig
(1)
WψD∗D∗ε

µναβ∂µψνD
∗
απD̄∗

β, (B34)

LρψD∗D∗ = 2ig
(0)
AψDD∗ε

µναβψµ(∂νDραD∗
β + D∗

νρα∂βD̄)

− 2ig
(1)
AψDD∗ε

µναβψµ(Dρν∂αD∗
β − ∂νD

∗
αρβD̄),

(B35)

for the three- and four-point interactions. This completes the
list of all the required interactions.

APPENDIX C: DISSOCIATION AMPLITUDES

A. π + J/ψ

We first investigate the dissociation process into two D

mesons illustrated in the first set of diagrams in Fig. 2. The
subamplitudes are explicitly:

Mρ

1a = 4gWDD∗gψDD∗

t − m∗2
D

pα
πεpψpD̄βρ

×
(

gαβ − (pπ − pD)α (pπ − pD)β
m∗2

D

)
, (C1)

Mρ

1b = −4gWDD∗gψDD∗

u − m∗2
D

pα
πεpψpDβρ

×
(

gαβ − (pπ − pD̄)α (pπ − pD̄)β
m∗2

D

)
, (C2)

Mρ

1c = gWψDDεpπ pψpD̄ρ (C3)

where t = (pπ − pD)2 and u = (pπ − pD̄)2. Note that there
are no additional diagrams compared to Ref. [45].

Next we consider the absorption process that has been
considered dominant in the literature, namely π + ψ → D̄ +
D∗. As seen in Fig. 2, because of chiral symmetry, the number
of subprocesses is higher than in a theory where the chiral
partners are disregarded. Specifically, the list of subamplitudes
for this process is

Mµρ

2a = −4gWDD∗gψDD

t − m2
D

pµ
π

(
2p

ρ

D̄
− p

ρ
ψ

)
, (C4)

Mµρ

2b = −4gWD∗D∗gψDD∗

t − m∗2
D

εpψpD∗ µαεpψpD̄βρ

×
(

gαβ − (pπ − pD∗ )α (pπ − pD∗ )β
m∗2

D

)
, (C5)

Mµρ

2c = −4gWDD∗gψD∗D∗

u − m2
D∗

pα
π

(
2gβρp

µ
ψ − gµρ

(
p

β

ψ + p
β

D∗
)

+ 2gµβp
ρ

D∗
) (

gαβ − (pπ − pD̄)α (pπ − pD̄)β
m∗2

D

)
,

(C6)

Mµρ

2d = gWψDD∗gµρ, (C7)

Mµρ

2e = −4�∗gWψD∗D∗σ0

t − m2
D1

gµαgβρ

×
(

gαβ − (pπ − pD∗ )α (pπ − pD∗ )β
m2

D1

)
, (C8)

Mµρ

2f = 4�gWψDD∗σ0

u − m2
D∗

0

gµρ, (C9)

where t = (pπ − p∗
D)2 and u = (pπ − pD̄)2. We note that the

the last two amplitudes arise because of the exchange of the
D1 and D∗

0 mesons.
Finally, the last pion-absorption process is that which leads

to the heaviest final state considered in this study, i.e., D∗-D̄∗.
The subamplitudes related to the diagrams in Fig. 2 are:

Mµνρ

3a = 4gWDD∗gψD∗D

t − m2
D

pν
πεpψpD̄∗ µρ, (C10)
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Mµρ

3b = −4gWDD∗gψD∗D

u − m2
D

pµ
π εpψpD∗ νρ, (C11)

Mµνρ

3c = 4gWD∗D∗gψD∗D∗

t − m2
D∗

εpψpD∗ αν

× (
2gβρp

µ
ψ − gµρ

(
p

β

ψ + p
β

D̄∗
) + 2gµβp

ρ

D̄∗
)

×
(

gαβ − (pπ − pD∗ )α (pπ − pD∗ )β
m∗2

D

)
, (C12)

Mµνρ

3d = 4gWD∗D∗gψD∗D∗

u − m2
D∗

εpψpD̄∗ αµ

× (
2gβρpν

ψ − gνρ
(
p

β

ψ + p
β

D∗
) + 2gνβp

ρ

D∗
)

×
(

gαβ − (pπ − pD̄∗ )α (pπ − pD̄∗ )β
m∗2

D

)
, (C13)

Mµνρ

3e = 2g
(0)
WψD∗D∗ε

pπ µνρ + 2g
(1)
WψD∗D∗ε

pψµνρ, (C14)

Mµρ

3f = −4�∗gWψD∗D∗σ0

t − m2
D1

gανεpψµβρ

×
(

gαβ − (pπ − pD∗ )α (pπ − pD∗)β
m2

D1

)
, (C15)

Mµρ

3g = −4�∗gWψD∗D∗σ0

u − m2
D1

gαµεpψβνρ

×
(

gαβ − (pπ − pD̄∗ )α (pπ − pD̄∗)β
m2

D1

)
(C16)

where t = (pπ − pD∗ )2 and u = (pπ − pD̄∗ )2.

B. ρ + J/ψ

The amplitudes for the dissociation into the lowest mass
state given in Fig. 6 are

Mδρ

4a = −4gADDgψDD

t − m2
D

(
2pδ

D − pδ
ρ

)(
2p

ρ

D̄
− p

ρ
ψ

)
(C17)

Mδρ

4b = −4gADDgψDD

u − m2
D

(
2pδ

D̄
− pδ

ρ

)(
2p

ρ

D − p
ρ
ψ

)
, (C18)

Mδρ

4c = −4gADD∗gψDD∗

t − m∗2
D

εpρpDαδεpψpD̄βρ

×
(

gαβ − (pρ − pD∗ )α(pρ − pD∗ )β
m∗2

D

)
, (C19)

Mδρ

4d = −4gADD∗gψDD∗

u − m∗2
D

εpρpD̄αδεpψpDβρ

×
(

gαβ − (pρ − pD̄)α(pρ − pD̄)β
m∗2

D

)
, (C20)

Mδρ

4e = −2gAψDDgδρ. (C21)

where t = (pρ − pD)2 and u = (pρ − pD̄)2. Of all the six
processes studied, this is the only one that is exothermic,
i.e., the initial state is more massive than the final one. This
kinematical constraint will give rise to a divergent cross section
behavior at low

√
s.

The amplitudes of the second process (depicted in Fig. 6)
are

Mµδρ

5a = 4gADD∗gψDD

t − m2
D

εpρpD∗ µδ
(
2p

ρ

D̄
− p

ρ
ψ

)
, (C22)

Mµδρ

5b = 4gADD∗gψDD

u − m2
D

(
2pδ

D̄
− pδ

ρ

)
εpψpD∗ µρ, (C23)

Mµδρ

5c = 4gAD∗D∗gψDD∗

t − m2
D∗

× (
2gαδpµ

ρ − gµδ
(
pα

ρ + pα
D∗

) + 2gαµpδ
D∗

)
×

(
gαβ − (pρ − pD∗ )α(pρ − pD∗ )β

m∗2
D

)
epψpD̄βρ,

(C24)

Mµδρ

5d = 4gADD∗gψD∗D∗

u − m2
D∗

εpρpD̄αδ

×
(

gαβ − (pρ − pD̄)α(pρ − pD̄)β
m∗2

D

)

× (
2gβρp

µ
ψ − gµρ

(
p

β

ψ + p
β

D∗
) + 2gµβp

ρ

D∗
)
, (C25)

Mµδρ

5e = 2g
(0)
AψDD∗ε

pD̄µδρ + 2g
(1)
AψDD∗ε

pD∗ µδρ, (C26)

where t = (pρ − pD∗ )2 and u = (pρ − pD̄)2.
And, finally, the set of amplitudes for the final disso-

ciation processes, given in Fig. 6, have the corresponding
expressions:

Mµνδρ

6a = −4gADD∗gψDD∗

t − m2
D

εpρpD∗ µδεpψpD̄∗ νρ, (C27)

Mµνδρ

6b = −4gADD∗gψDD∗

u − m2
D

εpρpD̄∗ νδεpψpD∗ µρ, (C28)

Mµνδρ

6c = −4gAD∗D∗gψD∗D∗

t − m2
D∗

×
(

gαβ − (pρ − pD∗ )α(pρ − pD∗ )β
m∗2

D

)

× (
2gαδpµ

ρ − gµδ
(
pα

ρ + pα
D∗

) + 2gαµp
ρ

D∗
)

× (
2gβρpν

ρ − gνρ
(
pβ

ρ + p
β

D̄∗
) + 2gβνp

ρ

D̄∗
)
,

(C29)

Mµνδρ

6d = −4gAD∗D∗gψD∗D∗

t − m2
D∗

×
(

gαβ − (pρ − pD∗ )α(pρ − pD∗ )β
m∗2

D

)

× (
2gαδpν

ρ − gνδ
(
pα

ρ + pα
D̄∗

) + 2gανp
ρ

D̄∗
)

× (
2gβρpν

ρ − gνρ
(
pβ

ρ + p
β

D∗
) + 2gβνp

ρ

D∗
)
,

(C30)

Mµνδρ

6e = g
(0)
AψD∗D∗ (2gµνgδρ − gµδgνρ − gµρgνδ) (C31)

where t = (pρ − pD∗ )2 and u = (pρ − pD̄∗ )2.
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FIG. 6. Diagrams for ρ + ψ dissociation.

APPENDIX D: PARAMETER FIXING

The coupling constants used here are fixed to those of
Ref. [45]. There, in addition to fitting the available experimen-
tal data, they invoked the vector meson dominance hypothesis,
the heavy quark spin-flavor symmetry, and the underlying

TABLE II. Coupling constants of the phenomenological
Lagrangian.

Three-point couplings Four-point couplings

gWDD∗ 4.40 gψDD∗ 16.96
gψD∗D∗ 3.86 gAψDD 19.43
gψDD 3.86 gAψD∗D∗ 9.72
gAD∗D∗ 1.26 gWψDD 8.00 GeV−3

gADD 1.26 g
(i)
WψD∗D∗ 19.10 GeV−1

gWD∗D∗ 4.54 GeV−1 g
(i)
AψDD∗ 10.89 GeV−1

gψDD∗ 4.32 GeV−1

gADD∗ 1.41 GeV−1

SU(4) symmetry on which the Lagrangian is built. Each
of these assumptions is problematic. Unfortunately, because
experimental data are lacking to fix, for example, the four-point
couplings, the only other way would be to use other model
calculations with varying degrees of sophistication. Table II
lists the coupling constant values used.

Setting the coupling constants to those of Ref. [45] is not
sufficient to determine all the parameters. Five parameters:
M,M∗,�,�∗, and σ0 have to be determined. The last one
is the decay constant, fπ = 93 MeV. The four remaining

TABLE III. Cutoff-dependent coupling constants.

� (GeV) �∗ (GeV) γD γD∗

No form factors 6.10 5.01 1 1
� = 1 GeV 19.85 14.36 0.79 0.78
� = 2 GeV 9.53 7.35 0.94 0.94
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parameters have to reproduce the masses 3 of the D,D∗,D∗
0 ,

and D1 mesons, namely mD = 1.87 GeV, mD∗ = 2.01 GeV,
mD∗

0
= 2.40 GeV, and mD1 = 2.43 GeV, respectively [55].

3For the D and D∗ the isopin averaged masses are used.

This leads to values of M = 2.15 GeV and M∗ = 2.23 GeV.
Table III lists the values of � and �∗ and γD and γD∗

used. Finally, the pion, ρ, and J/ψ masses are taken to be
0.138 GeV, 0.770 GeV, and 3.10 GeV, respectively.
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[49] U. Mösel, Fields, Symmetries, and Quarks (Springer-Verlag,

Berlin/Heidelberg, 1999).
[50] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum

Field Theory (Perseus Books, Cambridge, Massachusetts, 1995).
[51] S. Weinberg, The Quantum Theory of Fields (Cambridge

University Press, Cambridge, 1995).
[52] S. Adler, Phys. Rev. 137, B1022 (1965).
[53] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics

of the Standard Model (Cambridge University Press, Cambridge,
1994).

[54] J. J. Sakurai, Currents and Mesons (University of Chicago Press,
Chicago, 1969).

[55] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[56] J. G. Korner and M. C. Mauser, Lect. Notes Phys. 647, 244

(2004).

035206-13


