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Parton transport and hadronization from the dynamical quasiparticle point of view
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The hadronization of an expanding partonic fireball is studied within the parton-hadron-string-dynamics
(PHSD) approach, which is based on a dynamical quasiparticle model (DQPM) matched to reproduce lattice QCD
results in thermodynamic equilibrium. Apart from strong parton interactions, the expansion and development
of collective flow is driven by strong gradients in the parton mean fields. An analysis of the elliptic flow v2

demonstrates a linear correlation with the spatial eccentricity ε as in ideal hydrodynamics. The hadronization
occurs by quark-antiquark fusion or three-quark/three-antiquark recombination, which is described by covariant
transition rates. Since the dynamical quarks become very massive, the formed resonant “pre-hadronic” color-
dipole states (qq̄ or qqq) are of high invariant mass, too, and sequentially decay to the ground-state meson
and baryon octets increasing the total entropy. This solves the entropy problem in hadronization in a natural
way. The resulting particle ratios turn out to be in line with those from a grand-canonical partition function
at temperature T ≈ 170 MeV rather independent from the initial temperature and indicate an approximate
strangeness equilibration.
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I. INTRODUCTION

The big-bang scenario implies that in the first microseconds
of the universe, the entire state emerged from a partonic
system of quarks, antiquarks, and gluons—a quark-gluon
plasma (QGP)—to color-neutral hadronic matter consisting
of interacting hadronic states (and resonances) in which the
partonic degrees of freedom are confined. The nature of
confinement and the dynamics of this phase transition have
motivated a large community for several decades and is still
an outstanding question of today’s physics. Early concepts
of the QGP were guided by the idea of a weakly interacting
system of partons which might be described by perturbative
QCD (pQCD). However, experimental observations at the
BNL Relativistic Heavy Ion Collider (RHIC) indicated that
the new medium created in ultrarelativistic Au+Au collisions
was interacting more strongly than hadronic matter (cf.
Ref. [1] and references therein), and consequently this concept
had to be given up. Moreover, in line with the theoretical
studies in Refs. [2–4], the medium showed phenomena of
an almost perfect liquid of partons [5,6] as extracted from
the strong radial expansion and elliptic flow of hadrons
[5].

The question about the properties of this (nonperturbative)
QGP liquid is discussed controversially in the literature, and
dynamical concepts describing the formation of color-neutral
hadrons from partons are scarce [7–13]. A fundamental
issue for hadronization models is the conservation of four-
momentum as well as the entropy problem, because by fu-
sion/coalescence of massless (or low constituent mass) partons
to color-neutral bound states of low invariant mass (e.g.,
pions), the number of degrees of freedom and thus the total
entropy is reduced in the hadronization process [9–11]. This
problem—a violation of the second law of thermodynamics
as well as of the conservation of four-momentum and flavor
currents—definitely needs a sound dynamical solution.

A consistent dynamical approach—valid also for strongly
interacting systems—can be formulated on the basis of
Kadanoff-Baym (KB) equations [14,15] or off-shell transport
equations in phase-space representation, respectively [15–17].
In the KB theory, the field quanta are described in terms of
propagators with complex self-energies. Whereas the real part
of the self-energies can be related to mean-field potentials, the
imaginary parts provide information about the lifetime and/or
reaction rates of time-like “particles” [4]. Once the proper
(complex) self-energies of the degrees of freedom are known,
the time evolution of the system is fully governed by off-shell
transport equations (as described in Refs. [15–17]).

The determination/extraction of complex self-energies for
the partonic degrees of freedom has been performed in
Refs. [4,18,19] by fitting lattice QCD (lQCD) “data” within the
dynamical quasiparticle model (DQPM). In fact, the DQPM
allows a simple and transparent interpretation of lattice QCD
results for thermodynamic quantities as well as correlators and
leads to effective strongly interacting partonic quasiparticles
with broad spectral functions. We stress that mean-field
potentials for the “quarks” and “gluons” as well as effective
interactions have been extracted from lQCD within the DQPM
as well (cf. Ref. [19]).

II. THE PHSD APPROACH

The parton-hadron-string-dynamics (PHSD) approach is
a microscopic covariant transport model that incorporates
effective partonic as well as hadronic degrees of freedom and
involves a dynamical description of the hadronization process
from partonic to hadronic matter. Whereas the hadronic part
is essentially equivalent to the conventional hadron-string-
dynamics (HSD) approach [20], the partonic dynamics is based
on the DQPM [18,19], which describes QCD properties in
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terms of single-particle Green’s functions [in the sense of a
two-particle irreducible (2PI) approach].

A. Reminder of the DQPM

We briefly recall the basic assumptions of the DQPM.
Following Ref. [21], the dynamical quasiparticle mass (for
gluons and quarks) is assumed to be given by the thermal
mass in the asymptotic high-momentum regime, which is
proportional to the coupling g(T/Tc) and the temperature T

with a running coupling (squared), that is,

g2(T/Tc) = 48π2

(11Nc − 2Nf ) ln[λ2(T/Tc − Ts/Tc)2]
. (1)

Here Nc = 3 stands for the number of colors, while Nf denotes
the number of flavors. The parameters controlling the infrared
enhancement of the coupling λ = 2.42 and Ts = 0.46Tc have
been fitted in Ref. [21] to lQCD results for the entropy density
s(T ). An almost perfect reproduction of the energy density
ε(T ) and the pressure P (T ) from lQCD is achieved as well.
As demonstrated in Fig. 1 of Ref. [19], this functional form
for the strong coupling αs = g2/(4π ) is in full accordance
with the lQCD calculations of Ref. [22] for the long-range
part of the q − q̄ potential, too.

The width for gluons and quarks (for vanishing chemical
potential µq) is adopted in the form [23]

γg(T ) = 3g2T

8π
ln

(
2c

g2

)
, γq(T ) = g2T

6π
ln

(
2c

g2

)
, (2)

where c = 14.4 (from Ref. [4]) is related to a magnetic cutoff.
We stress that a nonvanishing width γ is the central difference
of the DQPM from conventional quasiparticle models [24–26].
Its influence is essentially seen in correlation functions as,
e.g., in the stationary limit of the correlation function in the
off-diagonal elements of the energy-momentum tensor T kl

which defines the shear viscosity η of the medium [4,27].
Here a sizable width is mandatory to obtain a small ratio in the
shear viscosity to entropy density η/s.

In line with Ref. [21], the parton spectral functions thus are
no longer δ− functions in the invariant mass squared but taken
as

ρj (ω) = γj

Ej

(
1

(ω − Ej )2 + γ 2
j

− 1

(ω + Ej )2 + γ 2
j

)
(3)

separately for quarks and gluons (j = q, q̄, g). With the
convention E2( p) = p2 + M2

j − γ 2
j , the parameters M2

j and
γj are directly related to the real and imaginary parts of the
retarded self-energy, e.g., �j = M2

j − 2iγjω.
With the spectral functions fixed by Eqs. (1)–(3), the total

energy density in the DQPM (at vanishing quark chemical
potential) can be evaluated as

T 00 = dg

∫ ∞

0

dω

2π

∫
d3p

(2π )3
2ω2ρg(ω, p)nB(ω/T )

+ dq

∫ ∞

0

dω

2π

∫
d3p

(2π )3
2ω2ρq(ω, p)nF (ω/T ), (4)

where nB and nF denote the Bose and Fermi functions,
respectively. The number of transverse gluonic degrees of
freedom is dg = 16, while the fermic degrees of freedom
amount to dq = 4NcNf = 36 in the case of three flavors
(Nf = 3). The pressure P then may be obtained by integrating
the differential thermodynamic relation

P − T
∂P

∂T
= −T 00, (5)

with the entropy density s given by

s = ∂P

∂T
= T 00 + P

T
. (6)

This approach is thermodynamically consistent and represents
a 2PI approximation to hot QCD, once the free parameters
in Eqs. (1) and (2) are fitted to lattice QCD results as in
Refs. [4,18,19].

As outlined in detail in Refs. [18,19], the energy density
functional (4) can be separated in space-like and time-like
sectors when the spectral functions acquire a finite width. The
space-like part of Eq. (4) defines a potential energy density
Vp, since the field quanta involved are virtual and correspond
to partons exchanged in interaction diagrams. The time-like
part of Eq. (4) corresponds to effective field quanta which
can be propagated within the light-cone. Related separations
can be made for virtual and time-like parton densities
[18,19]. Without repeating the details, we mention that mean-
field potentials for partons can be defined by the derivative
of the potential energy density Vp with respect to the time-
like parton densities and effective interactions by second
derivatives of Vp (cf. Sec. III in Ref. [19]).

B. Hadronization in PHSD

Based on the DQPM, we have developed an off-shell
transport approach denoted as PHSD, where the degrees of
freedom are dynamical quarks, antiquarks, and gluons (q, q̄, g)
with rather large masses and broad spectral functions in
line with Eqs. (1)–(3) as well as the conventional hadrons
(described in the standard HSD approach [20]). On the
partonic side, the following elastic and inelastic interactions
are included: qq ↔ qq, q̄q̄ ↔ q̄q̄, gg ↔ gg, gg ↔ g, and
qq̄ ↔ g, exploiting “detailed balance” with interaction rates
from the DQPM [4,18,19] (cf. Sec. III B). The hadronization,
i.e., transition from partonic to hadronic degrees of freedom,
is described by local covariant transition rates; e.g., for
q + q̄ fusion to a meson m of four-momentum p = (ω, p)
at space-time point x = (t, x),

dNm(x, p)

d4xd4p
= T rqT rq̄ δ4(p − pq − pq̄) δ4

(
xq + xq̄

2
− x

)
×ωqρq(pq)ωq̄ρq̄(pq̄)|vqq̄ |2
×Wm(xq − xq̄, pq − pq̄)Nq(xq, pq)

×Nq̄(xq̄, pq̄) δ(flavor, color). (7)

In Eq. (7), we have introduced the shorthand notation

T rj =
∑

j

∫
d4xjd

4pj/(2π )4, (8)
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where
∑

j denotes a summation over discrete quantum num-
bers (spin, flavor, color); Nj (x, p) is the phase-space density
of parton j at space-time position x and four-momentum
p. In Eq. (7), δ(flavor, color) stands symbolically for the
conservation of flavor quantum numbers as well as color
neutrality of the formed hadron m, which can be viewed
as a color-dipole or pre-hadron. Furthermore, vqq̄ (ρp) is the
effective quark-antiquark interaction from the DQPM defined
by Eq. (31) and displayed in Fig. 10 of Ref. [19] as a function
of the local parton (q + q̄ + g) density ρp (or energy density).
Furthermore, Wm(x, p) is the phase-space distribution of the
formed pre-hadron. It is taken as a Gaussian in coordinate and
momentum space (following Ref. [28]) with width

√
〈r2〉 =

0.66 fm (in the rest frame), which corresponds to an average
rms radius of mesons. The width in momentum space is fixed
by the uncertainty principle, i.e., xp = 1 (in natural units).
We note that the final hadron formation rates are approximately
independent on these parameters within reasonable variations.

In principle, the two-particle Green’s function G<(xq ,
pq , xq̄ , pq̄) should appear in Eq. (7). The approxima-
tion of the two-particle Green’s function by a (sym-
metrized/antisymmetrized) product of single-particle Green’s
functions is always a first step in a cluster expansion for
Green’s functions and neglects “residual correlations” stem-
ming from higher order contractions. The same holds for
an approximation of the three-particle Green’s function by
the (symmetrized/antisymmetrized) product of single-particle
Green’s functions (cf. Ref. [29]). However, the DQPM with
its dynamical spectral functions already includes the effects
of strong two-body correlations—contrary to bare Green’s
functions—such that the effect of residual interactions might
be discarded in a first approximation. But there is no a priori
guarantee that this approximation is appropriate under all
circumstances. This, in principle, should be examined by
lattice QCD in order to test the cluster decomposition in hot
QCD.

Related transition rates [to Eq. (7)] are defined for the fusion
of three off-shell quarks (q1 + q2 + q3 ↔ B) to color-neutral
baryonic (B or B̄) resonances of finite width (or strings)
fulfilling energy and momentum conservation as well as flavor
current conservation, i.e.,

dNB(x, p)

d4xd4p

= T rq1T rq2T rq3δ
4(p − p1 − p2 − p3)

× δ4

(
xq1 + xq2 + xq3

3
− x

)
×ωq1ρq1 (p1)ωq2ρq2 (p2) ωq3ρq3 (p3)

× |Mqqq |2WB(x1, x2, x3, p1, p2, p3)

×Nq1 (x1, p1)Nq2 (x2, p2)Nq3 (x3, p3) δ(flavor, color). (9)

Here, the quantity WB denotes the baryon phase-space distri-
bution (evaluated in Jacobi coordinates), which is taken again
of Gaussian shape with a width of 1 fm in coordinate space
which corresponds to an average rms radius of excited baryons.
The matrix element squared |Mqqq |2 reflects the strength of
three-quark fusion processes and is fixed as follows. Since
Regge trajectories for excited mesonic and baryonic states

have the same slope (or string constant in the color dipole
picture), we tentatively set |Mqqq |2 = |vqq̄ |3 in our present
work, which implies that (so far) there is no need to introduce
any new parameter.

On the hadronic side, PHSD includes explicitly the baryon
octet and decouplet, the 0− and 1− meson nonets as well as
selected higher resonances as in HSD [20]. Hadrons of higher
masses (>1.5 GeV for baryons and >1.3 GeV for mesons)
are treated as “strings” (color dipoles) that decay to the known
(low mass) hadrons according to the JETSET algorithm [30].

III. HADRONIZATION OF AN EXPANDING PARTONIC
FIREBALL

We now turn to actual results from PHSD for the model
case of an expanding partonic fireball at initial temperature
T = 1.7Tc (Tc = 0.185 GeV) with quasiparticle properties
and four-momentum distributions determined by the DQPM
at temperature T = 1.7Tc.

A. Initial conditions

The initial distribution for quarks, antiquarks, and gluons in
coordinate space is taken as a Gaussian ellipsoid with a spatial
eccentricity

ε = 〈y2 − x2〉/〈y2 + x2〉, (10)

and 〈z2〉 = 〈y2〉 in order to allow for the buildup of elliptic
flow (as in semicentral nucleus-nucleus collisions at relativistic
energies). To match the initial off-equilibrium strange quark
content in relativistic pp collisions, the number of s (and s̄

quarks) is assumed to be suppressed by a factor of 3 relative
to the abundance of u and d quarks and antiquarks. In this
way, we will be able to investigate additionally the question of
strangeness equilibration.

As mentioned above, the dynamical evolution of the
system is then entirely described by the transport dynamics in
PHSD incorporating the off-shell propagation of the partonic
quasiparticles according to Ref. [16] as well as the transition
to resonant hadronic states (or strings) in Eqs. (7) and (9).
The time integration for the test particle equations of motion
(cf. Ref. [16]) is performed in the same way as for hadronic off-
shell transport, where (in view of the momentum-independent
width γ ) the simple relation (19) in Ref. [31] is employed.
For the collisions of partons, two variants are at our disposal:
(i) geometric collision criteria as employed in standard
hadronic transport and ii) the in-cell method developed in
Ref. [32]. The latter can easily be extended to describe 2 ↔ 3
processes, etc., in a covariant way [33] and is the better choice
at high-particle densities (cf. Ref. [34]). The hadronization is
performed by integrating the rate equations (7) and (9) in space
and time which are discretized by t and V (t). We use local
cells of volume dV (t) = 0.25(1 + bt)3 fm3, where t is given in
units of fm/c and b = 0.025 c/fm. This choice approximately
corresponds to a comoving grid for the expanding system.
In each time-step t and cell V , the integrals in Eqs. (7)
and (9) are evaluated by a sum over all (time-like) test particles,
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using (e.g., for the quark density)

1

V

∫
V

d3x

∫
dωq

2π
ωq

∫
d3pq

(2π )3
ρq(ωq, pq)Nq(x, pq )

= 1

V

∑
JqεV

1 = ρq(V ), (11)

where the sum over Jq implies a sum over all test particles
of type q (here quarks) in the local volume V in each
parallel run. To obtain lower fluctuations, the integrals are
averaged over the number of parallel runs (typically a few
hundred). For each individual test particle (i.e., xq and
pq fixed), the additional integrations in Eqs. (7) and (9)
give a probability for a hadronization process to happen;
the actual event then is selected by Monte Carlo. Since
energy-momentum conservation fixes the four-momentum p

of the hadron produced—the space-time position x is fixed by
Eqs. (7) or (9)—the latter is represented by a hadronic state
with flavor content fixed by the fusing quarks (antiquarks).
The latter decays to the lower mass hadrons according to
JETSET [30] above thresholds of 1.3 GeV for mesonic states or
1.5 GeV for baryonic states (as in HSD). Lower mass hadrons
(octet and decuplet states) are determined by the weight of
their respective spectral functions at given invariant mass and
selected by Monte Carlo. Note that the propagation of partons
includes the space-time derivatives of the quark and gluon
mean fields specified in Eq. (29) and displayed in Fig. 9 of
Ref. [19].

B. Dynamical evolution

In Fig. 1(a), we show the energy balance for the expanding
system at initial temperature T = 1.7Tc and eccentricity ε =
0, i.e., a fireball of spherical symmetry. The total energy Etot—
which at t = 0 is given by Eq. (4) integrated over space—is
conserved within 3% throughout the partonic expansion and
hadronization phase such that for t > 8 fm/c, it is given
essentially by the energy contribution from mesons and
baryons (+antibaryons). The initial energy splits into the
partonic interaction energy Vp [cf. Eq. (19) in Ref. [19]] and
the energy of the time-like (propagating) partons

Tp =
∑

i

√
p2

i + M2
i (ρp), (12)

with fractions determined by the DQPM [19]. In Eq. (12) the
summation over i runs over all test particles in an individual
run. The hadronization mainly proceeds during the time
interval 1 < t < 7 fm/c [cf. Fig. 1(b) where the time evolutions
of the q, q̄, g, meson, and baryon (+antibaryon) numbers are
displayed].

As one observes from Fig. 1, on average the number
of hadrons from the resonance or string decays is larger
than the initial number of fusing partons. This might be
astonishing, since by partonic fusion the number of final states
is conventionally reduced in coalescence models.

To shed some light on the hadronization process in PHSD,
we display in Fig. 2 the invariant mass distribution of qq̄ pairs
(solid line) as well as qqq (and q̄q̄q̄) triples (dashed line)
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FIG. 1. (Color online) (a) Time evolution of the total energy Etot

(upper line), the partonic contributions from the interaction energy Vp

and the energy of time-like partons Tp in comparison to the energy
contribution from formed mesons Em and baryons (+antibaryons)
EB+B̄ . (b) Time evolution in the parton, meson, and baryon numbers
for an expanding partonic fireball at initial temperature T = 1.7Tc

with initial eccentricity ε = 0.

that lead to the formation of final hadronic states. In fact, the
distribution for the formation of baryon (antibaryon) states
starts above the nucleon mass and extends to high invariant
mass covering the nucleon resonance mass region as well as
the high mass continuum (which is treated by the decay of
strings within the JETSET model [30]). On the “pre-mesonic”
side, the invariant-mass distribution starts roughly above the
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FIG. 2. (Color online) Invariant mass distribution for fusing qq̄

pairs (solid line) as well as qqq (and q̄q̄q̄) triples (dashed line) that
lead to the formation of final hadronic states for an expanding partonic
fireball at initial temperature T = 1.7Tc with initial eccentricity
ε = 0.
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two-pion mass and extends up to continuum states of high
invariant mass (described again in terms of string excitations).
The low mass sector is dominated by ρ, a1, ω or K∗, K̄∗
transitions etc. The excited “pre-hadronic” states decay to two
or more “pseudoscalar octet” mesons such that the number of
final hadrons is larger than the initial number of fusing partons.

Accordingly, the hadronization process in PHSD leads to
an increase of the total entropy and not to a decrease as in
the coalescence models [9,10]. This is a direct consequence
of the finite (and rather large) dynamical quark and antiquark
masses as well as mean-field potentials which—by energy
conservation—lead to pre-hadron masses well above those for
the pseudoscalar meson octet or the baryon octet, respectively.
This solves the entropy problem in hadronization in a natural
way and is in accordance with the second law of thermody-
namics!

The parton dynamics itself is governed by their propagation
in the time-dependent mean-field Up(ρp), which is adopted in
the parametrized form (as a function of the parton density
ρp) given by Eq. (29) in Ref. [19]. Since the mean-field Up

is repulsive, the partons are accelerated during the expansion
phase at the expense of the potential energy density Vp, which
is given by the integral of Up over ρp (cf. Sec. III in Ref. [19]).
The interaction rates of the partons are determined by effective
cross sections, which for gg scattering have been determined
in Ref. [4] as a function of T/Tc. The latter are reparametrized
in the actual calculation as a function of the parton density
using the available dependence of ρp(T ) on the temperature T

from the DQPM.
The actual values for gg scattering are shown in Fig. 3 as a

function of the parton density ρp (solid line) and demonstrate
that gg cross sections up to 20 mb can be reached at ρp ≈
2.5 fm−3. The effective cross section drops rapidly with
increasing ρp which signals that weakly interacting partons
might show up at very high parton density. Some note of
caution has to be added here since though the cross section σgg

drops with ρp the collision rate of a gluon (∼σggρp) increases
slightly with ρp. For quark-quark or quark-antiquark elastic
scattering, the cross section is reduced by a factor 4/9 in line
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FIG. 3. (Color online) Effective gluon-gluon → gluon-gluon
(solid line), gluon-quark → gluon-quark and quark-quark → quark-
quark (dashed line) cross sections from the DQPM as a function of
the parton density ρp .
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FIG. 4. (Color online) (a) Interaction rate for the channels q +
q̄ → g and g → q + q̄ for an expanding partonic fireball at initial
temperature T = 1.7Tc with initial eccentricity ε = 0. (b) Collision
rate of gluons and quarks or antiquarks.

with Casimir scaling. Quark-gluon elastic scattering (in the
present implementation) is also reduced by a factor of 4/9
(cf. Fig. 3, dashed line). The channels qq̄ → g are described by
a relativistic Breit-Wigner cross section, which is determined
by the actual masses of the fermions, the invariant energy

√
s,

and the resonance parameters of the gluon (from the DQPM).
In this case, a further constraint on flavor neutrality and open
color is employed. The gluon decay to a uū, dd̄, or ss̄ pair
is fixed by detailed balance. Further channels are gg ↔ g,
which are given by Breit-Wigner cross sections (with the gluon
resonance parameters) and detailed balance, respectively.

The actual interaction rates for the channels q + q̄ → g

and g → q + q̄ are displayed in Fig. 4(a) for the expanding
partonic fireball at initial temperature T = 1.7Tc with initial
eccentricity ε = 0. Within statistics, the numerical result
shows that detailed balance actually is fulfilled for the
expanding partonic system which was initialized in thermal
equilibrium. Figure 4(b) shows the total number of collisions
per time for gluons and for quarks or antiquarks, which is
higher for the fermions since the latter are much more frequent
than the gluons.

Let’s also have a look at the transverse momentum pT

spectra of hadrons emerging from the PHSD dynamics of the
expanding fireball initialized with T = 1.7Tc. The resulting
pT spectra are displayed in Fig. 5(a) for pions and nucleons
and show that the nucleons become more abundant for pT >

2.5 GeV/c. The ratio of nucleons to pions is depicted in
Fig. 5(b) and clearly demonstrates that baryons (antibaryons)
become more frequent than mesons at high pT > 2.5 GeV.
This observation is in close analogy to the experimental
findings in Au+Au collisions at top RHIC energies [5].

034919-5



W. CASSING AND E. L. BRATKOVSKAYA PHYSICAL REVIEW C 78, 034919 (2008)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-2

10-1

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

100

101

102

103

104

(b)nu
cl

eo
ns

/p
io

ns

p
T

[GeV/c]

(a)

pions
nucleons

T = 1.7 T
C

= 0

(1
/p

T
)

dN
/d

p T
[G

eV
-2
] ∋

FIG. 5. (Color online) (a) Transverse momentum spectra
(1/pT )dN/dpT for pions and nucleons for an expanding partonic
fireball at initial temperature T = 1.7Tc with initial eccentricity
ε = 0. (b) Nucleon to pion ratio as a function of the transverse
momentum pT corresponding to the spectra in (a). The thin blue
line is drawn to guide the eye because of the limited statistics of the
PHSD calculation.

Note that a quantitative comparison with RHIC data is not
meaningful because of the rather simplified and special initial
conditions employed here.

C. Comparison with the statistical hadronization model

It is also interesting to examine the final particle ratios
K+/π+, p/π+,�/K+, etc. (after hadronic decays), which
are shown in Table I. The latter ratios are compared with the
grand-canonical statistical hadronization model (SM) [35–37]
at baryon chemical potential µB = 0. For µB = 0, the particle
ratios depend only on temperature T , and one may fix a
freeze-out temperature, e.g., by the proton to π+ ratio. A
respective comparison is given also in Table I for T = 160
and 170 MeV for the SM, which demonstrates that the results
from PHSD are close to those from the SM for T ≈ 170 MeV.
This also holds roughly for the �/K+ ratio. On the other hand
the K+/π+ ratio only smoothly depends on temperature T

TABLE I. Comparison of particle ratios from PHSD with the
statistical model (SM) [37] for T = 160 and 170 MeV.

p/π+ �/K+ K+/π+

PHSD 0.086 0.28 0.157
SM, T = 160 MeV 0.073 0.22 0.179
SM, T = 170 MeV 0.086 0.26 0.180

and measures the amount of strangeness equilibration. Recall
that we initialized the system with a relative strangeness
suppression factor of 1/3. The deviation from the SM ratio
by about 13% indicates that strangeness equilibration is not
fully achieved in the calculations. This is expected, since the
partons in the surface of the fireball hadronize before chemical
equilibration may occur. A detailed discussion of results will
be presented in a forthcoming study.

The agreement between the PHSD and SM results for the
baryon to meson ratio in the strangeness S = 0 and S = 1
sector may be explained as follows. Since the final hadron
formation dominantly proceeds via resonance and string for-
mation and decay—which is approximately a microcanonical
statistical process [38]—the average over many hadronization
events with different energy/mass and particle number (in the
initial and final state) leads to a grand-canonical ensemble.
The latter (for µB = 0) is only characterized by the average
energy or an associated Lagrange parameter β = 1/T .

D. Elliptic flow

Of additional interest are the collective properties of
the partonic system during the early time evolution. To
demonstrate the buildup of elliptic flow, we show in Fig. 6
the time evolution of

v2 = 〈(
p2

x − p2
y

)/(
p2

x + p2
y

)〉
(13)

for partons, mesons, and baryons for an initial eccentricity
ε = 0.33. As seen from Fig. 6, the partonic flow develops
within 2 fm/c, and the hadrons essentially pick up the collective
flow from the accelerated partons. The hadron v2 is smaller
than the maximal parton v2, since by parton fusion the average
v2 reduces and a fraction of hadrons is formed early at
the surface of the fireball without a strong acceleration
before hadronization. We briefly mention that the reduction of
the average hadron elliptic flow essentially is due to the
finite parton masses which are larger than the temperature
in the hadronization phase. This reduced hadron v2 is in
contrast to the coalescence of massless partons. A more
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FIG. 6. (Color online) Time evolution of the elliptic flow v2 for
partons and hadrons for the initial spatial eccentricity ε = 0.33 for
an expanding partonic fireball at initial temperature T = 1.7Tc.
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FIG. 7. (Color online) Hadron elliptic flow v2 vs initial spatial
eccentricity ε for an expanding partonic fireball at initial temperature
T = 1.7Tc.

detailed discussion and investigation of Eqs. (7) and (9) will
be presented in an upcoming study.

It is important to point out that in PHSD the elliptic flow
of partons predominantly stems from the gradients of the
repulsive parton mean fields (from the DQPM) at high parton
(energy) density. To demonstrate this statement, we show
in Fig. 6 the result of a simulation without elastic partonic
rescattering processes (short dashed line).

Figure 7 shows the final hadron v2 versus the initial
eccentricity ε and indicates that the ratio v2/ε is practically
constant (≈0.2) as in ideal hydrodynamics (cf. Fig. 3 in
Ref. [39]). Accordingly, the parton dynamics in PHSD are
close to ideal hydrodynamics. This result is expected, since
the ratio of the shear viscosity η to the entropy density s in the
DQPM is on the level of η/s ≈ 0.2 [4] and thus rather close
to the lower bound of η/s = 1/(4π ) [40]. Note that the ratio
η/s is dominantly determined by the quasiparticle width γ

[Eq. (2)], and low ratios on the level of η/s ≈ 0.2 require
broad parton spectral functions as employed in the DQPM.

A further test of the PHSD hadronization approach is
provided by the “constituent quark number scaling” of the
elliptic flow v2 which has been observed experimentally in
central Au+Au collisions at RHIC [5,41]. In this respect, we
plot v2/nq versus the transverse kinetic energy per constituent
parton,

Tkin = mT − m

nq

, (14)

with mT and m denoting the transverse mass and ac-
tual mass, respectively. For mesons, we have nq = 2; for
baryons/antibaryons, nq = 3. The results for the scaled elliptic
flow are shown in Fig. 8 for mesons and baryons and suggest an
approximate scaling. We note that the scaled hadron elliptic
flow v2/nq does not reflect the parton v2 at hadronization
and is significantly smaller. Because of the limited statistics
especially in the baryonic sector with increasing pT , this issue
will have to be readdressed with high statistics in the actual
heavy-ion case where the very early parton pT distribution
also shows power-law tails.
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FIG. 8. (Color online) Elliptic flow v2—scaled by the number of
constituent quarks nq—vs transverse kinetic energy divided by nq for
mesons and baryons.

IV. SUMMARY

In summary, the expansion dynamics of an anisotropic
partonic fireball is studied within the PHSD approach, which
includes dynamical local transition rates from partons to
hadrons [Eqs. (7) and (9)] and vice versa. It shows collective
features as expected from ideal hydrodynamics for strongly
interacting systems. The hadronization process conserves four-
momentum and all flavor currents and slightly increases the to-
tal entropy (by about 15% in the model case investigated here),
since the “‘fusion” of rather massive partons dominantly leads
to the formation of color-neutral strings or resonances that
decay microcanonically to lower mass hadrons. This solves
the entropy problem associated with the simple coalescence
model!

We find that the hadron abundances and baryon to meson
ratios are compatible with those from the statistical hadroniza-
tion model [35,36]—which describes well particle ratios
from AGS to RHIC energies—at a freeze-out temperature
of about 170 MeV. Furthermore, strangeness equilibration
is approximately achieved in the dynamical expansion and
driven by the processes qq̄ ↔ g ↔ ss̄, which is a resonant
process in the DQPM. However, although the final hadron
ratios are compatible with a fixed freeze-out temperature
(∼170 MeV), we observe that the actual hadronization occurs
at very different energy densities (or temperatures) (cf. also
Ref. [42]) such that the microscopic studies do not support the
sudden freeze-out picture.

Our calculations show that the hadron elliptic flow is
essentially produced in the early partonic stage, where also the
strong repulsive parton mean fields contribute to a large extent.
This might explain why the hadron v2 from HSD calculations
[43] underestimated the RHIC data on v2 essentially at
midrapidity (in the pure hadron/string approach). The hadron
elliptic flow from PHSD is smaller than the parton v2 due
to a partial cancellation of the v2 values from the individual
partons in the fusion process to hadrons (but larger than in
HSD). This cancellation essentially is a consequence of parton
masses that are larger than the local temperature during the
hadronization phase. Nevertheless, our observations indicate
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an approximate quark number scaling (cf. Fig. 8) for low
and moderate transverse kinetic energies within the statistics
reached so far. This issue will be followed up in more detail in
a forthcoming investigation.

The present study, however, serves only as a model case
which allows for a more transparent interpretation of the
various results. An application of the PHSD approach to
ultrarelativistic heavy-ion collisions, especially in comparison
to differential experimental data, is expected to shed further

light on the transport properties of the partonic phase and the
dynamics of hadronization.
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