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K K̄ N molecule state with I = 1/2 and J P = 1/2+ studied with a three-body calculation
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A KK̄N system with I = 1/2 and J P = 1/2+ is investigated with nonrelativistic three-body calculations by
using effective K̄N, KK̄ , and KN interactions. The K̄N interaction describes the �(1405) as a K̄N molecule,
and the KK̄ interaction is adjusted to give f0(980) and a0(980) states as KK̄ molecules. The present investigation
suggests that a bound KK̄N state can be formed below the KK̄N threshold (1930 MeV) with a 90 ∼ 100 MeV
width of three-hadron decays, which are dominated by KK̄N → Kπ� and πηN . The KK̄N state is found to
be a weakly bound hadron molecular state with a size larger than an α particle because of the repulsive KN

interactions.
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I. INTRODUCTION

Exploring composite systems of mesons and baryons is a
challenging issue both in theoretical and experimental hadron-
nuclear physics. One of the historical examples in two-hadron
systems is �(1405) as a quasibound state of K̄N [1]. For
mesonic resonances, the scalar mesons, f0(980) and a0(980),
are also the candidates of the hadronic molecular states [2].
Baryon resonances as three-hadron systems have been also
investigated theoretically for systems of πKN [3–5], πK̄N

[6], and K̄K̄N [7,8]. Based on the idea to regard �(1405) as a
K̄N quasibound state [9,10], bound systems of a few nucleons
with antikaon were investigated in Refs. [9–16].

Recently a baryonic resonance with JP = 1/2+ and S =
−2 composed by K̄K̄N has been studied in details by the
authors in Ref. [8] based on three-body calculation with
attractive K̄N interactions given by Refs. [9,15,17]. In this
system, the antikaons play unique roles, because they have
enough attraction with the nucleon to form a quasibound state
as �(1405) and possess so heavy mass to provide small kinetic
energy in the K̄K̄N system. The quasibound state of K̄K̄N

has a characteristic structure that one of the antikaons forms
�(1405) with the nucleon [�(1405) cluster] as seen also in
K−pp system [12], and the other antikaon spreads for long
distance. This structure is caused by strong K̄N attraction with
I = 0.

In this article, we explore quasibound states of the KK̄N

system with I = 1/2 and JP = 1/2+, assuming that the K̄N

and KK̄ systems have enough attractions to form quasibound
states of �(1405) in I = 0 and f0(980) [a0(980)] in I = 0
(I = 1), respectively. We use the effective interactions of K̄N

extracted by Akaishi-Yamazaki (AY) [9,15] and Hyodo-Weise
(HW) [17] in phenomenological way and chiral dynamics, re-
spectively. These interaction provide �(1405) as a quasibound
state with I = 0 and also weak attraction in the I = 1 channel.
The effective KK̄ interactions are adjusted to reproduce the
masses and the widths of f0(980) and a0(980) as the KK̄

molecular states. The KN interactions are known to have
strong repulsion in I = 1 channel. We use the KN potential
fitted by deduced scattering lengths.

The “fate” of the KK̄N molecular state strongly depends on
its binding energy. If the energy of the KK̄N system is above
the lowest threshold of the subcomponents, the KK̄N states

can decay to the subcomponents and the width gets very large.
If the KK̄N state is bound with moderate binding energy
below all the thresholds of �(1405) + K, f0(980) + N , and
a0(980) + N , the state is quasistable against these decay modes
and has comparable decay width with those of the two-particle
subsystems. For more deeply bound KK̄N system, because the
constituents largely overlap each other, the molecular picture
may be broken down and two-body decays are enhanced.

Having strong attractions in K̄N and KK̄ subsystems, it
is naturally expected that KK̄N forms a hadron molecule
below the thresholds of �(1405) + K and f0(a0) + N . The
question arising here is whether the attractions are so strong
that the hadronic molecular picture breaks down in deeply
bound state and the quasibound state has large width, or in
opposite direction, whether or not the repulsion of KN is too
strong for spoiling the bound state.

In Sec. II, we describe the framework of the present
calculations. We apply a variational approach with a Gaussian
expansion method [18] to solve the Schrödinger equation of
the three-body system. By treating the imaginary potentials
perturbatively, we find the KK̄N quasibound state. In Sec. III,
we present our results of the three-body calculation. In analysis
of the wave functions, we discuss the structure of the KK̄N

state. Section IV is devoted to summary of this work.

II. FORMULATION

We apply a nonrelativistic three-body potential model for
the KK̄N system. The effective two-body interactions are
given in local potential forms. The KK̄N wave function is
calculated by solving Schrödinger equation with a Gaussian
expansion method for the three-body system. In this section,
we briefly explain the formulation and interactions used in
the present work. The details of the formulation and the K̄N

interaction are discussed in Ref. [8].

A. Hamiltonian

In the present work, the Hamiltonian for the KK̄N system
is given by

H = T + V (1)

V ≡ VK̄N (r1) + VKN (r2) + VKK̄ (r3), (2)
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FIG. 1. Three Jacobian coordinates of the KK̄N system.

with the kinetic energy T and the potential energy V , which
consists of the effective K̄N interaction VK̄N , the KN inter-
action VKN , and the KK̄ interaction VKK̄ . These interactions
are given by �-independent local potentials as functions of
K̄-N,K-N , and K-K̄ distances, r1, r2, and r3 defined by r1 =
|xK̄ − xN |, r2 = |xN − xK |, and r3 = |xK − xK̄ |, respectively,
with spatial coordinates xK, xK̄ , xN for the kaon, the antikaon,
and the nucleon. For convenience, we introduce Jacobian
coordinates, rc and Rc, in three rearrangement channels
c = 1, 2, 3 as shown in Fig. 1. We assume isospin symmetry
in the effective interactions, and we also neglect the mass
difference among K±, K̄0, and K0, and that between proton
and neutron by using the averaged masses, MK = 495.7 MeV
and MN = 938.9 MeV. We do not consider three-body
forces nor transitions to two-hadron decays, which will be
important if the constituent hadrons are localized in a small
region.

The kinetic energy T is simply given by the Jacobian
coordinates with one of the rearrangement channels as

T ≡ −1

2µrc

∇2
rc

+ −1

2µRc

∇2
Rc

, (3)

with the reduced masses µrc
and µRc

for the corresponding
configuration, for instance, µr1 = MKMN/(MK + MN ) and
µR1 = MK (MK + MN )/(2MK + MN ) for the rearrangement
channel c = 1.

The effective interactions, VK̄N, VKN , and VK̄K̄ , are ob-
tained by s-wave two-body scattering with isospin symmetry.
The explicit expression of the effective interactions will be
given in Sec. II B. Open channels of K̄N and KK̄ (π�

and π� for K̄N , ππ and πη for KK̄) are implemented
effectively to the imaginary parts of the interactions VK̄N and
VKK̄ . Consequently, the Hamiltonian (1) is not Hermitian. In
solving Schrödinger equation for KK̄N , we first take only
the real part of the potentials and obtain wave functions in a
variational approach. Then we calculate bound-state energies
E as expectation values of the total Hamiltonian (1) with
respect to the obtained wave functions. The widths of the
bound states are evaluated by the imaginary part of the complex
energies as � = −2ImE.

B. Effective interactions

In this subsection, we explain the details of the effective
interactions of the K̄N,KK̄ , and KN two-body subsystems in
our formulation. The interaction parameters and the properties
of the two-body subsystems are listed in Table I.

TABLE I. The interaction parameters and the properties of two-
body systems. The energies (E) are evaluated from the corresponding
two-body threshold. They are calculated by treating the imaginary
part of the two-body potentials perturbatively. We also list the
root-mean-square two-body distances of the K̄N (I = 0), KK̄(I =
0) and KK̄(I = 1) states, which correspond to �(1405) and
f0(980), a0(980), respectively. For the KK̄ interactions, we show
the scattering lengths obtained in the present parameters.

Parameter set of interactions
(A) (B)

K̄N HW-HNJH AY

b (fm) 0.47 0.66
UI=0

KN (MeV) −908 − 181i −595 − 83i

UI=1
KN (MeV) −415 − 170i −175 − 105i

K̄N (I = 0) state
ReE (MeV) −11 −31
ImE (MeV) −22 −20
K̄-N distance (fm) 1.9 1.4

KK̄ KK(A) KK(B)

b (fm) 0.47 0.66

U
I=0,1
KK̄

(MeV) −1155 − 283i −630 − 210i

KK̄(I = 0, 1) state
ReE (MeV) −11 −11
ImE (MeV) −30 −30
K-K̄ distance (fm) 2.1 2.2

KN KN(A) KN(B)

b (fm) 0.47 0.66

UI=0
KN (MeV) 0 0

UI=1
KN (MeV) 820 231

aI=0
KN (fm) 0 0

aI=1
KN (fm) −0.31 −0.31

1. K̄ N interaction

In this work, we use the same K̄N potential as used in
Ref. [8] for the K̄K̄N calculations. We consider two different
effective K̄N interactions to estimate theoretical uncertainties.
These two interactions were derived in different ways. One of
the K̄N interaction that we use is given by Hyodo and Weise in
Ref. [17] and was derived based on the chiral unitary approach
for s-wave scattering amplitude with strangeness S = −1. The
other interaction is Akaishi-Yamazaki (AY) potential derived
phenomenologically by using K̄N scattering and kaonic
hydrogen data and reproducing the �(1405) resonance as a
K−p bound state at 1405 MeV [9,15]. Both K̄N interactions
have so strong attraction in I = 0 as to provide the �(1405)
as a quasibound state of the K̄N system, and have weak
attraction in I = 1. Hereafter we refer the quasibound K̄N

state as {K̄N}I=0.
The potential is written in a one-range Gaussian form as

VK̄N = UI=0
K̄N

exp[−(r/b)2]PK̄N (I = 0)

+UI=1
K̄N

exp[−(r/b)2]PK̄N (I = 1), (4)
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with the isospin projection operator PK̄N (I = 0, 1) and the
range parameter b. The potential depth UI

K̄N
are given in a

complex number reflecting the effects of the open channel of
π� and π�. The numbers for b and UI

K̄N
are given in Table I.

For the Hyodo-Weise potential, we use the parameter set
referred as HNJH in Ref. [17], which was obtained by the
chiral unitary model with the parameters of Ref. [19]. We
refer this potential as the HW-HNJH potential. The energy of
the HW-HNJH potential is fixed at ω = MK + MN − 11 MeV,
which is the resonance position of �(1405), because the energy
dependence in the potential is small in the region of ω =
1400 MeV to the K̄N threshold, and it was found in Ref. [8]
that the results for the K̄K̄N system were not sensitive to
the choice of the energy. In the present system, we have also
calculated the bound state energy with the K̄N potential for
the K̄N energy at the threshold ω = MK + MN and confirmed
that the energy (ω) dependence of the HW-HNJH potential is
small in the result.

The important difference between the two interactions of
AY and HW-HNJH is the binding energy of the K̄N system. In
chiral unitary approaches for the meson-baryon interactions,
the �(1405) resonance is described as a K̄N quasibound state
[20] located at ω ∼ 1420 MeV in K̄N scattering amplitude
[21]. This is a consequence of the double pole nature that
�(1405) is described by superposition of two poles as found
in Refs. [21–23]. For the AY potential, the �(1405) resonance
was reproduced at ∼1405 MeV as the Particle Date Group
(PDG) reported. Thus, the AY potential has stronger attraction
in I = 0 than the HW-HNJH potential. The properties of
the K̄N two-body system obtained by these potentials are
summarized in Table I.

It is interesting pointing out that the real energy calculated in
the perturbative treatment with the HW-HNJH agrees with the
resonance position of the K̄N → K̄N scattering amplitude
with I = 0 shown in Ref. [17]. There with the energy-
dependent local effective potential, which is used in the present
work with energy fixing, they have calculated the K̄N → K̄N

scattering amplitude with I = 0. For this scattering amplitude,
the resonance position, where the real part of the amplitude
crosses zero and the imaginary part is maximum, can be read
as around 1425 MeV, which corresponds to −9 MeV measured
from the threshold.

2. K K̄ interaction

The KK̄ interaction is derived in the present work under
the assumption that KK̄ forms quasibound states in I = 0 and
I = 1, which correspond to f0(980) and a0(980), respectively.
Thus, we use strong effective single-channel KK̄ interactions
that reproduce the masses and widths of f0(980) and a0(980)
as the quasibound KK̄ states. We refer the quasibound KK̄

states as {KK̄}I=0,1.
We take the one-range Gaussian form,

V
I=0,1
KK̄

(r) = U
I=0,1
KK̄

exp[−(r/b)2]PKK̄ (I = 0, 1), (5)

where the range parameter b is chosen to be the same
value as that of the K̄N interaction. We adjust the strength
U

I=0,1
KK̄

to fit the f0(980) and a0(980) masses and the widths
with the energies of two-body calculations of the KK̄

system. The PDG reports [24] the f0(980) and a0(980) have
980 ± 10 MeV and 984.6 ± 1.2 MeV masses with the 40–
100 MeV and 50–100 MeV widths, respectively, in average
of the compilation of the experimental data. The dominant
decay modes are ππ for f0(980) and πη for a0(980). We take
the mass 980 MeV and the width 60 MeV as the inputs to
determine the KK̄ interactions in both the I = 0 and I = 1
channels. Then we get U

I=0,1
KK̄

= −1155 − 283i MeV for b =
0.47 fm and U

I=0,1
KK̄

= −630 − 210i MeV for b = 0.66 fm,
by fitting the energies of the KK̄ bound states to the meson
masses and the widths. We refer to the former potential as
KK(A) and the latter as KK(B). In this phenomenological
single-channel interaction, the effect of the two-meson decays
such as ππ and πη decays is incorporated in the imaginary
part of the effective KK̄ interaction.

In the present parametrization of the KK̄ potential, we have
fitted the potential strengths to reproduce the PDG values of the
f0(980) and a0(980) masses as bound-state energies of KK̄

calculated with the perturbative treatment of the imaginary
potential. When we directly calculate the pole position of the
KK̄ scattering amplitude in Lippmann-Schwinger equation
with the present potential, we get the value 998 − 32i MeV
for the parameter set (A). This is obtained above the KK̄

threshold in the first Riemann sheet as a virtual state. Namely
the KK̄ channel is closed and this resonance is not one
decaying to KK̄ even though it locates energetically above the
threshold. The pole obtained here is consistent with the pole
position of scattering amplitude calculated by the chiral unitary
approach [25,26]. In the chiral unitary approach, s-wave
scattering amplitudes with I = 0 and I = 1 were reproduced
well by coupled channels of ππ, πη, and KK̄ . The f0(980)
and a0(980) meson are obtained as the resonance poles at
993.5 MeV for f0(980) and 1009.2 MeV for a0(980) [26]. The
f0 is described dominantly by KK̄ scattering, whereas for a0

the πη scattering is also important as well as KK̄ scattering.
These values are slightly higher than the masses reported by
PDG, which are given by the peak position of the spectra. We
will discuss ambiguity of the KK̄ interactions in later section.

3. K N interaction

We construct the KN interaction based on deduced KN

scattering lengths from the KN phase shifts [27]. The KN

interactions are known to be strong repulsion in the I =
1 channel and very weak in the I = 0 channel. The experi-
mental values of the scattering lengths for the I = 0 and I = 1
channels are aI=0

KN = −0.035 fm and aI=1
KN = −0.310 ± 0.003

fm [27]. In the present calculation, we assume no interaction in
the I = 0 channel. For the I = 1 channel, we use phenomeno-
logical interaction with the one-range Gaussian form again,

V I=1
KN (r) = UI=1

KN exp[−(r/b)2]PNK (I = 1), (6)

where the range parameter b is chosen to be the same
value as that of the K̄N interaction. We adjust the strength
UI=1

KN to reproduce the experimental scattering strength and
obtain UI=1

KN = 820 MeV and UI=1
KN = 231 MeV for b =

0.47 fm and b = 0.66 fm, respectively. We refer to the former
parametrization as KN(A) and to the latter one as KN(B).
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C. Three-body wave function

The three-body KK̄N wave function 	 is described as
a linear combination of amplitudes 


(c)
IKK̄

(rc, Rc) of three
rearrangement channels c = 1, 2, 3 (Fig. 1) with a label IKK̄

for the total isospins of the KK̄ subsystem. In the present
calculation, we take the model space limited to lc = 0 and
Lc = 0 of the orbital-angular momenta for the Jacobian
coordinates rc and Rc in the channel c because of the fact that
the effective local potentials used in the present calculations
are derived in consideration of the s-wave two-body dynamics.
Then the wave function of the KK̄N system with I = 1/2 and
JP = 1/2+ is written as

	 =
∑
c,IKK̄



(c)
IKK̄

(rc, Rc)
[
[KK̄]IKK̄

N
]
I=1/2, (7)

where the [[KK̄]IKK̄
N ]I=1/2 specifies the isospin configuration

of the wave function 

(c)
IKK̄

(rc, Rc), meaning that the total
isospin 1/2 for the KK̄N system is given by combination
of total isospin IKK̄ for the KK̄ subsystem and isospin 1/2 for
the nucleon.

The wave function of the KK̄N system is obtained by
solving the Schrödinger equation,

[T + VK̄N (r1) + VKN (r2) + VKK̄ (r3) − E]	 = 0. (8)

In solving the Schrödinger equation for the KK̄N system, we
adopt the Gaussian expansion method for three-body systems
given in Ref. [18] as the same way as done in Ref. [8].
The spatial wave function 


(c)
IKK̄

(rc, Rc) of each rearrangement
channel and KK̄ isospin is written in terms of two Gaussian
basis functions, φG

n (r) and ψG
n (R), as



(c)
IKK̄

(rc, Rc) =
nmax,Nmax∑

nc,Nc

A
c,IKK̄

nc,Nc
φG

nc
(rc)ψG

Nc
(Rc), (9)

where nmax and Nmax are the numbers of the Gaussian basis
and the basis functions are defined by

φG
n (r) = Nne

−νnr
2
, (10)

ψG
n (R) = NNe−λN R2

, (11)

with the normalization constants given by Nn =
2(2νn)3/4π−1/4 and NN = 2(2λN )3/4π−1/4, and the Gaussian
ranges, νn and λN , given by

νn = 1/r2
n, rn = rmin

(
rmax

rmin

) n−1
nmax−1

, (12)

λN = 1/R2
N, RN = Rmin

(
Rmax

Rmin

) N−1
Nmax−1

. (13)

We use the parameters rmin, Rmin = 0.2 fm and rmax, Rmax =
20 fm and nmax, Nmax = 15 for all the channels, c = 1, 2, 3.
The coefficients A

c,IKK̄

nc,Nc
are determined by variational principle

when we solve the Schrödinger equation.
We treat the imaginary part of the potentials perturbatively.

We first calculate the wave function for the real part of the
Hamiltonian (H Re) with variational principle in the model
space of the Gaussian expansion (9). After this variational
calculation, we take the lowest-energy solution. The binding

energy B(KK̄N ) of the three-body system is given as
B(KK̄N ) = −ERe.

Next we estimate the imaginary part of the energy for the
total Hamiltonian by calculating the expectation value of the
imaginary part of the Hamiltonian with the obtained wave
function 	:

EIm = 〈	|ImVK̄N + ImVKK̄ |	〉. (14)

The total energy is given as E = ERe + iEIm, and the decay
width is estimated as � = −2EIm. In the present calculation,
we have only three-body decays such as π�K̄, π�K̄, ππN ,
and ηπN decays for the KK̄N state by the model setting.

The perturbative treatment performed above is justified
qualitatively in the case of |〈	|ImV |	〉| � |〈	|ReV |	〉|. In
the two-body systems, K̄N and KK̄ , we find that this condition
is satisfied reasonably, observing that |〈ImVK̄N 〉| ∼ 20 MeV is
much smaller than |〈ReVK̄N 〉| ∼ 100 MeV, and |〈ImVKK̄〉| ∼
30 MeV is also smaller than |〈ReVKK̄〉| ∼ 100 MeV. Also in
the case of the KK̄N system, it is found that the absolute
values of the perturbative energy |〈	|ImV |	〉| ∼ 50 MeV is
much smaller than the real potential energy |〈	|ReV |	〉| ∼
200 MeV in the present calculations. In the Appendix, we
discuss the correspondence of the complex energy obtained by
the perturbative treatment to that calculated with fully treated
imaginary potential in complex energy plane in the case of the
two-body systems in more details. There we will see that the
imaginary energies obtained in both methods are very similar,
whereas the real energies can be slightly pushed up due to
higher-order corrections of the perturbative expansion.

We calculate partial energies for two-body subsystems
(K̄N,KK̄ , and KN ) in the KK̄N state with the two-body
Hamiltonians as

EK̄N ≡ 〈	|TK̄N + VK̄N |	〉,
EKK̄ ≡ 〈	|TKK̄ + VKK̄ |	〉, (15)

ENK ≡ 〈	|TKN + VNK |	〉,
where TK̄N, TKK̄ , and TKN are the kinetic energies for the
relative K̄N,KK̄ , and KN motion, respectively, given by

TK̄N = −1

2µr1

∇2
r1
, (16)

TKK̄ = −1

2µr3

∇2
r3
, (17)

TKN = −1

2µr2

∇2
r2
. (18)

We note that the sum of the kinetic energies TK̄N + TKK̄ +
TKN is not equal to the total kinetic energy T . We also calculate
the partial energy for the s-wave component of the two-body
K̄N subsystem defined by

E l1=0
K̄N

≡ 〈P (l1 = 0)	|TK̄N + VK̄N |P (l1 = 0)	〉
〈P (l1 = 0)	|P (l1 = 0)	〉 , (19)

where P (l1 = 0) is the projection operator to l1 = 0 ⊗ L1 = 0
space, whose basis has the orbital-angular momenta l1 = 0
and L1 = 0 for the coordinates r1 and R1 in the rearrangement
channel c = 1. We emphasize that the real part of the partial
energy E is inevitably larger than the lowest energy of the
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two-body energy eigenstates. This is because the partial
energy is calculated by the expectation value of the two-body
Hamiltonian as given in Eq. (15), and the relative two-body
wave function in the three-body system can be expanded by the
two-body energy eigenstates. In case of the K̄N subsystem,
for which the lowest energy is −11 MeV for the quasibound
K̄N state, EK̄N � − 11 MeV and E l1=0

K̄N
� − 11 MeV should

be always satisfied.
We also introduce quantities characterizing the structure of

the three-body system, such as spatial configurations of the
constituent particles and probabilities to have specific isospin
configurations. These values are calculated as expectation
values of the wave functions.

The root-mean-square (rms) radius of the KK̄N state is
defined as the average of the distribution of K, K̄ , and N by

rKK̄N =
√

〈	| 1
3

(
x2

K + x2
K̄

+ x2
N

)|	〉, (20)

which is measured from the center-of-mass of the three-body
system. The rms values of the relative distances between two
particles are calculated by

dK̄N =
√

〈	|r2
1|	〉, (21)

dKN =
√

〈	|r2
2|	〉, (22)

dKK̄ =
√

〈	|r2
3|	〉. (23)

Here r1, r2, and r3 are the K̄N,KN , and KK̄ distances,
respectively.

The probabilities for the three-body system to have the
isospin IKK̄ states are introduced as

�
(
[KK̄]IKK̄

) ≡ 〈	|PK̄ (IKK̄ )|	〉, (24)

where PKK̄ (IKK̄ ) is the projection operator for the isospin
configuration [[KK̄]IKK̄

N ]I=1/2, as introduced before. We
calculate the probabilities that the three-body system has
the isospin configurations of [[K̄N ]IK̄N

]I=1/2, where the total
isospin 1/2 is given by combination of total isospin IK̄N for
the K̄N subsystem and the kaon isospin 1/2:

�
(
[K̄N ]IK̄N

) ≡ 〈	|PK̄N (IK̄N )|	〉, (25)

where PK̄N (IK̄N ) is again the isospin projection operator.

III. RESULTS

In this section, we show the results of investigation of the
KK̄N system with I = 1/2 and JP = 1/2+. We consider
two parameter sets (A) and (B) for the two-body interactions
listed in Table I. For the K̄N interactions, we use (A) the
HW-HNJH potential and (B) the AY potential. For the KK̄ and
KN interactions, we use the phenomenological interactions
derived in Sec. II B2 and II B3: KK(A) and KN(A) for set (A),
and KK(B) and KN(B) for set (B). In addition, we study the
effect of the KN repulsion by switching off the KN interaction
in the parameter sets (A) and (B).

TABLE II. Energies of the KK̄N states calculated with the
parameter sets (A) and (B) given in Table I. The results without the
KN repulsive interaction are also shown. Contributions of V

I=0,1
K̄N

and
V

I=0,1
KK̄

to the imaginary energy are separately listed. Partial energies,
kinetic energies, and potential energies for two-body subsystems
in the KK̄N state are also shown. Details of the definitions are
explained in the text.

Parameter set (A) (A) (B) (B)
VK̄N HW-HNJH HW-HNJH AY AY
VKN On Off On Off

ReE −19 −39 −41 −57
〈T 〉 169 282 175 227
〈ReV 〉 −188 −320 −216 −284

ImE −44 −72 −49 −63

〈ImV I=0
K̄N

〉 −17 −30 −19 −23

〈ImV I=1
K̄N

〉 −1 0 0 0

〈ImV I=0
KK̄

〉 −1 −10 −4 −10

〈ImV I=1
KK̄

〉 −25 −31 −25 −31

〈TK̄N 〉 113 185 131 157

〈ReV I=0
K̄N

〉 −87 −152 −139 −162

〈ReV I=1
K̄N

〉 −2 0 0 0

ReEK̄N 25 33 −9 −4

ReE l1=0
K̄N

−6 −4 −28 −27

〈TKK̄〉 104 162 86 115

〈ReV I=0
KK̄

〉 −4 −42 −11 −31

〈ReV I=1
KK̄

〉 −101 −127 −75 −92

ReEKK̄ −1 −7 −1 −7

〈TKN 〉 59 108 55 83

〈ReV I=0
KN 〉 0 0 0 0

〈ReV I=1
KN 〉 6 0 10 0

ReEKN 65 108 65 83

A. Properties of K K̄ N state

First, we find that, in both calculations (A) with the
HW-HNJH and (B) with the AY potentials, the KK̄N

bound state is obtained below all threshold energies of the
{K̄N}I=0 + K, {KK̄}I=0 + N and {KK̄}I=1 + N channels,
which correspond to the �(1405) + K, f0(980) + N , and
a0(980) + N states, respectively.1 This means that the obtained
bound state is stable against breaking up to the subsystems. We
show the level structure of the KK̄N system measured from
the K + K̄ + N threshold in Fig. 2. The values of the real and
imaginary parts of the obtained energies are given in Table II.
The imaginary part of the energy is equivalent to the half width
of the quasibound state. The contribution of each decay mode

1In the present calculation, because the KK̄ interaction is adjusted
to reproduce the f0 and a0 scalar mesons having the same mass and
width, it is independent of the total isospin of the KK̄ subsystem and
the thresholds of f0(980) + N and a0(980) + N are obtained as the
same value.
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FIG. 2. Level structure of the KK̄N system calculated with (a)
the HW-HNJH potential and (b) the AY potential. The energies are
measured from the K + K̄ + N threshold located at 1930 MeV. The
KK̄N bound state is denoted by KK̄N . The calculated thresholds
of the two-body decays to {KK̄}I=0,1 + N and {K̄N}I=0 + K are
denoted by a0(980) + N and �∗

1405 + K , respectively. The results
obtained without the KN repulsion are also shown.

to the imaginary energy is shown as an expectation value of
the imaginary potential 〈ImV 〉 and the results obtained without
the KN interaction are also given.

Let us discuss first the results with the KN interaction
in detail. The binding energy of the KK̄N state measured
from the three-body K + K̄ + N threshold is larger in the
result with (B) than that with (A), as found to be −19 MeV
and −41 MeV in the cases of (A) and (B), respectively.
This is because the AY potential gives a deeper binding of
the {K̄N}I=0 state than the HW-HNJH potential due to the
stronger K̄N attraction. These values have meaning just for
the position of the quasibound state in spectrum. It is more
physically important that the KK̄N bound state appears about
10 MeV below the lowest two-body threshold, {K̄N}I=0 + K ,
in both cases (A) and (B). This energy is compatible to nuclear
many-body system, and it is considered to be weak binding
energy in the energy scale of hadron system. This weak binding
system has the following significant feature. The width of the
KK̄N state is estimated to be � ∼ 90 MeV from the imaginary
part of the energy. Comparing the results of the KK̄N with
the properties of the two-body subsystems shown in Table I, it
is found that the real and imaginary energy of the KK̄N state
is almost given by the sum of those of �(1405) and a0(980)
[or f0(980)], respectively. This indicates that two subsystems,
K̄N and KK̄ , are as loosely bound in the three-body system
as they are in two-body system.

The decay properties of the KK̄N state can be discussed by
the components of the imaginary energy. As shown in Table II,
among the total width � = −2EIm ∼ 90 MeV, the imaginary
potentials of the K̄N with I = 0 and the KK̄ with I = 1 give
large contributions as about 40 and 50 MeV, respectively. The
former corresponds to the �(1405) decay channel and gives
the K̄N → π� decay mode with I = 0. The latter is given
by the a0(980) decay, which is dominated by KK̄ → πη. In
contrast, the K̄N (I = 1) and the KK̄ (I = 0) interactions
provide only small contributions to the imaginary energy. This
is because, as we will see later, the K̄N subsystem is dominated
by the I = 0 component due to the strong K̄N attraction and
the KK̄ subsystem largely consists of the I = 1 component as

a result of the three-body dynamics. The small contributions
of the K̄N (I = 1) and the KK̄ (I = 0) interactions to the
imaginary energy implies that the decays to π�K and ππN

are suppressed. Therefore, we conclude that the dominant
decay modes of the KK̄N state are π�K and πηN . This
is one of the important characters of the KK̄N bound system.

Although the obtained KK̄N state is located below the
thresholds of �(1405) + K, f0(980) + N , and a0(980) + N ,
there could be a chance to access the KK̄N state energetically
by observing the �(1405) + K, f0(980) + N , and a0(980) +
N channels in the final states, because these resonances have as
large widths as the KK̄N state. Because, as we will show later,
the KK̄N state has the large �(1405) + K component, the
KK̄N state could be confirmed in its decay to �(1405) + K

by taking coincidence of the �(1405) out of the invariant mass
of π� and the three-body invariant mass of the π�K decay.

Here we comment on theoretical uncertainty of the energy
of the KK̄N state. In the present calculations, the KK̄ interac-
tions are obtained under the assumption that the KK̄ attractive
potentials provide f0(980) and a0(980) as quasibound states
and are phenomenologically adjusted to reproduce the masses
and the widths of f0(980) and a0(980). As discussed above,
in the present result, the KK̄ interaction with I = 1 gives
the dominant contribution to the total width of the KK̄N

state. We estimate theoretical uncertainty of the width of the
KK̄N state by changing the inputs of the a0(980) width in
the range from � = 50 to 100 as reported in PDG. We obtain
the � = 80 − 130 MeV for the KK̄N state. We also find that
the KK̄N state becomes unbound if the KK̄ interaction with
I = 1 is less attractive than 70% of the present values, in which
KK̄ with I = 1 is not bound in the two-body system.

We also show in Table II the values for the partial energies
of the two-body subsystems, that is, decomposition of the
kinetic and the potential energy in each subsystem. For the
results (A) with the HW-HNJH potentials, the K̄N energy is
found to be EK̄N = 25 MeV, and the energy for the s-wave
K̄N component, E l1=0

K̄N
, is −6 MeV. The reason why EK̄N

is much larger than E l1=0
K̄N

is that higher angular-momentum
components in the K̄N subsystem, which provide large
kinetic energy, mix into the dominant s-wave K̄N component
because of the KK̄ correlation in the KK̄N state. The energy
E l1=0

K̄N
= −6 MeV is not far from −11 MeV, which is used

to fix the energy-dependent effective KK̄N interaction of
the HW-HNJH potential, and the energy-dependence of the
potential between these two values is so small that the results
of the three-body system do not change.

Finally we discuss the role of the KN repulsion in the KK̄N

system. In Fig. 2 and Table II, we show the results calculated
without the KN interaction. We find that the binding energy of
the KK̄N state is 20 MeV larger than the case of the calculation
with the KN repulsion in both (A) and (B) cases and that the
absolute value of the imaginary energy also becomes larger as
EIm = −72 MeV and −63 MeV for (A) and (B), respectively.
These values correspond to the � = 130–140 MeV width for
the KK̄N state. The reason that the three-body system without
the KN interaction has the more binding and the larger width is
as follows. In general, the three-body system has less kinetic
energy than the two-body system because of larger reduced
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TABLE III. Isospin and spatial structure of the KK̄N state
with the parameter sets (A) and (B) given in Table I. The results
without the KN repulsive interaction are also shown. The r.m.s.
radius of the K, K̄ , and N distribution, and the r.m.s. values for the
K̄-N, K-K̄ , and K-N distances are listed. The isospin components of
the subsystems, K̄N and KK̄ are also shown. The detailed definitions
are described in Sec. IIC. The three-body wave function is obtained
in the same way as that in Table II.

VKN (A) (A) (B) (B)
HW-HNJH HW-HNJH AY AY

On Off On Off

Isospin configuration
�([K̄N ]0) 0.93 1.00 0.99 1.00
�([K̄N ]1) 0.07 0.00 0.01 0.00
�([KK̄]0) 0.09 0.25 0.17 0.25
�([KK̄]1) 0.91 0.75 0.83 0.75

Spatial structure
rKK̄N (fm) 1.7 1.0 1.4 1.0
dK̄N (fm) 2.1 1.3 1.3 1.2
dKK̄ (fm) 2.3 1.4 2.1 1.5
dKN (fm) 2.8 1.6 2.3 1.6

mass in the three-body system. With less kinetic energy the
system can localize more. As a result of the localization of the
system, the system can gain more potential energy and larger
imaginary energy in the case of no KN interaction than the
case with the KN repulsion. In other words, thanks to the
KN repulsion, the KK̄N state is weakly bound and its width
is suppressed to be as small as the sum of the widths of the
subsystems.

B. Structure of K K̄ N state

We discuss the structure of the KK̄N system with I = 1/2.
For this purpose, we analyze the wave functions obtained in the
present few-body calculation in terms of the spatial structure
and the isospin configuration of the KK̄N system.

We first investigate the isospin configuration of the KK̄N

state. We show the isospin components of subsystems K̄N

and KK̄ in Table III. It is found that the K̄N subsystem
has a dominant I = 0 component because of the strong K̄N

interaction in the I = 0 channel. In the KK̄ subsystem, the I =
1 configuration is dominant, whereas the I = 0 component
gives minor contribution. This isospin configuration is caused
by the following reason. In both I = 0 and I = 1 channels,
the KK̄ attraction is strong enough to provide quasibound KK̄

states of f0(980) and a0(980). In addition, because these scalar
mesons have similar masses and widths, the KK̄ interactions
in I = 0 and I = 1 adjusted to these masses and widths are
similar to each other. In fact, we use the same parameters for
the KK̄ interactions in the present calculation, which gives
isospin-blind potential. Therefore, the K̄N interaction plays a
major role to determine the isospin configuration of the KK̄N

state. Because the K̄N interaction has stronger attraction in the
I = 0 channel than in the I = 1 channel, the system prefers
to have I = 0 in the K̄N subsystem. If the K̄N subsystem has

pure I = 0 configuration, which is the case without the KN

repulsion, the KK̄ subsystem should be composed by I = 0
and I = 1 with the ratio of 1:3 to have I = 1/2 of KK̄N .
Thus, the K̄N with I = 0 dominates the KK̄N system, and
simultaneously the KK̄ with I = 1 is dominant component.
The small deviation from the pure K̄N (I = 0) configuration
in the KK̄N state originates in the KN repulsion as indeed
demonstrated in Table III.

Next we discuss the spatial structure of the KK̄N bound
system. In Table III, we show the rms radius of KK̄N, rKK̄N

defined in Eq. (20), and rms values for the K̄-N,K-K̄ , and
K-N distances, dK̄N , dKN, dKK̄ defined in Eqs. (21), (22), and
(23), respectively, in the KK̄N state. The rms distances of
the two-body systems, {K̄N}I=0 and {KK̄}I=0,1, are shown in
Table I. It is interesting that the present result shows that the
rms K̄-N and K-K̄ distances in the three-body KK̄N state
have values close to those in the quasibound two-body states,
{K̄N}I=0 and {KK̄}I=0,1, respectively. This implies again that
the two subsystems of the three-body state have very similar
characters with those in the isolated two-particle systems.

The rms K-N distance is relatively larger than the rms
K̄-N and K-K̄ distances due to the KN repulsion. The effect
of the repulsive KN interaction is important in the present
system. Without the repulsion, we obtain smaller three-body
systems as shown in Table III. Especially the distances of the
two-body subsystems are as small as about 1.5 fm, which
is comparable with the sum of the charge radii of proton
(0.8 fm) and K+ (0.6 fm). For such a small system, three-body
interactions and transitions to two particles could be important.
In addition, the present picture that the system is described in
nonrelativistic three particles might be broken down, and one
would need relativistic treatments and two-body potentials
with consideration of internal structures of the constituent
hadrons.

Combining the discussions of the isospin and spatial
structure of the KK̄N system, we conclude that the structure
of the KK̄N state can be understood simultaneous coexistence
of �(1405) and a0(980) clusters as shown in Fig. 3. This does
not mean that the KK̄N system is described as superposition
of the �(1405) + K and a0(980) + N states, because these
states are not orthogonal to each other. The probabilities for
the KK̄N system to have these states are 90% as seen in
Table III. It means that K̄ is shared by both �(1405) and a0 at
the same time.

It is interesting to compare the obtained KK̄N state with
nuclear systems. As shown in Table III, the hadron-hadron
distances in the KK̄N state are about 2 fm, which is as large
as nucleon-nucleon distances in nuclei. In particular, in the case
(A) of the HW-HNJH potential, the hadron-hadron distances
are larger than 2 fm and the rms radius of the three-body system

0(980)(1405)

K

a

KN

FIG. 3. Schematic structure of the KK̄N bound system.
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FIG. 4. Diagrams for the two-body decays. (a) Contact interac-
tion. (b) Virtual pion exchange. (c) Virtual meson exchange. For (b)
and (c), multimeson exchanges are also possible.

is also as large as 1.7 fm. This is larger than the rms radius
1.4 fm for 4He. If we assume a uniform sphere density of
the three-hadron system with the rms radius 1.7 fm, the mean
hadron density is evaluated as 0.07 hadrons/(fm3). Thus the
KK̄N state has large spatial extent and dilute hadron density.

C. Possible two-body decay

The possible two-body decay modes of the three-body
resonance are πN, ηN,K�, and K�. As described before,
the present three-body system is spatially extended. In such
systems with spatial extent and dilute hadron density, two-body
decays are expected to be suppressed. Here we discuss the
two-body decay widths under simple estimation based on
geometrical argument. Let us first suppose that transitions of
three-body bound state to two particles are induced by contact
interactions as shown in Fig. 4(a). In such cases, the transition
probability is proportional to square of density, 1/r6, where r is
the radius of the three-body system, because the three particles
should meet at a point for the contact interaction to take place.
In the present calculation, the radius of the system is obtained
as 1.7 fm in the parameter set (A). Thus, the two-body decay
induced by the constant interaction is strongly suppressed by a
factor (0.8/1.7)6 ∼ 0.01 in comparison with quark-model-like
baryon resonances, if we assume their typical radius to be
0.8 fm.

Another possibility is two-body decay induced by two-
particle transitions with virtual-meson exchanges as shown in
Figs. 4(b) and 4(c). Decays without meson exchanges cannot
occur due to energy conservation. The main contribution
comes from virtual pion exchange for Fig. 4(b), because it has
the longest interaction range. For Fig. 4(c), the pseudoscalar
meson exchange is not possible, if the final states are
restricted to two-body systems of the lowest-lying baryon
and meson, because the three-point vertex of the pseudoscalar
mesons break parity-invariance.2 The two-particle transition
probability is proportional to density, 1/r3, and thus, if the
virtual pion exchange were infinite range, the suppression
factor for the two-body decays induced by the meson exchange
mechanism would be (0.8/1.7)3 ∼ 0.1 again in comparison
with typical baryon resonances. In reality, the virtual pion

2K∗� and K∗� in the final state would be possible with the virtual
pion exchange by Kπv → K∗. But these are not two-body decays,
because K∗�(�) decays finally to Kπ�(�).

can travel in finite distance. Thus, the two-body decays will
be further strongly suppressed, because the hadron-hadron
distances in the present three-body system are larger than the
pion Compton length (1.4 fm). For quantitative evaluation of
the decay width, further study is necessary.

It is also worth discussing that the small two-body decay
induced by the virtual pion exchange have a selective decay
pattern due to isospin symmetry. As shown in Table III, the
KK̄ subcomponent of the three-body system has dominantly
the I = 1 configuration. Consequently, for the decay process
in Fig. 4(b), the final state is selectively ηN thanks to
the KK̄ → πvη of the two-particle transition with I = 1.
Therefore, the main two-body decay mode of the present
three-body resonance is ηN .

IV. SUMMARY

We investigated the KK̄N system with Jp = 1/2+ and
I = 1/2 in nonrelativistic three-body calculation. We have
used the effective K̄N potentials proposed by Hyodo-Weise
and Akaishi-Yamazaki, which reproduce the �(1405) as a
quasibound state of K̄N . The KK̄ interactions are determined
so as to reproduce f0(980) and a0(980) as quasibound states
in KK̄ with I = 0 and I = 1 channels, respectively. The
potentials of KN are adjusted to provide the accepted KN

scattering lengths, having strong repulsion in I = 1 and
no interaction in I = 0. The present three-body calculation
suggests that a weakly quasibound state can be formed below
all threshold energies of the �(1405) + K, f0(980) + N , and
a0(980) + N . The calculated energies of the quasibound state
are −19 and −41 MeV from the KK̄N threshold in the
results with HW and AY potentials, respectively. The width
for three-hadron decays is estimated to be 90 ∼ 100 MeV. It
has been found that the binding energy and the width of the
KK̄N state is almost the sum of those in �(1405) and a0(980).

Investigating the structure of the KK̄N system, we have
found that, in the KK̄N state, the subsystems of K̄N and
KK̄ dominate the I = 0 and I = 1, respectively, and that
these subsystems have very similar properties with those in the
two-particle systems. This leads that the KK̄N quasibound
system can be interpreted as coexistence state of �(1405)
and a0(980) clusters and K̄ is a constituent of both �(1405)
and a0(980) at the same time. As a result of this feature, the
dominant decay modes are π�K from the �(1405) decay
and πηN from the a0(980) decay, and the decays to π�K and
ππN channels are suppressed. We have discussed smallness of
the two-body decays based on geometrical argument. We have
found that, among the small two-body decays, the dominant
two-body decay mode is ηN .

We also have found that the rms radius of the KK̄N state
is as large as 1.7 fm and the interhadron distances are lager
than 2 fm. These values are comparable to, or even larger
than, the radius of 4He and typical nucleon-nucleon distances
in nuclei, respectively. Therefore, the KK̄N system more
spatially extends compared with typical hadronic systems.
These features are caused by weakly binding of the three
hadrons, for which the KN repulsive interaction plays an
important role.
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The present calculation of the three-body wave function is
based on the perturbative treatment of the imaginary potential.
It is certainly necessary to study the details of the three-body
resonance, especially the pole position, in more elaborated
calculations, such as Faddeev type approach based on chiral
effective theory. According to the discussion in the case of the
two-body system, the pole position would be higher for the real
energy than that of our result, whereas the imaginary energy
would be similar. It is also interesting to investigate energy
spectrum of this resonance in the real energy axis, which is
directly accessible in experiments. Presence of the three-body
N∗ resonance at 1.9 GeV could affect spectrum of �(1405)
production, for instance, performed at SPring8 [28].
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APPENDIX: QUASIBOUND TWO-BODY STATES IN
COMPLEX POTENTIALS

In the present calculation, the energy and width of the
quasibound states are calculated in the perturbative treatment
of the imaginary potential. In this appendix, we discuss the
correspondence of the energy and width calculated by the
perturbative treatment to those obtained in the calculation
dealing fully with the imaginary potential in the case of the
two-body systems.

To implement the imaginary part of the effective potential
fully, we solve the two-body Schrödinger equation in momen-
tum space, for instance, in the method given in Ref. [29]. For
the K̄N system with I = 0, we find the quasibound states at
−2 − 23i MeV for the HW-HNJH potential and −28 − 20i

MeV for the AY potential, where the real energy is measured
from the K̄N threshold. The imaginary energies in both cases
and the real energy for the AY potential agree with those
obtained by the perturbative method, which are given in
Table I, whereas the real energy obtained in the HW-HNJH
potential is 9 MeV higher than the value of the perturbative
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FIG. 5. The energy of the quasibound KK̄ state calculated by
perturbative (open squares) and nonperturbative (filled squares)
treatments. The real part of the KK̄ interaction is changed as
ReUKK̄ = −690, −630, −570, −510 MeV. The imaginary part is
fixed to be ImUKK̄ = −210 MeV. The range parameter is b = 0.66 fm
[parameter set (B)]. The vertical dotted line denotes the KK̄

threshold.

calculation. This will be because higher-order perturbative
corrections give positive energy shift.

We also calculate the energy of the quasibound state of KK̄

in the nonperturbative treatment of the imaginary potential. For
the parameter set (B), we obtain +5 − 33i MeV. [The case of
the parameter set (A) is discussed in Sec. II B.] The real energy
is measured again from the threshold of KK̄ . To obtain this
solution, we selected the boundary condition for the state to be
in the first Riemann sheet. This means that the KK̄ channel is
closed and the quasibound state is not a resonance decaying to
KK̄ , although the state appears energetically above the KK̄

threshold. It is interesting that the imaginary energy almost
coincides again with the perturbative result.

To study the correspondence of the perturbative result and
the nonperturbative calculation in which the quasibound state
shows up above the threshold, we calculate the energies of
the quasibound states by changing the strength of the real
potential ReUKK̄ from −690 MeV to −510 MeV. (The original
strength is UKK̄ = −630 − 210i MeV.) In Fig. 5 we show
the trajectories of the quasibound state energies both for
the perturbative and nonperturbative treatments. This figure
shows that the energies of the quasibound states smoothly
vary as the depth of the real potential changes and also that
the real energies between two treatments gets larger if the
real energy of the perturbative calculation approaches the
KK̄ threshold. For the strengths ReUKK̄ � − 630 MeV, we
find that the nonperturbative real energies are 15–25 MeV
higher than the perturbative results and they are numerically
above the threshold, emphasizing that the imaginary energies
are very similar in both calculations.
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