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Phenomenological Lagrangian approach to the electromagnetic deuteron form factors
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A phenomenological Lagrangian approach is employed to study the electromagnetic properties of the deuteron.
The deuteron is regarded as a weakly bound state of the proton and neutron. We construct a general form for the
electromagnetic one- and two-body transition operators formulated in terms of the nucleon fields, which are then
used in the calculation of the electromagnetic deuteron form factors. One of the two-body operators is responsible
for explaining the quadrupole moment form factor. We show that in our approach the data on the deuteron form
factors as well as on the differential cross section of elastic electron-deuteron scattering are well explained.
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I. INTRODUCTION

The study of the electromagnetic properties of the deuteron
has a long and rich history (for some recent reviews, see, e.g.,
Refs. [1–4]). The deuteron, as a spin-1 particle, is usually
believed to be a weakly bound system of a proton and a
neutron with a binding energy εD ∼ 2.22 MeV. Because the
electromagnetic (e.m.) properties of the deuteron can also shed
light on the e.m. form factors of the neutron as well as on
nuclear effects on the form factors, the study of the deuteron
form factors with a e.m. probe is of great interest.

The matrix element for elastic electron-deuteron (eD)
scattering in the one-photon approximation is

M = e2

Q2
ūe(k′)γµue(k)J D

µ (p, p′), (1)

where k and k′ are the four-momenta of initial and final
electrons and J D

µ (p, p′) is the deuteron e.m. current

J D
µ (p, p′)

= −
[
G1(Q2)ε′∗ · ε − G3(Q2)

2m2
D

ε · qε′∗ · q

]
(p + p′)µ

−G2(Q2)(εµε′∗ · q − ε′∗
µ ε · q), (2)

where mD is the deuteron mass and ε(ε′) and p(p′) are
polarization and four-momentum of the initial (final) deuteron
with q = p′ − p being the momentum transfer. The three e.m.
form factors G1,2,3 of the deuteron are related to the charge
GC , quadrupole GQ, and magnetic GM form factors by

GC = G1 + 2

3
τGQ, GM = G2,

(3)

GQ = G1 − G2 + (1 + τ )G3, τ = Q2

4m2
D

.

*On leave of absence from Department of Physics, Tomsk State
University, 634050 Tomsk, Russia.

These form factors are normalized at zero recoil as

GC(0) = 1, GQ(0) = m2
DQD = 25.83,

(4)
GM (0) = mD

mN

µD = 1.714,

where mN is the nucleon mass and QD and µD are the
quadrupole and magnetic moments of the deuteron. Because
the deuteron is a spin-1 particle it has three e.m. form factors
in the one-photon-exchange (OPE) approximation, due to
current conservation and the P and C invariance of the e.m.
interaction. The three form factors GE,M,Q can be determined
by measuring the unpolarized, elastic eD differential cross
sections and one of polarization observables, like the deuteron
polarization tensor

T20 = − 1

S
√

2

{
8

3
τGCGQ + 8

9
τ 2G2

Q

+ τ

3

[
1 + 2(1 + τ )tan2 θe

2

]
G2

M

}
, (5)

with S = A(Q2) + B(Q2) tan2(θe/2). The two form factors
A(Q2) and B(Q2) are related to the e.m. form factors of the
deuteron as

A = G2
C + 2

3τG2
M + 8

9τ 2G2
Q, B = 4

3τ (1 + τ )G2
M. (6a)

According to the Rosenbluth separation [5], the elastic scatter-
ing of an unpolarized electron from the deuteron results in an
O(α2) differential cross section [6]dσ/d� = (dσ/d�)MottS,
where θe is the electron scattering angle in the laboratory frame
of the collision and (dσ/d�)Mott is the Mott cross section.

The theoretical study of eD elastic scattering and deuteron
e.m. form factors has been performed in different approaches
[7–15]: potential models, phenomenological models including
quark, meson, and nucleon degrees of freedom, effective field
theories, etc. (for an overview see Refs. [1–4]). In the present
work we apply a phenomenological Lagrangian approach to
study the e.m. form factors of the deuteron. We consider the
deuteron as a weakly bound system of proton and neutron.
The coupling of the deuteron to its constituents is determined
by the compositeness condition Z = 0 [16,17], which implies
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that the renormalization constant of the hadron wave function
is set equal to zero. Note that this condition was originally
also applied to the study of the deuteron as a bound state
of proton and neutron [16]. Then it was extensively used in
low-energy hadron phenomenology as the master equation for
the treatment of mesons and baryons as bound states of light
and heavy constituent quarks (see Refs. [18]). In Refs. [19]
this condition was used in the application to hadronic molecule
configurations of light and heavy mesons.

To study the e.m. form factors of the deuteron, in a first
step we employ the empirical e.m. couplings of the photon
to the proton (or neutron) in the one-body operators to set up
the well-determined part of the photon-deuteron coupling. As a
consequence of the nonlocal description of the deuteron bound
state direct contact terms are then included to guarantee local
gauge invariance of the e.m. interaction. In the last step we
introduce additional, phenomenological two-body operators,
which are assumed to represent, e.g., meson-exchange currents
and in turn imply a D-wave component in the deuteron wave
function. Parameters of two-body operators are deduced from
a fit to the available data.

The article is organized as follows. In Sec. II, we discuss
the basic notions of our approach: the coupling of the deuteron
to its constituents involving the compositeness condition
and the derivation of the e.m. one- and two-body operators
contributing to the form factors of the deuteron. In Sec. III we
discuss the numerical results for the deuteron e.m. form factors
as well as the two form factors A(Q2) and B(Q2) entering in
the differential cross section of the eD elastic scattering. In
Sec. IV we give our conclusions.

II. APPROACH

A. Deuteron as a proton-neutron bound state

In this section we discuss the formalism for the study of
the deuteron interpreted as a hadronic molecule—a weakly
bound state of proton and neutron: |D〉 = |pn〉. We write the
deuteron mass mD in the form mD = 2mN − εD , where mN =
mp = 0.93827 GeV is the nucleon mass and εD � 2.22 MeV
is the binding energy. Based on our approach, the coupling of
the deuteron to its two constituents (proton and neutron) is

LD(x)

= gDD†
µ(x)

∫
dy�D(y2)p(x + y/2)Cγ µn(x − y/2)

+ H.c., (7)

where C = γ 0γ 2 is the charge conjugation matrix and x is
the center-of-mass (c.m.) coordinate. The correlation function
�D characterizes the finite size of the deuteron as a pn bound
state and depends on the relative Jacobi coordinate y. A basic
requirement for the choice of an explicit form of the correlation
function is that its Fourier transform vanishes sufficiently fast
in the ultraviolet region of Euclidean space to render the
Feynman diagrams ultraviolet finite. We adopt the Gaussian
form, �̃D(p2

E)
.= exp(−p2

E/	2
D) , for the Fourier transform

of the vertex function, where pE is the Euclidean Jacobi
momentum. Here, 	D is a size parameter that characterizes
the distribution of the constituents in the deuteron.

D

p

n

D

FIG. 1. (Color online) Deuteron mass operator.

The coupling constant gD in Eq. (7) is determined by
the compositeness condition [16,17], which implies that the
renormalization constant of the hadron wave function is set
equal to zero:

ZD = 1 − 
′
D

(
m2

D

) = 0. (8)

Here, 
′
D(m2

D) = g2
D
�′

D(m2
D) is the derivative of the transverse

part of the mass operator 

αβ

D , conventionally split into the
transverse 
D and longitudinal 
L

D parts as:



αβ

D (p) = g
αβ

⊥ 
D(p2) + pαpβ

p2

L

D(p2) , (9)

where g
αβ

⊥ = gαβ − pαpβ/p2 , g
αβ

⊥ pα = 0. The mass opera-
tor of the deuteron is described in Fig. 1. For a fixed value of the
size parameter 	D the coupling gD is determined according
to the compositeness condition.

To clarify the physical meaning of the compositeness
condition, we reiterate that the renormalization constant Z

1/2
D

can also be interpreted as the matrix element between the
physical and the corresponding bare states. For ZD = 0 it then
follows that the physical state does not contain the bare one and
hence the deuteron is described as a bound state of the proton
and neutron. As a result of the interaction of the deuteron with
its constituents, the deuteron is dressed, i.e., its mass and its
wave function have to be renormalized.

Following Eq. (8) the coupling constant gD can be ex-
pressed in the form:

1

g2
D

= 1

8π2

∫ ∞

0

∫ ∞

0

dαdβ

(1 + α + β)3

× exp

[
−2(α + β)µ2

N + α + β + 4αβ

2(1 + α + β)
µ2

D

]

×
{

(α + β + 4αβ)

[
µ2

N + 1

2(1 + α + β)

+ (1 + 2α)(1 + 2β)

4(1 + α + β)2
µ2

D

]
+ (1 + 2α)(1 + 2β)

2(1 + α + β)

}
,

(10)

where µH = mH/	D with H = N,D.

B. Matrix element of the photon-deuteron interaction

To calculate the deuteron e.m. form factors, we construct
the electromagnetic transition operator, including one- and
two-body parts and formulated in terms of nucleon degrees
of freedom—the constituents of the deuteron. Note that the
direct coupling of the deuteron with the photon field vanishes
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FIG. 2. (Color online) Electromagnetic operators.

because the ZD factor equals zero. It guarantees that double
counting is avoided.

We construct the one- and two-body operators in a general
phenomenological form, which principally includes all possi-
ble corrections (e.g., meson-cloud effects) and the dependence
on the photon momentum (form factors). The one-body
operator (or its Fourier transform) with J (1)

µ (q) = JNN
µ (q) +

JDNN
µ (q) contains two terms. The first term, JNN

µ (q), is
generated by the coupling of nucleons to the electromagnetic
field:

JNN
µ (q)

=
∫

d4xe−iqxN̄ (x)

[
γ µFN

1 (q2) + iσµνqν

2mN

FN
2 (q2)

]
N (x),

(11)

where FN
1 (q2) and FN

2 (q2) with N = p, n are the conventional
Dirac and Pauli form factors of the nucleon [see Fig. 2(a)].
The second term, JDNN

µ (q), is generated by gauging the
nonlocal strong Lagrangian LD [see Fig. 2(b)]. To restore
electromagnetic gauge invariance in LD , the proton field
should be multiplied by the gauge field exponential (see further
details in Ref. [18]):

p(y) → eieI (x,y,P )p(y), I (x, y, P ) =
∫ x

y

dzµAµ(z). (12)

For the derivative of I (x, y, P ) we use the path-independent
prescription suggested in Ref. [20], which in turn states
that the derivative of I (x, y, P ) does not depend on the
path P originally used in the definition. The nonminimal
substitution (12) is therefore completely equivalent to the
minimal prescription. Expanding the exponential eieI (x,y,P ) in
powers of the electromagnetic field and keeping the linear term
(corresponding to the vertex D†pnγ + H.c.) we generate an
additional contribution [see Fig. 2(b)] to the electromagnetic
one-body operator:

JDNN
µ (q) = −igD

∫
d4xd4yD†

ν(x)�D(y2)p(x + y/2)

×Cγ νn(x − y/2)
∫ x+y/2

x

dzµe−iqz + H.c. (13)

There is a number of possible contributions to the two-body
operator J (2)

µ (q) = J 4N
µ (q). We restrict to the three simplest

terms with the smallest number of derivatives [see the general
diagram of Fig. 2(c)]:

J 4N
µ (q) = J 4N ;1

µ (q) + J 4N ;2
µ (q) + J 4N ;3

µ (q), (14a)

J 4N ;1
µ (q) =

∫
d4xe−iqxg1F

NN
1 (q2)n̄(x)γ αCp̄(x)

×p(x)Cγαiσµνq
νn(x) + H.c., (14b)

J 4N ;2
µ (q) =

∫
d4xe−iqxg2F

NN
2 (q2)n̄(x)
qCp̄(x)

×p(x)Ciσµνq
νn(x) + H.c., (14c)

J 4N ;3
µ (q) =

∫
d4xe−iqxg3F

NN
3 (q2) [n̄(x)γ αCp̄(x)]

× i(
→
∂ µ − ←

∂ µ)[p(x)Cγαn(x)], (14d)

where gi and FNN
i (q2) are the phenomenological electro-

magnetic two-body nucleon couplings and form factors,
respectively.

To calculate the e.m. form factors of the deuteron we project
the dressed operator Jµ(q) = J (1)

µ (q) + J (2)
µ (q) between the

deuteron states:

〈D(p′)|Jµ(q)|D(p)〉 = (2π )4δ4(p′ − p − q)J D
µ (p, p′),

(15)

where J D
µ (p, p′) is the deuteron e.m. current given by the

expression (2). The diagrams contributing to the matrix
element(15) are shown in Fig. 3—the diagrams generated by
the one-body currents [Figs. 3(a)–3(c)] and by the two-body
currents [Fig. 3(d)]. To evaluate these diagrams we take the T

product of the e.m. current in the S matrix defined in terms
of the interaction Lagrangian LD and use the standard free
fermion propagators for the nucleons in the loops. Let us
stress that a similar approach to the one presented here was
previously developed in Ref. [15]. However, in Ref. [15] the
authors did not consider two-body operators. Also note that
the deuteron e.m. current generated by both the one-body and
two-body nucleon operators is manifestly Lorentz covariant
and gauge invariant.

We want to point out again that our approach is purely
phenomenological in the sense that we do not calculate the
one- and two-body operators from microscopic models but
constrain their forms using a justified physical background:
in particular, the two-body operators (14) introduced in our
considerations have an explicit nonrelativistic limit. They
correspond to the ones generated in the context of the effective
field theory description [14].

The correlation function �D of Eq. (7), modeling the
distribution of nucleons in the deuteron, has in the full

D D

γ

N

N N
D D

γ

N

N

D D

γ

N

N

(a) (b)

(d)

(c)

DD

N

N

N

N

γ

FIG. 3. (Color online) One- and two-body diagrams contributing
to the electromagnetic deuteron form factors.
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formalism no direct connection to the quantum-mechanical
wave function of the deuteron. Comparison of our formalism
to the nonrelativistic approaches, dealing with the deuteron
wave function, can be performed only on the level of matrix
elements. In this vein the expectation value of the two-body
operator J 4N ;2

µ (q) between deuteron states incorporates the
D-wave admixture to the deuteron wave function in the context
of potential models. This admixture is necessary to explain the
quadrupole moment of the deuteron. In the context of effective
field theory [14] it was shown before that the nonrelativistic
analog of the J 4N ;2

µ (q) operator explains the quadrupole
moment/form factor of the deuteron. Therefore, we introduce
this operator in consistency with previous observations.

III. NUMERICAL RESULTS

To describe the e.m. form factors of the deuteron we have
the following input: the size parameter 	D , describing the
distribution of nucleons in the deuteron, the e.m. form factors
of the nucleons F

p,n

1,2 (q2), and a set of parameters in the
two-body operators—couplings constants gi and form factors
FNN

i (q2). In fixing the value of the parameter 	D we use the
following constraint. In the nonrelativistic approximation the
vertex function �̃D(−p2) represents the wave function of the
deuteron. Therefore, a constraint condition for 	D is set by the
deuteron size that, according to potential model calculations, is
bound as 〈|r−2|〉 < 0.02 GeV2 [7]. Employing this condition,
we expect that 	D is less than 0.5 GeV.

For the set of the e.m. nucleon form factors F
p,n

1,2 (q2) we
use parametrizations in a fit to the corresponding data. We use
two available forms: the Mergell-Meissner-Drechsel (MMD)
parametrization [21] and the Kelly parametrization [22]. We
stress that when we restrict to the use of one-body transition
operators only we cannot reproduce the data on the e.m. form
factors of the deuteron. In particular, we cannot correctly
predict the Q2 dependence of the deuteron form factors—the
nodes of the charge and magnetic form factors at about
0.7 GeV2 and 2 GeV2 [23] are not reproduced. Also, the
quadrupole form factor cannot be explained; with the one-
body operators present only its normalization is completely
underestimated. As is known from potential models [7] the
D-wave component in the deuteron wave function mainly
contributes to the quadrupole moment and the quadrupole
moment vanishes if only the S-wave deuteron wave function
is considered. Because at this level our correlation function
�̃D(−p2) does not contain an explicit admixture of a D-wave
component, the result for the quadrupole moment with one-
body operators is negligibly small when compared to data.

In the present approach we propose and test if a suitable
choice for the additional two-body operators can reproduce
the full quantitative structure of the deuteron form factors. In
particular, as will be shown, the two-body operator J 4N ;2

µ (q)
will give the dominant contribution on top of the one-body
structures to fully explain the quadrupole form factor. We
proceed by fixing the related parameters g2 and FNN

2 (q2) of
J 4N ;2

µ (q) to reproduce the measured quadrupole form factor of
the deuteron. The couplings g1,3 and the form factors FNN

1,3 (Q2)
of the additional two-body operators are adjusted to obtain a
refined fit to the charge and magnetic form factors, including
the nodes at about 0.7 and 2 GeV2 [23]. For the form factors
FNN

1,2,3(Q2) we use the following parametrization:

FNN
1,3 (Q2) = Q2

	2 + Q2
exp

(
−Q2

	2
1

)
,

(16)

FNN
2 (Q2) = 	2

	2 + Q2
exp

(
−Q2

	2
2

)
,

where 	,	1, and 	2 are the size parameters [for FNN
1 (Q2)

and FNN
3 (Q2) we use the same ones]. The form factors

FNN
1 (Q2) and FNN

3 (Q2) should vanish at zero recoil such
that the deuteron charge is not renormalized (to preserve the
charge conservation), whereas the form factor FNN

2 (Q2) does
not affect current conservation and, therefore, does not vanish
at zero recoil. In Table I we present the results for the fit
parameters g1,2,3,	, and 	1,2 using the data on the deuteron
e.m. form factors for two different parametrizations [21,22] of
the nucleon Dirac and Pauli form factors.

Our numerical results for the deuteron charge, magnetic,
and quadrupole form factors as well as for the two form
factors, A(Q2) and B(Q2), entering in the differential cross
section and for the polarization tensor T20 are shown in
Figs. 4–18. In particular, in Figs. 4–6 we present the results of
our approach for the GC(Q2),GQ(Q2), and GM (Q2) form
factors (total contribution of the set of the diagrams in
Fig. 3). In Figs. 7–9 we analyze the separate contributions
of the graphs of Fig. 3 to GC(Q2),GQ(Q2), and GM (Q2). In
Figs. 10–15 we show the separate contributions of the two-
body operators generating the diagram of Fig. 3(d) on a
logarithmic scale for |GC(Q2)|, |GQ(Q2)|, and |GM (Q2)|
(Figs. 10, 12, and 14) and on a linear scale for
GC(Q2),GQ(Q2), and GM (Q2) (Figs. 11, 13, and 15). In
Figs. 16 and 17 we plot our results for the form factors
A(Q2) and B(Q2). Finally, in Fig. 18 we present the results
for the deuteron polarization tensor T20(Q2). We select θe =
70◦ to make a comparison consistent with the experimental
data. We also perform a comparison with other theoretical
calculations. We present our results for the two sets of

TABLE I. Parameters defining the two-body e.m. nucleon operators extracted from data using two
forms of the parametrization of the Dirac and Pauli nucleon form factors: MMD [21] and Kelly [22].

F
p,n

1,2 (Q2) 	D (GeV) g1 (fm4) g2 (fm5) g3 (fm4) 	 (GeV) 	1 (GeV) 	2 (GeV)

MMD [21] 0.25 0.06 −1.97 0.16 1 0.70 0.80
Kelly [22] 0.30 0.23 −1.48 0.06 1 0.58 0.58

035205-4



PHENOMENOLOGICAL LAGRANGIAN APPROACH TO THE . . . PHYSICAL REVIEW C 78, 035205 (2008)

FIG. 4. Form factor |GC(Q2)|. The solid curve is the result of the
TGA parametrization. The double dash-dotted and dashed lines are
our results with the MMD [21] parametrization restricting to one-
body and including two-body electromagnetic currents, respectively.
The double dot-dashed and dotted lines are our results with the Kelly
[22] parametrization restricting to one-body and including two-body
electromagnetic currents, respectively. The data are from Ref. [27]
(open circle), Ref. [28] (open square), Ref. [29] (open diamond),
Ref. [30] (Plux), Ref. [31] (triangle up), Ref. [32] (filled circle), and
Ref. [33] (filled square).

parametrizations of the nucleon e.m. form factors—the MMD
[21] and the Kelly parametrization [22]. We also compare
our fit to the parametrization derived in Ref. [23] (denoted
as TGA parametrization) and data [24–38]. Note that there
are several other phenomenological parametrizations for the
deuteron e.m. form factors in the literature; see Refs. [24–26].
Our main observations are, first, the one-body diagrams in
Figs. 3(a)–3(c) correctly reproduce the normalizations of
charge and magnetic form factors. The contribution of the
one-body diagrams in Figs. 3(b) and 3(c), generated by
gauging the coupling of the deuteron with nucleons, is strongly
suppressed in all form factors. They become almost constant
at Q2 > 0.5 GeV2. Second, the contribution of the one-body
diagram of Fig. 3(a) is dominant in the charge and magnetic

FIG. 5. Form factor |GQ(Q2)|. Notations are the same as de-
scribed in the caption to Fig. 4.

FIG. 6. Form factor |GM (Q2)|. The solid curve is the result of
the TGA parametrization. The double dash-dotted and dashed lines
are our results with the MMD [21] parametrization restricting to one-
body and including two-body electromagnetic currents, respectively.
The double dot-dashed and dotted lines are our results with the Kelly
[22] parametrization restricting to one-body and including two-body
electromagnetic currents, respectively. The data are quoted from Ref.
[29] (circle), Ref. [34] (diamond), and Ref. [35] (square), [36] (star).

form factors up to 1 GeV2. Above 1 GeV2 the contribution
of the two-body operators J 4N ;i

µ , generating the diagrams of
Fig. 3(d), becomes important for the charge and magnetic
form factors. In the case of the quadrupole form factor the
contribution of the two-body graph [Fig. 3(d)] generated by the
operator J 4N ;2

µ is dominant for both the normalization and the
Q2 dependence of this quantity. The operator J 4N ;2

µ simulates
the contribution of the D-wave component of the deuteron
wave function. Therefore, inclusion of the two-body operators
J 4N ;i

µ (q) is sufficient to describe the deuteron e.m. form factors
as well as elastic eD scattering. In particular, the two crossing
points of the charge and magnetic form factors of the deuteron
are also successfully reproduced when including the two-
body operators. Without the two-body operators, one cannot

FIG. 7. Form factor |GC(Q2)|. Separate contributions of
the diagrams in Fig. 3 with the MMD [21] parametriza-
tion: diagram in Fig. 3(a) (the dashed line), diagrams in
Figs. 3(b) and 3(c) (the dotted line), the total contribution of two-body
operators generating the diagram in Fig. 3(d) (the dot-dashed line).

035205-5



DONG, FAESSLER, GUTSCHE, AND LYUBOVITSKIJ PHYSICAL REVIEW C 78, 035205 (2008)

FIG. 8. Form factor |GQ(Q2)|. Separate contributions of the
diagrams in Fig. 3 with the MMD [21] parametrization. Notations
are the same as described in the caption to Fig. 7.

FIG. 9. (Form factor |GM (Q2)|. Separate contributions of the
diagrams in Fig. 3 with the MMD [21] parametrization. Notations
are the same as described in the caption to Fig. 7.

FIG. 10. Form factor |GC(Q2)|. Separate contributions of the
two–body operators with the MMD [21] parametrization: the con-
tribution of the J 4N ;1

µ operator (the dotted line), the contribution of
the J 4N ;2

µ operator (the dashed line), the contribution of the J 4N ;3
µ

operator (the dot-dashed line), and the total result (solid line).

FIG. 11. Form factor GC(Q2) on a linear scale. Separate contribu-
tions of the two-body operators with the MMD [21] parametrization.
Notations are the same as described in the caption to Fig. 10.

FIG. 12. Form factor |GQ(Q2)|. Separate contributions of the
two–body operators with the MMD [21] parametrization. Notations
are the same as described in the caption to Fig. 10.

FIG. 13. Form factor GQ(Q2) in a linear scale. Separate contribu-
tions of the two-body operators with the MMD [21] parametrization.
Notations are the same as described in the caption to Fig. 10.
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FIG. 14. Form factor |GM (Q2)|. Separate contributions of the
two-body operators with the MMD [21] parametrization. Notations
are the same as described in the caption to Fig. 10.

FIG. 15. Form factor GM (Q2) on a linear scale. Separate contri-
butions of the two-body operators with the MMD [21] parametriza-
tion. Notations are the same as described in the caption to Fig. 10.

FIG. 16. Form factor A(Q2). The solid curve is the result of the
TGA parametrization. The dashed and dotted lines are our results
with the MMD [21] and Kelly [22] parametrizations, respectively.
The data are quoted from Ref. [29] (circle), Ref. [37] (diamond),
Ref. [36] (square), Ref. [38] (star), respectively.

FIG. 17. Form factor B(Q2). Notations are the same as described
in the caption to Fig. 16.

correctly reproduce the two nodes at Q2 ∼ 0.7 GeV2(for GC)
and 2 GeV2 (for GM ).

We also tested different forms of the deuteron correlation
function �D (monopole, dipole, Gauss, etc.). It is found that
the physical observables are weakly sensitive to its form,
whereas they are dominantly controlled by the scale parameter
of the correlation function. Inclusion of additional terms (e.g.,
with derivatives) in the Lagrangian, describing the bound state
structure of the deuteron [see Eq. (7)], does not lead to a
considerable improvement in the description of the deuteron
observables; it only introduces additional parameters. Because
we are interested in keeping the number of free parameters to a
minimum while still obtaining a good fit to the data we restrict

FIG. 18. Deuteron polarization tensor T20(Q2) at θe = 70◦. The
solid curve is the result of the TGA parametrization. The dashed
and dotted lines are our results with the MMD [21] and Kelly [22]
parametrizations, respectively. The data are quoted from Ref. [31]
(circle), Ref. [39] (triangle right), Ref. [30] (square), Ref. [29]
(diamond), Ref. [40] (filled triangle up), Ref. [28] (filled triangle
down), Ref. [27] (filled circle), and Ref. [33] (star). The theoretical
results are taken from Ref. [8] (dot-dashed line), Ref. [12] (short-
dashed line), Ref. [13] (double dash-dotted line), and Ref. [9] (double
dotted-dashed line).
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the coupling of the deuteron to the constitutent nucleons to the
simplest form.

IV. CONCLUSIONS

In this work, we applied a relativistic effective Lagrangian
approach to study the e.m. properties of the deuteron consid-
ering the deuteron as a weakly bound state of a proton and
a neutron. We found that in the present approach two-body
interaction terms are crucial to reproduce the quadrupole
moment of the deuteron and the two crossings of the charge
and magnetic form factors at ∼0.7 and ∼2 GeV2, respectively.
The effective two-body operators we include reflect and
model the S/D mixing in the deuteron wave function and
pion-exchange contributions. With the adjusted parameters,
listed in Table I, we obtain a reasonable description of the e.m.
form factors of the deuteron up to Q2 ∼ 2 GeV2 using MMD
parametrization of the nucleon e.m. form factors. Note that
our result for the deuteron polarization tensor T20 using the
MMD parametrization deviates from the data and predictions

of theoretical approaches [8,12,13] in the region � 1−
1.4 GeV2.

Finally, recent experiments of the electron-proton polariza-
tion transfer scattering [41] show that two-photon exchange
may play a role for determing the charge form factor of
the proton [42]. It is therefore of great interest to check if
the two-photon-exchange mechanism also plays a prominent
role on the form factors of the deuteron [43] as well as of the
neutron. Work along this line is currently in progress.
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