
PHYSICAL REVIEW C 78, 035204 (2008)

η photoproduction on the proton in a chiral constituent quark approach via
a one-gluon-exchange model
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A formalism based on a chiral quark model (χQM) approach complemented with a one-gluon-exchange
model, to take into account the breakdown of the SU(6)⊗O(3) symmetry, is presented. The configuration
mixing of wave functions for nucleon and resonances are derived. With few adjustable parameters, differential
cross-section and polarized-beam asymmetry for the γp → ηp process are calculated and successfully
compared with the data in the center-of-mass energy range from threshold to 2 GeV. The known resonances
S11(1535), S11(1650), P13(1720), D13(1520), and F15(1680), as well as two new S11 and D15 resonances, are
found to be dominant in the reaction mechanism. Moreover, connections among the scattering amplitudes of
the χQM approach and the helicity amplitudes, as well as decay widths of resonances, are established. Possible
contributions from the so-called missing resonances are investigated and found to be negligible.
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I. INTRODUCTION

Electromagnetic production of mesons on the nucleon
offers a great opportunity to deepen our understanding of
the baryon resonances properties. In recent years, intensive
experimental efforts have been devoted to the measure-
ment of observables for the processes of pseudoscalar and
vector-meson production, using electron and/or photon beam
facilities.

In the present work we investigate the reaction γp → ηp,
in the range of center-of-mass total energy from threshold
up to W ≈ 2 GeV, to interpret a large amount of high-quality
data released from various facilities, namely differential cross-
section data by the following collaborations: MAMI [1],
CLAS [2], CB-ELSA [3], LNS-GeV-γ [4], and GRAAL [5],
and polarized beam asymmetries by CB-ELSA/TAPS [6] and
GRAAL [5].

The copious set of data has motivated extensive theoretical
investigations. Most of the available models are based on
meson-nucleon degrees of freedom, in which the Feynman
diagrammatic techniques are used so the transition amplitudes
are Lorentz invariant. In recent years various advanced
approaches have been developed, namely the unitary isobar
model of MAID [7], Giessen [8], and Bonn-Gatchina groups
[9] coupled-channel approaches, as well as the partial-wave
analysis of SAID [10]. Those approaches have no explicit
connection with quantum chromodynamics (QCD), and the
number of free parameters in the models increases with the
number of included resonances.

Formalisms embodying the subnucleonic degrees of free-
dom are also being developed (for a recent review see
Ref. [11]). Such a program has its genesis in early 1970s due
to the works by Copley, Karl, and Obryk [12] and Feynman,
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Kisslinger, and Ravndal [13] in the pion photoproduction, who
provided the first clear evidence of the underlying SU(6)⊗O(3)
structure of the baryon spectrum. Soon after, in a seminal
article, Du Rújula, Georgi, and Glashow [14] attributed the
appearance of SU(6)⊗O(3) supermultiplets to the color gauge
couplings generating a long-range spin-independent force.
Based on those investigations, since late 1970s excited baryon
states have been intensively studied. The most extended
and phenomenologically successful approach was developed
by Isgur, Karl, and Koniuk [15–19] in the framework of
a nonrelativistic quark potential formalism. The dynamical
degrees of freedom, appropriate to low-mometum transfer,
are constituent (valence) quarks with effective masses of
about 330 MeV for u and d quarks. The confining potential
is created by the gluon fields. Although the nonrelativistic
approach suffers from several flaws (see, e.g., Ref. [11]), its
surprising capability in providing a coherent undestanding
of the low-energy phenomena of the baryon spectroscopy is
very likely due to the choice of effective parameters, such as
constituent-quark mass, the string tension, and the coupling
αs . Those points were investigated by Capstick and Isgur [20]
in their relativized quark model approach for baryons. This
latter formalism was used by Capstick and Roberts [21–23]
in comprehensive calculations of strong decay amplitudes.
More recently, a further step was taken [24] to go beyond the
simplest qqq Fock space configuration and include qqq-qq
components. Such issues turn out to be crucial [25] in
comparing mass spectrum generated by quark models with the
resonance masses reported in Particle Data Group (PDG) [26].

Those constituent qurak approaches embody one-gluon-
exchange (OGE) dynamics. Generalizing one-pion-exchange
(OPE) mechanism, an alternative to that scheme has been
developed by Glozman and Riska [27] according to which
the spin-dependent coupling between costituent quarks arises
from Goldstone-boson-exchange (GBE). Then a debate
emerged [28,29] on the OGE versus OPE as the most
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appropriate effective degree of freedom. Although at the
present time no firm conclusions can be drawn [30–33], there
are indications in favor of OGE [34–36].

The approaches mentioned above, as well as other QCD-
inspired ones, reviewed in Ref. [11], have concentrated mainly
on the transition amplitudes and the baryon mass spectrum.
In the present work we study those issues and go further,
investigating also reaction mechanism of the process γp →
ηp.

In Ref. [37] a comprehensive and unified approach to
the pseudoscalar mesons photoproduction, based on the low-
energy QCD Lagrangian [38], is developed with the explicit
quark degrees of freedom. This approach reduces drastically
the number of free parameters, for example, within the exact
SU(6)⊗O(3) symmetry, the reaction under investigation has
only one free parameter, namely ηNN coupling constant.
However, that symmetry is broken and to take into account
that effect, one free parameter per resonance was introduced
in previous calculations [39,40]. Given that the configuration
mixing among the three-constituent quarks bound states is a
consequence of the SU(6)⊗O(3) symmetry breakdown, in the
present work we use the one-gluon-exchange mechanism to
generate the configuration mixing of the wave functions. In this
approach, the number of parameters decreases significantly.
After the parameters are determined by fitting the data, we
then study the contributions from the missing resonances
(see, e.g., Refs. [11,41,42]). Moreover, we give relations
connecting the scattering amplitudes in our χQM approach
to the photoexcitation helicity amplitudes and partial decay
widths of resonances. Our approach offers also the opportunity
of investigating new nucleon resonances, for which strong
indications have been reported in the literature [9,40,42–51].

As mentioned earlier, the choice of effective degrees of
freedom is not unique. In this work we adopt the OGE mech-
anism within the Isgur-Karl nonreletavistic quarks potential
formulation, proven to offer a successful phenomenological
frame. Nevertheless, our results are to be considered as
semiquantitaive, awaiting the extension of our approach to
more sophisticated quark models.

The article is organized as follows. In Sec. II, the theoretical
content of our work is presented. Starting from a chi-
ral effective Lagrangian, the Chew-Goldberger-Low-Nambu
(CGLN) amplitudes for the process γp → ηp are given within
the SU(6)⊗O(3) symmetry. Then the consequences of the
breaking of that symmetry via configuration mixing in OGE
model is reported and helicity amplitudes of photon transition
and meson decay partial widths of resonances are presented.
The fitting procedure and numerical results for differential
cross-section, polarized beam asymmetry, helicity amplitudes,
and N∗ → ηN partial decay widths are reported and discussed
in Sec. III, where possible roles played by new/missing
resonances are examined. Summary and conclusions are given
in Sec. IV.

II. THEORETICAL FRAME

In this section we recall the content of a chiral constituent
quark approach and relate it to the configuration mixing of

constituent quarks states via a OGE model, generated by the
breakdown of the SU(6)⊗O(3) symmetry. Then we present
issues related to the photoexcitation helicity amplitudes and
the partial decay widths of nucleon resonances.

A. Chiral constituent quark model

As in Ref. [37], we start from an effective chiral Lagrangian
[38],

L = ψ̄[γµ(i∂µ + V µ + γ5A
µ) − m]ψ + · · ·, (1)

where vector (V µ) and axial (Aµ) currents read,

V µ = 1

2
(ξ∂µξ † + ξ †∂µξ ), Aµ = 1

2i
(ξ∂µξ † − ξ †∂µξ ), (2)

where ξ = exp (i�/fm) and fm is the meson decay constant.
ψ and φm are the quark and meson fields, respectively. The
field � is a 3 ⊗ 3 matrix,

� =

∣∣∣∣∣∣∣∣

1√
2
π◦ + 1√

6
η π+ K+

π− − 1√
2
π◦ + 1√

6
η K◦

K− K̄◦ −
√

2
3η

∣∣∣∣∣∣∣∣
, (3)

in which the pseudoscalar mesons, π,K , and η, are treated as
Goldstone bosons so the Lagrangian in Eq. (1) is invariant
under the chiral transformation. Therefore, there are four
components for the photoproduction of pseudoscalar mesons
based on the QCD Lagrangian,

Mf i = 〈Nf |Hm,e|Ni〉 +
∑

j

{ 〈Nf |Hm|Nj 〉〈Nj |He|Ni〉
Ei + ω − Ej

+ 〈Nf |He|Nj 〉〈Nj |Hm|Ni〉
Ei − ωm − Ej

}
+ MT , (4)

where Ni(Nf ) is the initial (final) state of the nucleon, and
ω(ωm) represents the energy of incoming (outgoing) photons
(mesons). The pseudovector and electromagnetic couplings at
the tree level are given, respectively, by the following standard
expressions:

Hm =
∑

j

1

fm

ψ̄jγ
j
µγ

j

5 ψj∂
µφm;

He = −
∑

j

ej γ
j
µAµ(k, r), (5)

where Aµ(k, r) is the electromagnetic field. The first term
in Eq. (4) is a seagull term. It is generated by the gauge
transformation of the axial vector Aµ in the QCD Lagrangian.
This term, being proportional to the electric charge of the
outgoing mesons, does not contribute to the production of
the η meson. The second and third terms correspond to the
s and u channels, respectively. The last term is the t-channel
contribution.

In this article we focus on the nucleon resonance con-
tributions. Given that the u-channel contributions are less
sensitive to the details of resonances structure than those in the
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s channel, it is then reasonable to treat the u-channel
components as degenerate [40].

For the s channel, the amplitudes are given by the following
expression [37,40]:

MN∗ = 2MN∗

s − M2
N∗ − iMN∗�(q)

e
− k2+q2

6α2 ON∗ , (6)

where
√

s ≡ W = EN + ωγ = Ef + ωm is the total center-
of-mass energy of the system, and ON∗ is determined by the
structure of each resonance. �(q) in Eq. (6) is the total width
of the resonance, and a function of the final-state momentum
q.

The transition amplitude for the nth harmonic-oscillator
shell is

On = O2
n + O3

n. (7)

The first (second) term represents the process in which
the incoming photon and outgoing meson are absorbed and
emitted by the same (different) quark.

In the present work, we use the standard multipole expan-
sion of the CGLN amplitudes [52] and obtain the partial-wave
amplitudes of resonance l2I,2l±1. Then, the transition amplitude
takes the following form:

ON∗ = if1l±σ · ε + f2l±σ · q̂σ · (k̂ × ε)

+ if3l±σ · k̂q̂ · ε + if4l±σ · q̂ε · q̂. (8)

Expressing the CGLN amplitudes in their usual formulation
[53,54], leads to the Hebb-Walker amplitudes in terms of
photoexcitation helicity amplitudes,

Al± = ∓f AN∗
1/2, (9)

Bl± = ±f

√
4

l(l + 2)
AN∗

3/2, (10)

where

f = 1

(2J + 1)2π

[
MNEN

M2
N∗

k

]1/2 2MN∗

s − M2
N∗ + iMN∗�(q)

Am
1/2

≡ f0
2MN∗

s − M2
N∗ + iMN∗�(q)

, (11)

with Am
1/2 the N∗ → ηN decay amplitude, appearing in the

partial decay width,

�m = 1

(2J + 1)

|q|EN

πMN∗

∣∣Am
1/2

/
CI

mN

∣∣2
, (12)

where CI
πN represents the Clebsch-Gordan coefficients related

to the isospin coupling in the outgoing channel.
In Ref. [37], the partial decay amplitudes are used to

separate the contribution of the state with the same orbital
angular momentum L. In fact, with the helicity amplitudes of
photon transition and meson decay we can directly obtain the
CGLN amplitudes for each resonances in terms of Legendre

polynomials derivatives:

f1l± = f0

[
∓AN∗

1/2 −
√

l + 1/2 ∓ 1/2

l + 1/2 ± 3/2
AN∗

3/2

]
P ′

�±1,

f2l± = f0

[
∓AN∗

1/2 −
√

l + 1/2 ± 3/2

l + 1/2 ∓ 1/2
AN∗

3/2

]
P ′

�,

(13)

f3l± = ±f0

2AN∗
3/2√

(l − 1/2 ± 1/2)(l + 3/2 ± 1/2)
P ′′

�±1,

f4l± = ∓f0

2AN∗
3/2√

(l − 1/2 ± 1/2)(l + 3/2 ± 1/2)
P ′′

� .

All fis are proportional to the meson decay amplitudes. So
they can be used to separate the contributions from the state
with the same N and L as presented in Ref. [37].

In our approach, the photoexcitation helicity amplitudes
AN∗

1/2 and AN∗
3/2, as well as the decay amplitudes, are related

to the matrix elements of the electromagnetic interaction
Hamiltonian [12],

Aλ =
√

2π

k

〈
N∗; Jλ|He|N ;

1

2
λ − 1

〉
, (14)

Am
ν =

〈
N ;

1

2
ν|Hm|N∗; Jν

〉
. (15)

B. Configuration mixing

The amplitudes in Sec. II A are derived under the
SU(6)⊗O(3) symmetry. However, for physical states that
symmetry is broken. An example is the violation of the
Moorhouse rule [55]. In Ref. [39], a set of parameters CN∗

were hence introduced to take into account the breaking of
that symmetry, via following substitution:

ON∗ → CN∗ON∗ . (16)

In Refs. [39,40], those parameters were allowed to vary around
their SU(6)⊗O(3) values (|CN∗ | = 0 or 1). In this work,
instead of using those adjustable parameters, we introduce the
breakdown of that symmetry through the configuration mixing
of baryon wave functions.

To achieve such an improvement, we must choose a
potential model. As discussed in the Introduction, the most
popular ones are the OGE model [16–18] and the Goldstone
boson exchange model [27]. As shown in Refs. [31,32], these
two models give similar mixing angles for the negative-parity
resonances and the relevant observables. Here, we adopt the
OGE model that has been successfully used to study the
helicity amplitudes and decay widths [19] of resonances.

In OGE model, the Hamiltonian of system can be written
as [16–18],

H =
3∑

i=1

mi +
3∑

i=1

p2
i

2m2
i

+
3∑

i<j=1

1

2
Kr2

ij

+
3∑

i<j=1

U (rij ) + Hhyp, (17)
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where the mi is the “constituent” effective masse of quark
i and rij = ri − rj the separation between two quarks. The
confinement potential has two components: one written as
a harmonic oscillator potential ( 1

2Kr2
ij , with K the spring

constant) and an unspecified anharmonicity U (rij ), treated as
a perturbation.

The hyperfine part interaction is the sum of contact and
tensor terms,

Hhyp = 2αs

3m2
q

3∑
i<j=1

{
8π

3
Si · Sj δ3(rij )

+ 1

r3
ij

[
3Si · rij Sj · r ij

r2
ij

− Si · Sj

]}
. (18)

Here, Si is the spin of quark i and αs a normalization factor,
treated as free parameter [17].

The hyperfine interaction generates the configuration
mixing among the ground-state N2SS([56,O+]) and other
configurations, e.g., N2S ′

S([56′,O+]), N2SM ([70,O+]), and
N4DM ([70, 2+]). Here, the notation is X2S+1Lπ , where
X = N,�,�, . . . , S the total quark spin, L = S, P,D . . .

the total orbital angular momentum, and π = S,M , or A

the permutational symmetry (symmetric, mixed symmetry, or
antisymmetric, respectively) of the spatial wave function.

The first two terms in Eq. (17) can be rewritten as two
harmonic oscillators within the Jocabi coordinate. Its solution
is the well-known SU(6)⊗O(3) wave function. The breakdown
of the symmetry arises from the additional terms. Given that
the configuration mixing is mainly produced by the spin-
and flavor-dependent parts of Hamiltonian [32], here we
use a simple method to deal with the confinement terms in
Refs. [11,18], where three constants E0,�, and � are
introduced.

To illustrate the modifications of the scattering amplitudes
due to the SU(6)⊗O(3) symmetry breakdown, we give in the
following the explicit derivations in the case of the S11(1535)
resonance. In lines with Ref. [40], we express the amplitudes
AS11 in terms of the product of the photoexcitation and meson-
decay transition amplitudes,

AS11 ∝ 〈N |Hm|S11〉〈S11|He|N〉, (19)

where Hm and He are the meson and photon transition oper-
ators, respectively. The wave function can be written within
the SU(6)⊗O(3) symmetry for n � 2 shells as X2S+1LπJP

and configuration mixing, with JP the state’s total angular
momentum and parity,

|S11(1535)〉 = − sin θS

∣∣N4PM
1
2

−〉 + cos θS

∣∣N2PM
1
2

−〉
, (20)

|Nucleon〉 = c1

∣∣N2SS
1
2

+〉 + c2

∣∣N2S ′
S

1
2

+〉 + c3

∣∣N4DM
1
2

+〉
+ c4

∣∣N2SM
1
2

+〉 + c5

∣∣N2PA
1
2

+〉
, (21)

where θS and ci can be determined by the OGE model. If we
set c1 = 1 and c2,3,4,5 = 0 (so θS = 0), then the SU(6)⊗O(3)
symmetry is restored. The improvement compared to Ref. [40]
is that here we take into account the mixing not only in the

intermediate S11 resonance but also in the initial- and final-
state nucleon. Moreover, for other resonances, we also include
directly the configuration mixing of wave functions via OGE
model so we do not need to introduce the free parameters CN∗

[Eq. (16)].
The electromagnetic transition amplitudes then take the

following form:

〈S11|He|N〉 = c1
〈
S11

∣∣He

∣∣N2SS
1
2

+〉 + c2
〈
S11

∣∣He

∣∣N2S ′
S

1
2

+〉
+ c3

〈
S11

∣∣He

∣∣N4DM
1
2

+〉 + c4
〈
S11

∣∣He

∣∣N2SM
1
2

+〉
+ c5

〈
S11

∣∣He

∣∣N2PA
1
2

+〉
= c1 cos θ

〈
N2PM

1
2

−∣∣He

∣∣N2SS
1
2

+〉 + · · · . (22)

Here, the term 〈N4PM
1
2

−|He|N2SS
1
2

+〉 vanishes because of
the Moorhouse rule [55]. In Ref. [40], the mixing angles
are introduced also to give a nonzero value for contributions
from the D13(1700) resonance, but the nucleon wave function
includes only the n = 0 part, that is, c1 = 1, c2,3,4,5 = 0.
Moreover, the contribution of the D15(1675) (|N4DM

5
2

+〉
state) is zero, if we consider only the wave function up to n = 2.
Then, in Ref. [40], for this latter resonance a term identical to
the contribution to the η photoproduction on neutron target
was added by hands. In this work, the nucleon wave function
with n = 2 produces naturally a nonzero contribution with
the same form as for neutron target under the SU(6)⊗O(3)
symmetry.

Analogously, for meson decay amplitudes we get,

〈N |Hm|S11〉 = c1(cos θS − R sin θS)

× 〈
N2SS

1
2

+∣∣Hm

∣∣N2PM
1
2

−〉 + · · · (23)

and the ratio

R =
〈
N |Hm|N (4PM ) 1

2
−
〉

〈
N |Hm|N (2PM ) 1

2
−
〉 , (24)

is a constant determined by the SU(6)⊗O(3) symmetry.
Then, Eq. (19) reads,

AS11 = CS11

〈
N2SS

1
2

+|Hm|N2PM
1
2

−〉
× 〈

N2PM
1
2

−|He|N2SS
1
2

+〉 + · · · , (25)

where

CS11 = c2
1

(
cos2 θS − R sin θS cos θS

) + · · · . (26)

So, if we remove all n = 2 parts from the wave function of
the nucleon, as in Ref. [39], then the factor CS11 is a constant.
However, after other contributions are included, it becomes
dependent on the momenta k and q. In this work we keep this
dependence.

III. RESULTS AND DISCUSSION

With the formalism presented in Sec. II, we investigate
the process γp → ηp. A chiral constituent quark model was
proven [40] to be an appropriate approach to that end. That
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work embodied one free parameter per nucleon resonance to
take into account the breaking of the SU(6)⊗O(3) symmetry.
In the present work, this latter phenomenon is treated via
configuration mixing, reducing the number of adjustable
parameters. As in Ref. [40], we introduce resonances in n � 2
shells to study the η photoproduction in the center-of-mass
energy W � 2 GeV.

A. Fitting procedure

Using the CERN MINUIT code, we have fitted simultane-
ously the following data sets:

(i) Differential cross section: Database includes 1220 data
points for 1.49 <∼ W � 1.99 GeV from the following
labs: MAMI [1], CLAS [2], ELSA [3], LNS [4], and
GRAAL [5]. Only statistical uncertainties are used.

(ii) Polarized beam asymmetry: Polarized beam asymme-
tries (184 data points) for 1.49 <∼ W � 1.92 GeV from
GRAAL [5] and ELSA [6]. Only statistical uncertainties
are used.

(iii) Spectrum of known resonances: For spectrum of
known resonances, we use as input their PDG values
[26] for masses and widths, with the uncertainties re-
ported there plus an additional theoretical uncertainty of
15 MeV, as in Ref. [21], to avoid overemphasis of the
resonances with small errors. The database contains all
12 known nucleon resonances as in PDG, with M�
2 GeV, namely

n = 1: S11(1535), S11(1650),D13(1520),D13(1700)

and D15(1675)

n = 2: P11(1440), P11(1710), P13(1720), P13(1900),

F15(1680), F15(2000) and F17(1990)

In addition to the above isospin-1/2 resonances, we fitted
also the mass of �(1232) resonance. However, spin-3/2
resonances do not intervene in η photoproduction.

(iv) Additional resonance: Resonances with masses above
M ≈ 2 GeV, treated as degenerate, are simulated by a
single resonance, for which the mass, the width, and
the symmetry-breaking coefficient are left as adjustable
parameters.

The adjustable parameters, listed in Table I, are as fol-
lows: η nucleon coupling (gηNN ), mass of the nonstrange
quarks (mq), harmonic oscillator strength (α), QCD coupling
constant (αs), confinement constants (E0,�, and �), three
parameters M,�, and C∗

N related to the degenerate treatment
of resonances with masses above ≈2 GeV, and the strength
of the P13(1720) resonance. We will come back to this latter
parameter.

The spectrum of the known resonances put constraints on
six of the adjustable parameters. Five of them (mq, α, αs,�,
and �) are determined through an interplay between the mass
spectrum of the resonances and the photoproduction data via
the configuration mixings parameters ci [Eq. (22)] reported
in Appendix. The sixth one, E0, is determined by the mass
of nucleon. The coupling constant gηNN is determined by
photoproduction data. The parameter CP13(1720) is the strength

TABLE I. Adjustable parameters and their extracted values,
with mq, α, E0, �, �, M , and � in MeV.

Parameter Model A Model B

gηNN 0.391 0.449
mq 277 304
α 288 285
αs 1.581 1.977
E0 1135 1138
� 450 442
� 460 460

CP13(1720) 0.382 0.399
HM N∗:

M 1979 2129
� 124 80

CN∗ −0.85 −0.70
New S11:

M 1717
� 217

CN∗ 0.59
New D13:

M 1943
� 139

CN∗ −0.19
New D15:

M 2090
� 328

CN∗ 2.89
χ 2

DOF 12.37 2.31

of the P13(1720) resonance that we had to treat as adjustable
to avoid its too-large contribution resulting from direct
calculation. This latter parameter, as well as those defining
the higher mass resonance (HM N∗) are determined by the
photoproduction data. Note that, in fitting the photoproduction
data, we use the PDG [26] values for masses and widths of
resonances.

The complete set of adjustable parameters mentioned above
leads to our model A; see the third column in Table I, for which
the reduced χ2 turns out to be large (12.37).

In recent years, several authors [9,40,42–51] have put
forward need for new resonances in interpreting various
observables, with extracted masses roughly between 1.73
and 2.1 GeV. We have hence, investigated possible contri-
butions from three of them: S11,D13, and D15. For each
of those new resonances we introduce then three additional
adjustable parameters per resonance: mass (M), width (�),
and symmetry-breaking coefficient (CN∗ ). Fitting the same
database, we obtained a second model, called model B, for
which the adjustable parameters are reported in the last column
of Table I. The reduced χ2 is very significantly improved
going down from 12.37 to 2.31. In the rest of this section, we
concentrate on model B.

Extracted values within OGE model come out close to those
used by Isgur-Karl [18] and Capstick-Roberts [11]: E0 =
1150 MeV, � ≈ 440 MeV, � ≈ 440 MeV. For three
other parameters, Isgur and Capstick introduce δ =
(4αsα)/(3

√
2πm2

u), for which they get ≈300 MeV. Model B
gives δ ≈ 262 MeV.
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TABLE II. Extracted masses for known resonances. For each resonance, results of the present work (MOGE) are
given in the first line, predictions from Isgur and Karl for negative-parity [17] and positive-parity [18] excited baryons
in the second line, and PDG values [26] in the third line.

S11(1535) S11(1650) P11(1440) P11(1710) P13(1720) P13(1900)

MOGE 1473 1620 1428 1723 1718 1854
Refs. [17,18] 1490 1655 1405 1705 1710 1870

MPDG 1535 ± 10 1655+15
−10 1440+30

−20 1710 ± 30 1720+30
−20 1900

D13(1520) D13(1700) D15(1675) F15(1680) F15(2000) F17(1990)

MOGE 1511 1699 1632 1723 2008 1945
Refs. [17,18] 1535 1745 1670 1715 2025 1955
MPDG 1520 ± 5 1700 ± 50 1675 ± 5 1685 ± 5 2000 1990

For the three new resonances, we follow the method in
Ref. [39], as discussed in Sec. II B, via Eq. (16). The extracted
Wigner mass and width, as well as the strength for those
resonances are given in Table I.

For the new S11, the Wigner mass and width are consistent
with the values in Refs. [40,43,44,51], but the mass is lower,
by about 100 to 200 MeV, than findings by other authors
[22,42,46–48]. The most natural explanation would be that it is
the first S11 state in the n = 3 shell; however, its low mass could
indicate a multiquark component, such as a quasibound kaon-
hyperon [43] or a pentaquark state [56]. For the D13(1850),
the variation of χ2 is small. Interestingly, we find large effect
from a D15 state around 2090 GeV with a Wigner width of
330 MeV. It is very similar to the N (2070)D15 reported in
Refs. [3,9]. It can be explained as the first D15 state in n = 3
shell [3].

The results of baryon spectrum extracted from the present
work are reported in Tables II and III. Table II is devoted
to the known resonances. Our results are in good agreement
with those obtained by Isgur and Karl [17,18], and except
for the S11(1535) and D13(1520), fall in the ranges estimated
by PDG [26]. As mentioned in Introduction, issues related
to extracted masses via models and those compiled by the
PDG are under investigation [25]. The additional “missing”
resonances generated by the OGE model are shown in
Table III. The extracted masses are compatible with those
reported by Isgur and Karl [17,18].

In Table IV, we examine the sensitivity of our model to
its ingredients by switching off one resonance at a time and
noting the χ2, without further minimizations. As expected, the
most important role is played by the S11(1535), and the effects
of S11(1650) and D13(1520) turn out to be very significant.
Within the known resonances, the other two ones contributing

TABLE III. Predicted masses for “missing” negative-parity
excited baryon by the present work (MOGE) and by Isgur and
Karl [18].

P11 P11 P13 P13 P13 F15

MOGE 1899 2051 1942 1965 2047 1943
Ref. [18] 1890 2055 1955 1980 2060 1955

largely enough are F15(1680) and P13(1720). In addition to
those five known resonances, a new S11 appears to be strongly
needed by the data, whereas the smaller effect of a new D15 is
found to be non-negligible. Finally, higher mass resonance
(M >∼ 2 GeV) and a new D13 do not bring in significant
effects.

Our model B is built on resonances given in Table IV. In
Table V we investigate possible contributions from the missing
resonances (Table III). Here, we add them one by one to model
B without further minimizations. As reported in Table V, none
of them play a noticable role in the reaction mechanism. Please
note that for those resonances we use the masses that we
have determined. We have checked the changes of the χ2 by
varying those masses by ±100 MeV. Moreover, given that
there is no unique information available on their widths, we let
them vary between 100 MeV and 1 GeV. The effects of those
procedures on the reported χ2s (Table V) come out to be less
than 10%.

After having discussed above the s-channel contribution,
we end this section with a few comments. In our models,
nonresonant components include a nucleon pole term and
u-channel contributions, treated as degenerate to the harmonic
oscillator shell n. t-channel contributions due to the ρ and
ω exchanges [57], found [58] to be negligible, are not
included in the present work. Our finding about the effect of
higher mass resonances being very small supports the neglect
of the t channel, due to the duality hypothesis (see, e.g.,
Refs. [40,59]).

Finally, the target asymmetry (T ) data [60] are not included
in our database. Actually, those 50 data points bear too large
uncertainties to put significant constraints on the parameters
[58].

B. Differential cross section and Beam asymmetry

In Figs. 1, 2, and 3, we report our results for angular
distributions of differential cross sections, excitation functions,
and polarized-beam asymmetries (�), respectively. Results
for models A and B are shown in all three figures. The first
striking point is that model A compares satisfactorily with data
up to W <∼ 1.65 GeV but shows very serious shortcomings
above, especially in the range W ≈ 1.7 to 1.8 GeV. Model
B reproduces the differential cross-section and polarization
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TABLE IV. The χ 2s shown are the values after turning off the corresponding (known) resonance contribution
within the model B, for which χ 2 = 2.31.

Removed N∗ S11(1535) S11(1650) P11(1440) P11(1710) P13(1720) P13(1900)

χ 2 162 11.9 2.29 2.39 4.15 2.35
Removed N∗ D13(1520) D13(1700) D15(1675) F15(1680) F15(2000) F17(1990)

χ 2 9.83 2.29 2.24 4.82 2.33 2.31
Removed N∗ HM N∗ New S11 New D13 New D15

χ 2 2.50 12.69 2.63 3.88

data well enough, though some discrepancies appear at the
highest energies and most forward angles (W >∼ 1.85 and θ <∼
50◦).

In Fig. 1, we concentrate on the role played by the
three most relevant known resonances discussed in Sec. III A
(see Table IV), namely by removing one resonance at a
time within model B. The S11(1535) is by far the most
dominant resonance at lower energies and has sizable effects
up to W ≈ 1.8 GeV, whereas the S11(1650) shows significant
contributions only at intermediate energies. The D13(1520)
has less significant contribution, but its role is crucial in
reproducing the correct shape of the differential cross section,
especially at intermediate energies.

The importance of the other two known resonances, leading
to a significant increase of χ2 when switched off (see Table IV)
are illustrated in the left panel of Fig. 2. Although the P13(1720)
affects extreme angles around W ≈ 1.8 GeV, the F15(1680) is
visible only at a forward angle.

The right panel of Fig. 2 is devoted to the roles played
by the three new resonances. As mentioned above, the main
shortcoming of model A appears around W ≈ 1.7–1.8 GeV.
This undesirable feature is cured in model B, due mainly
to the new S11, the mass of which turns out to be
M = 1.717 GeV. Figure 2 illustrates the increase of χ2

(Table IV) when that resonance is switched off in model B.
Smaller contributions from the new D15 appear in the for-
ward hemisphere, whereas the new D13 has no significant
manifestation.

Polarized-beam asymmetry results are reported in Fig. 3.
As shown in the left panel of that figure, although model B
gives a better account of the data than model A, the contrast
is less important compared to the differential cross-section
observable. The S11(1535) continues playing a primordial role,
whereas the effect of S11(1650) tends to be marginal. This is
also the case (middle panel) for the known P13(1720) and miss-
ing P13(1942). The established importance of the D13(1520)
and F15(1680) (in left and middle panels, respectively) within
this observable appear clearly.

In the right panel of Fig. 3, we examine the case of three
new resonances. The new S11 gives sizable contributions
in the energy range corresponding roughly to its mass.
In contrast to the differential cross section, the new D13

appears to be significant in the backward hemisphere. Finally,
switching off the new D15 improves the agreement with
the data at most backward angles shown, whereas for the
cross section we get an opposite behavior. This isolated
contradiction reflects the relative weight of data for the
two observables (roughly six times more differential cross-
section data than polarization asymmetry, with comparable
accuracies).

This section, devoted to the observables of the the process
γp → ηp, in the energy range W <∼ 2 GeV, leads to the
conclusion that within our approach, the reaction mecha-
nism is dominated by five known and two new nucleon
resonances.

C. Helicity amplitudes and partial decay width

As discussed in Sec. IV [Eqs. (20), (21), and (25)], our
approach allows calculating the helicity amplitudes and the
partial decay width N∗ → ηN within a given model without
further adjustable parameters.

In Table VI we report on our results within model B,
for all n = 1 and 2 shell resonances generated by the quark
model and complemented with the OGE model. In that
table, the second and fourth columns show our results for
the helicity amplitudes. Those amplitudes are in line with
results from other similar approaches (see Tables I and II in
Ref. [11]).

Comparing our results for the dominant known resonances
of model B with values reported in PDG [26] (third and
fifth columns in Table VI) leads to following remarks: (i)
A1/2 amplitudes for S11(1535) and S11(1650), as well as A1/2

and A3/2 for D13(1520) and A3/2 for F15(1680) are in good
agreement with the PDG values. For this latter resonances

TABLE V. The χ 2s shown are the values after adding the corresponding (missing) resonance
contribution within model B, for which χ 2 = 2.31.

Added N∗ P11(1899) P11(2051) P13(1942) P13(1965) P13(2047) F15(1943)

χ 2 2.31 2.31 2.26 2.31 2.32 2.28
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TABLE VI. Helicity amplitudes and decay widths for resonances, with �PDG
ηN = �tot · BrηN in

PDG [26].

Resonances A1/2 APDG
1/2 A3/2 APDG

3/2 σ
√

�ηN (σ )
√

�PDG
ηN

S11(1535) 72 90 ± 30 7.05 (+)8.87+1.37
−1.37

S11(1650) 60 53 ± 16 −2.20 1.95+0.94
−1.57

P11(1440) 37 −65 ± 4

P11(1710) 27 9 ± 22 1.30 2.49+1.75
−0.88

P11 3 −1.64
P11 −2 −0.76

P13(1720) 194 18 ± 30 −72 −19 ± 20 2.07 2.83+1.04
−0.71

P13(1900) 33 1 −0.87 8.35+2.11
−2.20

P13 32 −2 1.80
P13 14 2 0.05
P13 −4 4 −0.73

D13(1520) −20 −24 ± 9 144 166 ± 5 0.30 0.51+0.07
−0.06

D13(1700) −6 −18 ± 13 2 −2 ± 24 −0.57 0.00+1.22
−0.00

D15(1675) −6 19 ± 8 −9 15 ± 9 −1.74 0.00+1.28
−0.00

F15(1680) 14 −15 ± 6 142 133 ± 12 0.44 0.00+1.18
−0.00

F15 −12 5 0.78
F15(2000) −1 13 −0.38

F17(1990) 6 1 8 4 −1.25 0.00+2.17
−0.00

the A1/2 has the right magnitude but the opposite sign with
respect to the PDG value. However, for that resonance A3/2

being much larger than A1/2, the effect of this latter amplitude
is not significant enough in computing the observables. The
amplitudes for P13(1720) deviate significantly from their PDG
values, as it is the case in other relevant approaches (see
Table II in Ref. [11]). Those large values produced by our
model forced us to leave the symmetry breaking coefficient

for P13(1720) as a free parameter (Table I) to suppress its
otherwise too-large contribution. As much as other known
resonances are concerned we get results compatible with the
PDG values for D13(1700) and F17(1990) and to a lesser extent
for D15(1675). For P11(1440) our value deviates significantly
from the PDG one. Once again, our result confirms the general
trend observed in other works (see Table II in Ref. [11]),
which very likely reflects the still unknown structure of that

FIG. 1. (Color online) Differential
cross section for the process γp → ηp.
The curves are for models A (dash-
dot-dotted) and B (full). The other
curves are obtained within model B by
switching off one resonances at a time:
S11(1535) (dashed), S11(1650) (dotted),
and D13(1520) (dash-dotted). The data are
from CLAS (squares) [2], ELSA (circles)
[3], Mainz (diamonds) [1], and GRAAL
(stars) [5].
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FIG. 2. (Color online) Differential cross sec-
tion for the process γp → ηp as a function of
W at three angles. The dash-dot-dotted and full
curves correspond to models A and B. All other
curves are obtained within model B by turning
off one known resonance or adding a missing
one. (Left panel) Switching off P13(1720) (dash-
dotted), F15(1680) (dashed); adding P13(1942)
(dotted). (Right panel) Switching off S11(1730)
(dash-dotted), D13(1850) (dotted), D15(1950)
(dashed). The data are from CLAS (squares) [2],
Mainz (diamonds) [1], LNS (uptriangles) [4].

resonance. Finally, we put forward predictions also for the
missing resonances, for which we find rather small ampli-
tudes, explaining the negligible roles played by them in our
model.

The sixth and seventh columns in Table VI show our results
and PDG values, respectively, for the partial decay widths of
resonances decay in the ηN channel, where σ is the sign for
πN → ηN as in Ref. [19]. Notice that the sign (σ ) in the PDG
is known only for S11(1535). Except for the two star resonance
P13(1900), the theoretical results are close to the PDG
values.

It is worthwhile noting that all dominated resonances in our
model B have large helicity amplitudes, whereas some of them
turn out to have rather small decay widths to the ηN channel.
This result indicates that in looking for appropriate reactions
to search for missing resonances it is not enough to have rather

sizable decay width, but one needs to put forward predictions
for the observables.

IV. SUMMARY AND CONCLUSIONS

A formalism bringing together a chiral constituent quark
approach and one-gluon-exchange model was presented and
used to derive photoexcitation helicity amplitudes and partial
decay width of the nucleon resonances.

Our approach gives a reasonable account of the measured
observables for the process γp → ηp from threshold to
W ≈ 2 GeV. Among the 12 nucleon resonances in that
energy range, compiled by PDG, 5 of them are found
to play crucial roles in the reaction mechanism, namely
S11(1535), S11(1650), P13(1720),D13(1520), and F15(1680).
However, those known resonances led to our model A, which

FIG. 3. (Color online) Polarized beam
asymmetry for the process �γp → ηp as a func-
tion of W . The curves in the left panel are as in
Fig. 1, and those in middle and right panels as in
Fig. 2. The data are from ELSA (full circles) [6]
and GRAAL (stars) [5].
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does not allow an acceptable description of the data. Five extra
resonances generated by the formalism, and known as missing
resonances, turn out to show no significant contributions to
the process under investigation. However, two new resonances
reported in the literature, S11 and D15, are found relevant
to that process; the most important effect comes from the
S11 resonance. We extracted the mass and width of those
resonances: S11 (1.730 GeV, 217 MeV), and D15 (2.090 GeV,
328 MeV). Our model B, embodying those latter resonances,
describes successfully the data.

The helicity amplitudes and decay widths are calculated
with the same parameters. Our results are compatible with
other findings and come out close to the PDG values in most
cases.

To go further, we are pursing our investigations in two
directions:

(i) In the present work the s-channel resonances with masses
above 2 GeV were treated as degenerate, given that the
transition amplitudes, translated into the standard CGLN
amplitudes, were restricted to harmonic oscillator shells,
n � 2. Recently, we have extended our formalism and
derived explicitly the amplitudes also for n = 3 to 6
shells. Model search, including all known one- to four-
star resonances in PDG, for W ≈ 2.6 GeV is in progress
[58].

(ii) Our constituent quark approach applied to the γp →
K+� channel [61] showed that the intermediate
meson-baryon states, treated within a coupled-channels
formalism [62], have significant effects on the pho-
toproduction observables [51]. A more sophisticated
coupling-channels treatment [63] was developed and was
applied to the η photoproduction reaction. Results of that
work will be reported elsewhere.
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APPENDIX: MIXING COEFFICIENTS OF THE WAVE
FUNCTIONS

In Table VII, we present the mixing coefficients of the wave
functions. Isgur and Karl [16,18] have given their explicit

TABLE VII. Mixing coefficients of the wave functions.

State Wave function(2S+1Lπ )

S11
2PM

4PM

N (1535) −0.851 0.526
N (1650) 0.526 0.851

P11
2SS

4DM
2PA

2S ′
S

2SM

N (938) 0.941 −0.043 −0.002 −0.260 −0.211
N (1440) 0.268 0.000 0.000 0.964 0.006
N (1710) 0.175 −0.343 −0.071 −0.054 0.919

−0.103 −0.839 −0.424 0.031 −0.324
N (2100) −0.032 −0.421 0.903 0.010 −0.080

P13
2DS

2DM
4DM

2PA
4SM

N (1720) 0.858 −0.483 0.023 −0.003 −0.176
N (1900) 0.314 0.234 −0.365 0.095 0.839

−0.185 −0.482 0.606 −0.333 0.505
0.359 0.686 0.496 −0.387 −0.065

−0.059 −0.096 −0.502 −0.854 −0.073

D13
2PM

4PM

N (1520) −0.994 −0.111
N (1700) −0.111 0.994

D15
4PM

N (1675) 1.000

F15
2DS

2DM
4DM

N (1680) 0.883 −0.469 0.001
−0.457 −0.860 −0.225

N (2000) −0.107 −0.198 0.974

F17
4DM

N (1990) 1.000

values for positive-parity and negative-parity resonances,
respectively. But in Ref. [16] the mixing between n = 0 and
n = 2 shells is not considered. Such mixings for the ground
state are given in Ref. [19] without the contribution of 2PA.
The parameters in that reference are determined only by the
mass spectrum. Here we give our results by fitting both the
mass spectrum and the η photoproduction observables. In
calculation we follow the conventions in Ref. [19].

The mixing coefficients reported here lead to mixing angles
�S = −31.7◦ and �D = 6.4◦, in agreement with results from
other authors [15,34,64,65].
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[51] B. Juliá-Dı́az, B. Saghai, T.-S. H. Lee, and F. Tabakin, Phys.

Rev. C 73, 055204 (2006).
[52] G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys.

Rev. 106, 1345 (1957).
[53] R. L. Walker, Phys. Rev. 182, 1729 (1969).
[54] V. Chaloupka et al. (Particle Data Group), Phys. Lett. B50, 1

(1974).
[55] R. G. Moorhouse, Phys. Rev. Lett. 16, 772 (1966).
[56] B. S. Zou, Nucl. Phys. A790, 110 (2007).
[57] M. Benmerrouche, N. C. Mukhopadhyay, and J. F. Zhang, Phys.

Rev. D 51, 3237 (1995).
[58] J. He, B. Saghai, Z. Li, Q. Zhao, and J. Durand, Eur. Phys. J. A

35, 321 (2008); comprehensive paper in preparation.
[59] P. Collins, An Introduction to Regge Theory and High

Energy Physics (Cambridge University Press, New York, 1977);
B. Saghai and F. Tabakin, Phys. Rev. C 53, 66 (1996).

[60] A. Bock et al., Phys. Rev. Lett. 81, 534 (1998).
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[63] J. Durand, B. Juliá-Dı́az, T.-S. H. Lee, B. Saghai, and T. Sato,

Phys. Rev. C 78, 025204 (2008).
[64] S. Capstick and W. Roberts, Fizika B 13, 271 (2004).
[65] I. K. Bensafa, F. Iddir, and L. Semalala, arXiv: hep-ph/0511195.

035204-11


