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Thermodynamics for a hadronic gas of fireballs with internal color structures and chiral fields
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The thermodynamic partition function for a gas of color-singlet bags consisting of fundamental and adjoint
particles in both U(Nc) and SU(Nc) group representations is reviewed in detail. The constituent particle species
are assumed to satisfy various thermodynamic statistics. The gas of bags is probed to study the phase transition
for nuclear matter in extreme conditions. These bags are interpreted as the Hagedorn states, and they are the
highly excited hadronic states produced below the phase transition point to the quark-gluon plasma (QGP). The
hadronic density of states has the Gross-Witten critical point and exhibits a third-order phase transition from a
hadronic phase dominated by the discrete low-lying hadronic mass spectrum particles to another hadronic phase
dominated by the continuous Hagedorn states. The Hagedorn threshold production is found just above the highest
known experimental discrete low-lying hadronic mass spectrum. The subsequent Hagedorn phase undergoes a
first-order deconfinement phase transition to an explosive QGP. The role of the chiral phase transition in the
phases of the discrete low-lying mass spectrum and the continuous Hagedorn mass spectrum is also considered.
It is found to be crucial in the phase transition diagram. Alternative scenarios are briefly discussed for the
Hagedorn gas undergoing a higher order phase transition through multiple processes of internal color-flavor
structure modification.
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I. INTRODUCTION

The thermodynamic description of strongly interacting
hadronic matter can be approximated by a free gas with
a modified level density of hadronic states. This new level
density is given by the statistical bootstrap equation. A solution
to this equation exists only for a certain range of parameters
[1,2]. It has been argued that the statistical evaluation of the
mass spectrum in the bag made using the microcanonical
ensemble behaves as a strong bootstrap model [3,4]. Naively,
the thermodynamics implied by this hadronic mass spectrum
has a limiting temperature T0. The bootstrap model with
internal symmetry [5,6] of the fireball provides subsidiary
variables and allows for new types of phase transitions.
The fireballs, described by the bags of confined quark and
gluon components, stand for excited exotic hadrons. They
are denoted as the hadronic bubbles or more definitely as the
Hagedorn states. The Hagedorn states are defined by fireballs
that consist of quarks and gluons in the color-singlet states. The
confrontation with the experiment is made by projecting the
color-singlet states for the non-Abelian color gauge symmetry.
The simple model assumes that there are no interactions
among the color charges, except for a color-singlet constraint
from the confinement, assuming the results are stable to the
introduction of small interaction terms. Gross and Witten [7]
have studied the action for fundamental particles in the large-
Nc limit of the two-dimensional U(Nc) lattice gauge theory.
Using the functional integral method of Brezin, Itzykson,
Parisi, and Zuber [8] in the large Nc limit. The action is
explicitly evaluated for all fixed weak-strong coupling λWS =
Ncg

2 by steepest-descent methods. In this limit, a particular
configuration totally dominates the functional integral. The
Vandermonde determinant, which appears in the measure of

the lattice gauge theory, also contributes a potential term. Their
solution suggests the existence of a Gross-Witten point for a
third-order phase transition from the weak-to-strong coupling
λWS interaction in the large-Nc four-dimensional lattice gauge
theory. They also mentioned that the occurrence of such a
phase transition would not mean that the large-Nc theory does
not confine, but more precisely that the occurrence of such a
phase transition is not described by the same analytic functions.
This means that the behavior of the mass spectral density must
be modified at the Gross-Witten point.

The Gross-Witten solution [7] is also obtained for quarks
and gluons by solving the singular integral equation. The
third-order phase transition point is determined when the
solution of the singular integration is evaluated over an open
contour rather than a closed one [9–11]. The method given
by Azakov, Salomonson and Skagerstam [11] leads to the
singular integration over either a closed or an open contour.
They considered gluons and quarks by solving the resultant
singular integral equation, and they obtained a third-order
phase transition point. They derived the phase transition point
considering two possibilities. The first one is the integration
over a closed contour, while the other possibility is the
integration over an open contour. The phase transition takes
place when the integration is performed over an open contour
rather than the closed one. These two possibilities complicate
the solution in the realistic case. The order of the phase
transition is assumed to be the same even for an arbitrary
constituent mass [12]. It is interesting to note here that the
authors of Ref. [11] have shown the existence of a critical
chemical potential µc such that for T > 0, the physical
properties for the low-lying spectrum are unaffected by the
chemical potential |µ| < µc. This means that generalizing and
extending the results for zero chemical potential to the diluted
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nuclear matter with a small chemical potential is satisfactory,
though more thorough investigation is required in particular
when the chemical potential exceeds the critical value. The
low-temperature phase has free energy of O(N0

c ), interpreted
as a gas of mesons and glueballs, while the high-temperature
phase has free energy of order O(N2

c ), which is interpreted
as exotic color-singlet bags of adjoint gluons and fundamental
and antifundamental quarks.

The deconfining phase transition in SU(Nc) gauge theories
has been studied at nonzero temperature using a matrix model
of Polyakov loops [13–15]. This model has been also extended
for nonzero density. The effective action for loops starts with
a potential term. At large Nc, the action is dominated by the
loop potential. It has been demonstrated that the Gross-Witten
model represents an ultracritical point where the deconfining
transition at Nc = ∞ is close to but not at the Gross-Witten
point. Although masses vanish at the Gross-Witten point, the
transition is found of first order, and it has been suggested that
at finite Nc, the fluctuations can derive the theory much closer
to the Gross-Witten point [13–15].

The thermodynamics of quark jets with an internal color
structure has been considered in the context of a one-
dimensional quark gas [16–18]. It is considered based on
an exact Hamiltonian formalism in which the quarks are
treated as classical particles, but their interactions through
the group theory U(Nc) or SU(Nc) gauge fields are treated
exactly [16–20].

The class of theories on a compact spatial manifold with
fundamental flavors and adjoint gluons are also found to
undergo a third-order deconfinement phase transition at a
temperature Tc proportional to the inverse length scale of the
compact manifold [21]. The same thermodynamic behavior
of the deconfinement transition for large Nc at zero and
weakly coupling is found for a wide class of toy models
such as N = 4 super Yang-Mills theory. It is argued that
anti–de Sitter space (AdS) black hole thermodynamics is
related to Hagedorn thermodynamics [22]. Sundborg [22] has
calculated the partition sums for N = 4 super Yang-Mills
on S3 and has discussed the connections with gravitational
physics. It has been speculated that on a dual string theory
interpretation, the deconfinement transitions are always as-
sociated with black hole formation and furthermore that the
intermediate-temperature phase associated with second-order
deconfinement transitions would be dual to a string theory in
a background dominated by a strange new type of stable black
hole [23–25]. Indeed, the Gross-Witten point and the Hagedorn
states remain very exciting and rich physics. For example,
in the language of anti–de Sitter-space/conformal-field-theory
(AdS/CFT) duality, the Horowitz-Polchinski point for a small
black hole should correspond to a Gross-Witten transition.
This can be related to the phase transition from the small black
hole to a big black hole [26].

The internal color symmetry of the bound state remains
to be of a color-singlet state even for finite temperature
and chemical potential due to the color confinement. The
discrete low-lying hadronic mass spectrum is generated by
the broken chiral symmetry. The internal color structure
of the hadronic bag of quarks and gluons for hadronic
states above the known discrete low-lying hadronic mass

spectrum remains in a total color-singlet state. In realistic
calculations, the internal color structure is imposed in the
partition function for the hadronic bubbles [27]. When the
temperature reaches the critical one, color is expected to be
liberated and chiral symmetry is restored. QCD predicts a
phase transition from the hadronic phase to a deconfined
quark-gluon plasma (QGP). The hadronic phase consists of
the whole hadronic mass spectrum including resonances of all
known particles. Hardcore repulsive forces can be represented
by the excluded volume. The effects from strong interactions
are included by adding a free gas of hadronic bubbles which
are bags of constituent quarks and gluons with a specific
internal color-flavor structure. The hadronic bubbles remain
in overall color-singlet states, despite the complexity of the
internal color-flavor structure. The bubble size grows, but the
bubble retains its own internal color symmetry with increasing
baryonic density at low temperature. The volume fluctuations
are expected to be suppressed whenever the bags start to
overlap with each other at large chemical potential. When
the temperature increases, the bag’s surface is deformed and
smeared out until the bubbles dissociate eventually at the
critical temperature. It is expected that the bubble’s volume
fluctuation increases at high temperature in contrast to cold
dense hadronic matter in which the bubbles tend to squeeze
each other. The strength of the volume fluctuation is presumed
to modify the details of the phase transition diagram [28].

The (grand-) canonical ensemble and its Laplace transform
to the microcanonical ensemble for gluonic bags or glueballs
were derived by Kapusta [3,4] without imposing any color
constraint. The internal symmetry constraint was originally
introduced for the statistical bootstrap model [5,6]. The
bootstrap density of states can be derived from the MIT bag
model. In the hadronic phase, the highly excited fireballs
derived from the bootstrap equation are hadronic bubbles
of confined quarks and gluons in a net color-singlet state
[29–34]. Gorenstein et al. [35–38] have studied the gas of
bags using the isobaric partition function. Auberson et al. [39]
have studied the phase transition to the deconfined QGP by
considering the asymptotic Gaussian volume fluctuations. The
order and shape of the phase transition have been studied in
detail [28]. It has been shown that the color-singlet constraint
imposed on the bag states is not the only critical condition
for the existence of the phase transition to an explosive QGP.
Therefore, the appearance of the deconfined phase transition
depends essentially on the volume fluctuations as well as
the internal color structure constraints. Recently, it has been
suggested that the phenomenology of the hadronic bubble
internal structure decides the order of the phase transition for
low chemical potential and high temperature [28,40].

In the present work, the partition function is written as a
function of the thermal running parameter λ. This thermal
running parameter is related to the Gross-Witten weak-strong
coupling λWS as follows: λ/N2

c = 1/λWS. Therefore, the weak
interaction corresponds to the large thermal running λ > λcrit,

while the strong interaction is analogous to the small thermal
running λ < λcrit.

The outline of the present paper is as follows. In Sec. II,
we review the partition function in the Hilbert space for
various statistics for the gas of particles with a specific internal
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color symmetry. The partition function is derived for an ideal
gas. The sum of states for particles confined in the cavity is
presented for convenience in the realistic calculations. The
extension to a specific geometry and other degrees of freedom
in the conformal fields such as the super-symmetry Yang-Mills
theory is mentioned. The invariance measure used to project
a specific internal color state is presented in Sec. III. The
invariance measure is given by the Vandermonde determinant
for the U(Nc) and SU(Nc) theoretic groups. It is shown that
the Vandermonde determinant has two different asymptotic
approximations: the first is appropriate when the color charges
are distributed uniformly over the entire circle; the second
one is more appropriate when the color charges become more
dominant in a specific physical range. In Sec. IV, we review the
method based on the spectral density of the color eigenvalues
(hereafter called the spectral density method). It has been
studied by Gross and Witten to discover the critical Gross-
Witten point. This method is reviewed for the fundamental
particles, and the phase transition point is given. In Sec. V, we
present an alternative method for deriving the critical point for
the phase transition. This method is based on the Gaussian-like
saddle points (GSP) method, and it is more appropriate in
theoretical nuclear physics and realistic calculations. It has
been considered by several authors [28–30,34,41]. In Sec. VI,
the gas of adjoint particles is reviewed in the context of two
different methods. Since in the realistic situation we have a gas
of fundamental as well as adjoint particles, the physics of the
phase transition for a gas consisting of different particle species
and satisfying various statistics is studied in Sec. VII. At first,
we demonstrate the calculation for the Maxwell-Boltzmann
statistics for fundamental and adjoint particles. The realistic
confined quark and gluon bag is considered in detail. The
adjoint gluons which are obeying the Bose-Einstein statistics
and the fundamental quarks and antiquarks which are obeying
the Fermi-Dirac statistics are considered in computing the
partition function and finding the phase transition’s critical
point. The microcanonical ensemble as a density of states is
presented in Sec. VIII. The microcanonical ensemble is derived
from the inverse Laplace transform of the grandcanonical one.
The critical mass for emerging fireballs which are obeying
the Maxwell-Boltzmann statistics is demonstrated first, and
then the realistic critical mass for emerging Hagedorn states
is given. In Sec. IX, the density of states is derived using
the statistical evaluation of the microcanonical ensemble.
The derivation is given along the lines of Kapusta [3], but
the internal color symmetry is considered explicitly in our
calculations. The thermodynamics for the gas of bags with
the excluded volume repulsion is presented in Sec. X. We
summarize the conditions for the phase transition in the context
of the isobaric partition function construction. Furthermore,
various scenarios for the phase transition are given. The role of
the chiral symmetry restoration phase transition in the hadronic
matter and QGP phase diagram is given in Sec. XI. Finally,
our conclusion is given in Sec. XII.

II. CANONICAL PARTITION FUNCTION

The canonical ensemble for the gas of fundamental particles
in the Hilbert space is given by the tensor product of the Fock

spaces of particles and antiparticles:

Zqq(β) =
∫

SU(Nc),U(Nc)
dµ(g)[TrqÛq(g)e−βĤq ]

× [TrqÛq(g)e−βĤq ]. (1)

On the other hand, the canonical ensemble for the gas of
fundamental and adjoint particles is given by the tensor product
of fundamental particles, antiparticles and adjoint particles’
Fock spaces. This tensor product reads

Zqqg(β) =
∫

SU(Nc),U(Nc)
dµ(g)[TrqÛq(g)e−βĤq ]

× [TrqÛq(g)e−βĤq ][TrgÛg(g)e−βĤg ], (2)

where the notation Trq,q,g is the trace in each Fock space. We
adopt the notation Tr in order to distinguish the single-particle
statistics from the trace trc over the color degrees of freedom.
In each Fock space, there exists the basis that diagonalizes
both operators as long as Ĥq and Ûq(g) commute. Let |α, j 〉
be the one-particle states of such a basis, where α labels the
eigenvalues of Ĥq and j labels those R(g) of Ûq(g), then the
diagonalized eigenstates read

〈α′, j ′|Ĥq |α, j 〉 = δα,α′δjj ′Eα,
(3)

〈α′, j ′|Ûq(g)|α, j 〉 = δα,α′δjj ′Rjj ′ (g).

Any configuration of the system is defined by the set of
occupation numbers {nα,j }. The additivity of Ĥq simply means
that

〈{nα,j }|Ĥq |{nα,j }〉 =
∑
α,j

nα,jEα. (4)

Then, using the basis |{nα,j }〉 to evaluate the trace, we readily
obtain

Tr Ûq(g)e−βĤq =
∑
{nα,j }

∏
α,j

(Rjj (g)e−βEα )
nα,j

boson

+
∑
{nα,j }

∏
α,j

(−1)nα,j +1(Rjj (g)e−βEα )
nα,j

fermion

=
∏
α,j

∑
{nα,j }

(Rjj (g)e−βEα )
nα,j

boson

+
∏
α,j

∑
{nα,j }

(−1)nα,j +1(Rjj (g)e−βEα )
nα,j

fermion.

(5)

Hence, the partition function in the each Fock space decom-
poses to bosonic and fermionic single-particle functions. It is
reduced to

TrstatesÛq(g)e−βĤq = TrFDÛq(g)e−βĤq + TrBEÛq(g)e−βĤq

→ TrFDÛq(g)e−βĤq

→ TrBEÛq(g)e−βĤq , (6)

where the subscripts FD and BE indicate Fermi-Dirac and
Bose-Einstein statistics, respectively. The resultant ensemble
decomposes either to fermionic or bosonic Fock space or even
the superposition of Fock spaces with different statistics. The
Hilbert space of gas, which is consisting of particles satisfying

034916-3



ISMAIL ZAKOUT AND CARSTEN GREINER PHYSICAL REVIEW C 78, 034916 (2008)

Fermi-Dirac and Bose-Einstein statistics, has the structure of
tensor product of Fock spaces obeying Fermi-Dirac statistics
and another one obeying Bose-Einstein statistics. The trace
over Fermi-Dirac statistics is given by

TrFDÛq(g)e−βĤq =
∏
α

[1 + R(g)e−βEα ]

= exp

[
+trc

∑
α

ln[1 + R(g)e−βEα ]

]
, (7)

while the trace over Bose-Einstein statistics is given by

TrBEÛq(g)e−βĤq =
∏
α

1

[1 − R(g)e−βEα ]

= exp

[
−trc

∑
α

ln[1 − R(g)e−βEα ]

]
, (8)

where trc is the trace over the color degree of freedom. In the
realistic physical situation, the single-particle partition func-
tion satisfies either Fermi-Dirac or Bose-Einstein statistics.
The quarks and antiquarks satisfy Fermi-Dirac statistics, while
gluons satisfy Bose-Einstein statistics. The sum of states {jn}
for Fermi-Dirac statistics is calculated explicitly as

TrFDÛq(g)e−βĤq

= exp

[
+trc

∑
α

ln[1 + R(g)e−βEα ]

]

= exp

[
+trc

∑
α

∑
m=1

1

m
(−1)m+1(R(g)e−βEα )m

]

= exp

[
+
∑
m=1

1

m
(−1)m+1

(
trcR(gm)

∑
α

e−mβEα

)]

= exp

[
+
∑
m=1

1

m
(−1)m+1trcR(gm)zF(e−mβ )

]
. (9)

In Bose-Einstein statistics, the single-particle partition func-
tion becomes

TrBEÛq(g)e−βĤq = exp

[
−trc

∑
α

ln[1 − R(g)e−βEα ]

]

= exp

[
+trc

∑
α

∑
m=1

1

m
(R(g)e−βEα )m

]

= exp

[
+
∑
m=1

1

m
trc

(
R(gm)

∑
α

e−mβEα

)]

= exp

[
+
∑
m=1

1

m
trcR(gm)zB(e−mβ )

]
, (10)

where zF/B(e−β) =∑α e−βEα is the sum of energy states
with a specific structure and/or geometry either for Fermi
or Bose particles. Furthermore, in the high-energy limit
(i.e., temperature), the Maxwell-Boltzmann statistics becomes
an appropriate approximation under certain conditions. The
single-particle partition function in the Maxwell-Boltzmann

statistics is given by

TrMBÛq(g)e−βĤq =
∑
{nα,j }

∏
α,j

1

nα,j

(Rjj (g)e−βEα )nα,j

=
∏
α,j

exp(Rjj (g)e−βEα )

= exp
∑

α

ln det
c

[exp(R(g)e−βEα )]

= exp
∑

α

trc ln exp(R(g)e−βEα )

= exp

[
trcR(g)

∑
α

e−βEα

]
. (11)

The theoretical group such as U(Nc) and SU(Nc) has a special
importance in the realistic physical application such as the
quark and gluon bubble.

The U(Nc) or SU(Nc) internal color group symmetry is
introduced in the canonical ensemble in order to project
the state with a specific internal color structure. The color
structure of the quark and antiquark is introduced by the
fundamental representation. The Fock space single-particle
partition function with fundamental representation in the
Fermi-Dirac statistics reads as

TrFDÛq(g)e−βĤq = exp

[
+trc

∑
α

ln[1 + Rfun(g)e−βEα ]

]

= exp

[
+

Nc∑
i=1

∑
α

ln[1 + eiθi e−βEα ]

]
, (12)

where the trace over group U(Nc) [or SU(Nc)] fundamental
representation is given by

trcRfun(gk) =
Nc∑
i=1

eikθi . (13)

The partition function for the fundamental particle and
antiparticle Hilbert space becomes

[TrqÛq(g)e−βĤq ][TrqÛq(g)e−βĤq ]

= exp

[
+

Nc∑
i=1

∑
α

ln[1 + 2 cos(θi)e
−βEα + e−2βEα ]

]
. (14)

On the other hand, the gluons are assumed as gauge particles
in the theory, and they are introduced in the context of
adjoint representation. The Fock space single-particle partition
function for adjoint particles satisfying Bose-Einstein statistics
reads

TrBEÛg(g)e−βĤg = exp

[
−trc

∑
α

ln[1 − Radj(g)e−βEα ]

]

= exp

−�
Nc∑
i �=j

∑
α

ln[1 − ei(θi−θj )e−βEα ]

−Nc

∑
α

ln[1 − e−βEα ]

 . (15)
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The trace over the adjoint representation becomes

trcRadj(g
k) =

∑
i �=j

cos k(θi − θj ) + Nc, U(Nc),

=
∑
i �=j

cos k(θi − θj ) + (Nc − 1), SU(Nc), (16)

for the U(Nc) and SU(Nc) groups, respectively. The density
of states for single-particle levels has been studied extensively
using the multiple reflection expansion method [42–44]. The
sum runs over the number of states which can fill the one-
particle states. The sum over states for constituent particles
that are confined in a spherical cavity is calculated as [42–44]

Eα =
√

p2 + m2 + V (r),
∑

α

= DD

∫
V

d3r

∫
dE ρ(E)

= DDV

∫
dEρ(E) = DD

∫
V d3p

(2π )3
. (17)

The volume V is the spherical cavity volume in which the
constituent particles are confined, and it corresponds to the
total occupational space. The one-particle degeneracy is given
by DD = NcDd , where Nc is the number of colors and Dd is
the particle species degeneracy. Usually we set Dd = (2j + 1)
as the spin multiplicity, where j is the spin quantum number.

Nonetheless, it is interesting to note here that when we have
a thermodynamic system of particles confined in a compacted
space with specific geometry and other degrees of freedom,
the sum of states becomes nontrivial. It has been noted that in
the conformal field theories, the partition function for scalars
and chiral fermions on S3 × R are given by [22,23]

zB(e−β ) = e−β + e−2β

(1 − e−β )3
, (18)

and

zF(e−β) = e− 4
3 β

(1 − e−β )3
. (19)

Hence, the model analysis for the partition function that is
given in nuclear physics for the search for a QGP can be
generalized to study the conformal fields such as pure Yang-
Mills theory and N = 4 super-symmetry Yang-Mills theory.
The understanding of the partition function with various
internal structures can shed light on a new phase of matter
beyond the QGP. This might also be useful in constructing
new models to explore new physics such as the searching for
a dark matter.

III. INVARIANCE MEASURE

The invariance measure is essential to projecting the state
with a specific internal structure. The invariance Haar measure
reads∫

dµ(g) = 1

Nc!

(
1

2π

)Nc

×
∫ π

−π

[∏
m>n

2 sin2

(
θn − θm

2

)] Nc∏
k=1

dθk,

= 1

Nc!

(
1

2π

)Nc
∫ π

−π

[∏
m>n

2 sin2

(
θn − θm

2

)]

×
Nc∏
k=1

[
2πδ

(
Nc∑
i=1

θi

)]
dθk, (20)

for U(Nc) and SU(Nc) group representations, respectively. The
Haar invariance measure for the system with homogeneous and
uniform distribution over the Fourier color variables, |θi | � π ,
is written for SU(Nc) as∫

dµ(g) = 1

Nc!

(
1

2π

)Nc−1 (
2(N2

c −Nc)/2
) Nc−1∏

k=1

∫ π

−π

dθk

× exp

[
1

2

Nc∑
n=1

Nc∑
m=1

ln sin2

(
θn − θm

2

)] ∣∣∣∣∣
n�=m

.

(21)

The Vandermonde determinant, which appears in the measure,
contributes to the action as an additional potential term. The
Vandermonde effective potential term is soft when the color
eigenvalues in the stationary condition distribute uniformly
over the entire circle |θi | � π . However, this will not be the
case for the extreme condition in particular when the color
eigenvalues are distributed in a narrow domain |θi | � π .
Under this condition, the Vandermonde effective potential
becomes virtually singular, and the action must be regulated in
a proper way in order to remove the Vandermonde determinant
divergence. The regulated Haar measure in the extreme
conditions becomes∫

dµ(g) = 1

Nc!

(
1

2π

)Nc
∫ Nc∏

k=1

[∏
m>n

(θn − θm)2

]

× 2πδ

(
Nc∑
i=1

θi

)
dθk. (22)

This version for the invariance measure accommodates the
canonical ensemble in the hot medium. The similar results can
be verified for the theoretic group U(Nc) representation.

IV. FUNDAMENTAL PARTICLES: SPECTRAL DENSITY
METHOD

The canonical ensemble for fundamental particles in the
U(Nc) or SU(Nc) representation, confined in a spherical cavity
and obeying Maxwell-Boltzmann statistics, reads

Z(β) =
∫

dµ(g) exp

[
Dd

∫
V

d3r

∫
d3p

(2π )3
Gfun(θ )e−βE(p,r)

]
,

(23)

where Dd is the single-particle degeneracy due to the degree
of freedom, which is not specified explicitly in the calculation
such as the spin multiplicity. The trace over the color degree
of freedom for particles and their antiparticle partners in the
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fundamental representation is given by

Gfun(θ ) = 1

Nc

tr(Rfun(g) + R∗
fun(g)) = 2

Nc

Nc∑
i=1

cos θi . (24)

The sum of states for a gas of particles confined in a spherical
cavity is calculated as

λ = Dd

∫
V

d3r

∫
d3p

(2π )3
e−βE(p,r) = Dd

∫
V d3p

(2π )3
e−βE(p,r).

(25)

The color-singlet state for the canonical partition function for
a gas of fundamental particles and antiparticles is projected as

Z(λ) = 1

Nc!
2(N2

c −Nc)/2
Nc∏
k=1

∫
dθk

2π

× exp

[
1

2

Nc∑
n=1

Nc∑
m=1

ln sin2

(
θn − θm

2

) ∣∣∣∣∣
n�=m

+ λ
1

Nc

tr(Rfun(g) + R∗
fun(g))

]
. (26)

The multiple integrations in the partition function are evaluated
using the steepest-descent method. The partition function is
reduced to

Z(λ) = 1

Nc!
2(N2

c −Nc)/2 exp

[
1

2

Nc∑
n=1

Nc∑
m=1

ln sin2

×
(

θn − θm

2

) ∣∣∣∣∣
n�=m

+ 2λ
1

Nc

Nc∑
n=1

cos θn

 . (27)

The saddle points θn are determined by the stationary condition

2λ
1

Nc

sin θ i =
Nc∑
n�=i

cot

∣∣∣∣∣θ i − θn

2

∣∣∣∣∣ . (28)

The above equation turns out to be an eigenvalue problem
for the large Nc limit, and the saddle points are determined
by the eigenvalues. Hereinafter, we introduce λ = N2

c λ̃. The
stationary condition becomes

2̃λ sin θ i = 1

Nc

Nc∑
n�=i

cot

∣∣∣∣∣θ i − θn

2

∣∣∣∣∣ . (29)

The solution for the stationary condition that is given
by Eq. (29) depends basically on the value of the thermal
running parameter λ̃. It can be shown numerically that the
solution of θ i for λ̃ � 1

2 is distributed uniformly over the
entire circle range |θ i | � π and |θ i − θj | � 2π

Nc
. However, this

solution ceases to exist for the full range |θi | � π when
the thermal running parameter λ̃ becomes relatively large
and runs over the range λ̃ > 1

2 . The eigenvalues θi turn out
to be distributed uniformly only over the incomplete range
|θi | � θc < π . This means that the solution for λ̃ > 1

2 becomes
problematic, and the action must be regulated thoroughly
when θc becomes small. When that action is regulated,
another analytical solution may emerge, and the change in

FIG. 1. (Color online) Saddle points solution for particles in
the fundamental representation. The saddle points are distributed
uniformly over the range |θi | � π for a parameter that runs over
the range λ � λ0. The numerical solution shows that saddle points
cease to exist when the thermal running parameter λ exceeds the
value λ0

N2
c

= 1
2 in the large Nc limit.

the analytical solution characteristic becomes responsible for
the existence of the phase transition.

The numerical solution for the set of stationary conditions
which are given by either Eq. (28) or Eq. (29) versus the
thermal running parameter λ̃ for various color numbers Nc

with group symmetry U(Nc) is displayed in Fig. 1. The
resemblance between t’Hooft coupling λWS = g2

YMNc and the
thermal running parameter λ̃ = λ/N2

c is given by the relation
g2

YMNc = 1/̃λ. The weak t’Hooft coupling corresponds to
the high-lying thermal running parameter λ̃ � λ̃crit, while the
strong t’Hooft coupling is given by the low-lying λ̃ � λ̃crit. The
Vandermonde determinant contributes to the effective action.
Consequently, the saddle point locations are computed using
the stationary conditions where the Vandermonde determinant
is included explicitly in the action as an additional potential
term. It is shown numerically that the saddle points are
distributed uniformly over the interval −π � θi � π for the
low-lying thermal running parameter λ̃ (i.e., strong t’Hooft
coupling). The characteristic distribution of the saddle points
is found uniform for the small λ̃ even for a small number of
colors Nc = 2. This distribution becomes more dominant over
a narrower range |θi | � θ0 < π as λ̃ increases and approaches
the critical value. However, the numerical calculation shows
that the saddle points cease to exist when the thermal running
parameter λ̃ exceeds a critical value just above λ̃ � 1

2 (i.e.,
weak t’Hooft coupling). For example, in the case of Nc = 3,
the saddle points cease to exist when the thermal running
parameter exceeds the value λ̃ > 1.32

2 . Furthermore, it is found
that when the number of colors Nc increases, the saddle
points cease to exist at smaller value of λ̃. For example, for
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Nc = 5, the solution for these points does not exist beyond the
critical point λ̃ > 1.23

2 . In the limit of large Nc, the solution
for saddle points breaks down just above the point λ̃ = 1

2 .
The Vandermonde term diverges when the color saddle points
become more dominant in a tiny domain around the origin.
This divergence breaks the solution badly when these saddle
points congregate and converge to the origin. It is found that the
saddle points cease to exist when λ̃ > λ̃crit. This implies that
the stationary conditions must break down and the action must
be regulated in a proper way and a new set of conditions must
be formed. This proves the existence of the phase transition in
the system.

In the large-Nc limit, Gross and Witten solved these
equations in the case of two-dimensional U(Nc) lattice gauge
theory following Brezin et al. [8] by introducing the spectral
density of eigenvalues. Brezin et al. [8] have shown that the
functional integrals in the large-Nc limit can be calculated by
steepest-descent methods. In this limit, a particular configura-
tion totally dominates the functional integral. The stationary
equations in this limit can be replaced by their continuum
version by introducing a nondecreasing function

θn = θ (x),

x = n

Nc

, (30)

n = 1, . . . , Nc.

Hence, the stationary condition becomes

2̃λ sin θ (x0) = P
∫ 1

0
dy cot

(
θ (x0) − θ (y)

2

)
, (31)

where P refers to the principle part of the integral. By
introducing the density of states

ρ(θ ) = dx

dθ
� 0, (32)

and the constraint∫ 1

0
dx =

∫ θc

−θc

dθ ρ(θ ) = 1, (33)

where |θc| � π . Hence the stationary condition becomes

2̃λ sin θ = P
∫ θc

−θc

dθ ′ρ(θ ′) cot

(
θ − θ ′

2

)
. (34)

A. Highly thermal excited matter: λ

N2
c
� 1

2

The solution of density of eigenvalues in the large Nc

limit in the U(Nc) representation has attracted much attention
recently. Although the solution for the spectral density of
eigenvalues is difficult in the realistic situation, the approxi-
mate solution for this density has been derived for some simple
specific cases for fundamental and adjoint representations
in the limit of large Nc. In the following, we review the
partition function using the given solution of the spectral
density of color eigenvalues. Then in Sec. V we introduce
another approximation to evaluate the same partition function.
The other method is to approximate the resultant integral to
the Gaussian-like integral, and this approximation seems to be

more efficient when more complicated situations are involved.
The two methods have been shown to reproduce the same
results for the large thermal running parameter λ̃ � λ̃0 and
λ̃ = λ/N2

c .
The first method for evaluating the canonical ensemble is

based essentially on the stationary equation solution for the
density of color eigenvalues, and it is written for λ̃ � 1

2 as

ρ(θ ) = 2

π
λ̃ cos

θ

2

[
sin2

(
θc

2

)
− sin2

(
θ

2

)]1/2

, (35)

where

sin2

(
θc

2

)
= 1

2̃λ
� 1,

λ

N2
c

= λ̃ �
1

2
. (36)

The color eigenvalues are not distributed uniformly over the
entire color circle range −π to π . Instead, in this solution,
they are distributed over only a narrow interval |θi | � θc, where
|θc| < π . The canonical partition function after weighting the
color density of eigenvalues becomes

Z(λ) = C exp

[
1

2
N2

c

∫ θc

−θc

dθρ(θ )
∫ θc

−θc

dθ ′ ρ(θ ′)

× ln sin2

(
θ − θ ′

2

)
+ 2N2

c λ̃

∫ θc

−θc

dθ ρ(θ ) cos θ

]
,

(37)

where the preexponential constant is given by C = 2(N2
c −Nc )/2

Nc! .
Under this stationary approximation, the canonical ensemble
function is calculated as

Z(λ) ∼= exp

[
2N2

c λ̃ − N2
c

2
ln
(
2̃λN2

c

)+ N2
c

2
ln N2

c − 3

4
N2

c

]
∼=
(

1

2̃λ

) N2
c

2

exp

(
2N2

c λ̃ − 3

4
N2

c

)
, where λ̃ �

1

2
.

(38)

Hence, the asymptotic large running thermal coupling solution
reads

Z(λ) ≡
(

N2
c

2λ

) N2
c

2

exp

(
2λ − 3

4
N2

c

)
. (39)

B. Diluted and relatively cold matter: λ

N2
c
� 1

2

At low temperatures, the stationary condition for λ̃ � 1
2

produces the following density of color eigenvalues:

ρ(θ ) = 1

2π
(1 + 2̃λ cos θ ),−π � θ � π. (40)

The chemical potential for the total particle number due to the
rotated U(1)B symmetry is not considered here, and it is left
for the forthcoming work. In the large Nc limit, the system is
assumed to be highly compressed due to the large number of
colors, but this is not the case for a finite number of colors such
as QCD. In this case, the system is identified as a compressed
one when the chemical potential for particle numbers becomes
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relatively large. The density of eigenvalues given by Eq. (40)
for λ

N2
c

� 1
2 produces the partition function

Z(λ) = eN2
c λ̃2 = eλ2/N2

c . (41)

The occurrence of such a phase transition from the diluted
and relatively cold matter (i.e., low-lying phase) to the highly
thermal excited matter (i.e., high-lying phase) would not mean
that the large-Nc theory does not confine. The highly excited
thermal matter can be interpreted as an exotic hadronic phase
dominated by the Hagedorn states. In the lattice theory, this
would imply that the weak and strong λWS coupling is not
described by the same analytic functions [7]. The weak and
strong λWS are analogous to the large and small thermal
running parameters λ/N2

c , respectively. For the finite Nc,
one could continue from the strong to the weak coupling.
However, one would expect to see a sign of phase transition
for large enough Nc (i.e., in the limit Nc = ∞) whose
manifestation would be a sharp transition at λWS ≈ λWS(crit)

from the weak-coupling to the strong-coupling behavior. As
in the lattice theory, in the thermal and dense QCD, the
strong- and weak-coupling transition is analogous to the
phase transition from the discrete low-lying mass spectrum
particles to the highly excited and massive Hagedorn states
(i.e., continuous high-lying mass spectrum). The Hagedorn
states are the color-singlet (confined) hadronic states. This
phase should not be interpreted as an immediate deconfined
phase. The critical Gross-Witten point is the threshold point for
the Hagedorn states to emerge in the system. The deconfined
phase transition can either take place immediately when
unstable Hagedorn states are produced in the system or as
a subsequent process when the metastable Hagedorn phase
undergoes a true deconfined phase transition.

V. FUNDAMENTAL PARTICLES: GAUSSIAN-LIKE
SADDLE POINTS METHOD

We introduce a novel alternative method for calculating
the partition function and finding the critical point for the
phase transition. This method accommodates the sophisticated
physical problems such as the internal color structure for a
gas consisting of particles with various statistics species in
a specific space boundary and with more complicated color-
flavor correlations and chiral symmetries. It may be useful in
finding the equation of state for physics beyond QCD.

A. Highly thermal excited matter: λ

N2
c
� 1

2

In the realistic physical situation, more calculations are
involved. It becomes more difficult to calculate the density
of color eigenvalues under certain conditions, in particular
when the color eigenvalues populate a tiny interval |θc| �
1 under extreme conditions. The canonical ensemble has a
special importance for the thermal running parameter λ̃ over
the range λ̃ > 1

2 , and it corresponds to the hot hadronic matter.
It is relevant to the relativistic heavy ion collisions studied at
the BNL Relativistic Heavy Ion Collider (RHIC) and CERN
Large Hadron Collider (LHC), and to cosmology such as the
physics of the early universe.

In the following, we demonstrate a method for calculating
the partition function for the coupling parameter λ

N2
c

� λ̃0 (in

our case, λ̃0 = λ̃crit = 1
2 ). The integral over the color invariance

measure is approximated to the Gaussian-like multi-integrals
around the saddle points. The color saddle points are dominant
in the narrow interval |θ | � θc around the origin, where
|θc| � 1. Since the saddle points are populated in a small
domain, we can safely approximate all the saddle points to
be located near the origin. The Vandermonde potential does
not appear in the action, but instead the invariance measure
appears as a prefactor power function of the exponential in
the Gaussian integral. The integration of the resultant multi-
Gaussian integrals is straightforward. We call this method the
Gaussian-like saddle points (GSP) method. In this limit, the
invariance Haar measure is approximated to∫

U(Nc)
dµ(g)sp ≈

Nc∏
k=1

∫
dθk

1

N !

(
1

2π

)Nc

[
Nc∏

n>m

(θn − θm)2

]
,

(42)

and∫
SU(Nc)

dµ(g)sp ≈ 1

N !

(
1

2π

)Nc Nc∏
k=1

∫
dθk

×
[

Nc∏
n>m

(θn − θm)2

]
2πδ

(
Nc∑
i

θi

)
, (43)

for U(Nc) and SU(Nc) symmetries, respectively. The partition
ensemble is given by

Z(λ) =
∫

dµ(g) exp

[
λ

Nc

trc(Rfun(g) + R∗
fun(g))

]

=
∫

dµ(g) exp

(
2

λ

Nc

Nc∑
n=1

cos θn

)
. (44)

When the thermal running parameter becomes relatively
large and covers the range λ̃ � λ̃(II)min, the partition ensemble
is approximated around the saddle points, which become
dominant in a small range, as follows:

Z(λ) ≈ Z(II)(λ), (for λ̃ in the range λ̃ � λ̃(II)min),

Z(II)(λ) =
∫

dµ(g)sp exp

(
2Nc̃λ

Nc∑
n=1

cos θn

)

≈ e2N2
c λ̃

∫
dµ(g)sp exp

[
−1

2
(2Nc̃λ)

Nc∑
n=1

θ2
n

]
, (45)

where λ = N2
c λ̃.

The subscript (II) denotes the solution for the asymptotic
large λ̃ while the subscript (I) will denote the solution for
the asymptotic small λ̃. In the case of U(Nc) symmetry, the
partition function becomes

Z(II)(λ) = 1

Nc!

(
1

2π

)Nc e2N2
c λ̃

(2Nc̃λ)
N2

c
2

(
Nc∏
k=1

∫ x0

−x0

dxk

)

×
(

Nc∏
n>m

(xn − xm)2

)
e− 1

2

∑Nc
n=1 x2

n . (46)
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The Gaussian-like multi-integrals are evaluated using the
standard formula(

Nc∏
k=1

∫ ∞

−∞
dxk

)(
Nc∏

n>m

(xn − xm)2

)
exp

[
−1

2

Nc∑
n=1

x2
n

]

≡ (2π )Nc/2
Nc∏

n=1

n!. (47)

Hence, the partition function is evaluated as

Z(II)(λ) ∼=
(

1

2Nc̃λ

) N2
c −1
2

e2N2
c λ̃

[
1

(2π )
Nc
2 −1

1

Nc!

1√
2πNc

Nc∏
n=1

n!

]
,

(48)
(for λ̃ � λ̃(II)min),

and

Z(II)(λ) ∼=
(

1

2Nc̃λ

) N2
c

2

e2N2
c λ̃

[
1

(2π )
Nc
2

1

Nc!

Nc∏
n=1

n!

]
,

(49)
(for λ̃ � λ̃(II)min),

for SU(Nc) and U(Nc) symmetries, respectively. To compare
the results of the present method with those derived using
the spectral density method given by Eq. (39), the partition
function for U(Nc) is written as

Z(II)(λ) = CNc

(
1

2̃λ

) N2
c

2

e2N2
c λ̃, (for λ̃ � λ̃(II)min), (50)

where the prefactor constant is given by

CNc
= N

− N2
c

2
c

[
1

(2π )
Nc
2

1

Nc!

Nc∏
n=1

n!

]
. (51)

Using Stirling’s approximation ln n! ≈ n ln n − n + 1
2 ln n +

1
2 ln 2π , the prefactor given by Eq. (51) is simplified to

ln CNc
= −N2

c

2
ln Nc − Nc(Nc + 1)

2
− 1

2

Nc∑
n=1

ln n +
Nc∑

n=1

n ln n

≈ −N2
c

2
ln Nc − Nc(Nc + 1)

2
− 1

2

∫ Nc

1
dn ln n

+
∫ Nc

1
dn n ln n

= −3

4
N2

c − 1

2
Nc ln Nc. (52)

The above expression simplifies the partition function to

lim
Nc→large

Z(II)(λ) ≈
(

1

2̃λ

)N2
c /2

exp

[
2N2

c λ̃ − 3

4
N2

c

]
,

(for λ̃ � λ̃(II)min). (53)

The above solution is the approximate solution over the range

λ̃ � λ̃crit � λ̃(II)min, where λ̃crit = 1
2 . (54)

It is in agreement with Eq. (39). This means that the
GSP method is consistent with the spectral density method
developed by Brezin et. el. [8] for the energy range λ

N2
c

� 1
2 .

B. Diluted and relatively cold matter: λ

N2
c
� 1

2

The Fourier color angles are distributed uniformly over the
entire color circle range −π � θi � π in the low-lying energy
domain λ

N2
c

� 1
2 as

Z(λ) ≈ Z(I)(λ), (for λ̃ in the range λ̃ � λ̃(I)max),

Z(I)(λ) =
∫ π

−π

dµ(g) exp

[
λ

1

Nc

tr(R(g) + R∗(g))

]
. (55)

The partition function is expanded with respect to orthogonal
bases over λ

N2
c

� λ̃(I)max and reads

Z(I)(λ) =
∫ π

−π

dµ(g) exp[Nc̃λ tr(R(g) + R∗(g))]

=
∫ π

−π

dµ(g)
∞∑
i=1

∞∑
j=1

1

i!
(Nc̃λ tr R(g))i

× 1

j !
(Nc̃λ tr R†(g))j . (56)

Using the orthogonal relations over the U(Nc) bases, the
partition function is reduced to [7]

Z(I)(λ) =
∫ π

−π

dµ(g)
∞∑
i=1

(
1

i!

)2

(Nc̃λ)2i(tr R(g))i(tr R†(g))i

=
∞∑
i=1

1

i!

(
N2

c λ̃2
)i = e(N2

c λ̃2)

= e
( λ2

N2
c

)
(over the range λ̃ � λ̃crit � λ̃(I)max), (57)

where λ̃crit = 1
2 and λ̃(I)max < 1.

The canonical ensemble with the Maxwell-Boltzmann
statistics single-particle partition function reads

Z(I)(β) = exp

[
1

N2
c

(2j + 1)2

(∫
VS3d3p

(2π )3
e−βE

)2
]

= exp

[
(2j + 1)2V 2

S3

π4N2
c β6

]

→ exp

[
(2j + 1)2V 2

S3T
6

π4N2
c

]
(58)

for an ideal gas of fundamental particles confined in a
spherical cavity in the three-dimensional space, where VS3

is the cavity volume in the three-dimensional space. The free
energy approaches the same value as in the free theory for low
temperature, whereas we have mesonic-like and baryonic-like
matter in the dilute hadronic phase. The canonical ensemble in
this range does not produce an explosive phase transition. The
physics for the two phases will be discussed in detail when we
present the microcanonical ensemble as a density of states in
Sec. VIII.

We display the function ln Z(λ) versus λ
N2

c
for the gas of

fundamental particles in the color-singlet state with various
numbers of colors Nc in Figs. 2 and 3. The logarithm of
the canonical ensemble in the domain λ

N2
c

� 1
2 is displayed in

Fig. 2. The highly thermal excited partition parameter λ
N2

c
� λ0

N2
c

034916-9



ISMAIL ZAKOUT AND CARSTEN GREINER PHYSICAL REVIEW C 78, 034916 (2008)

FIG. 2. (Color online) Density of states for the color-singlet
fireballs (i.e., Hagedorn states) vs the thermal running parameter λ

N2
c

with various color numbers Nc. The high-lying solution is calculated
for a bag consisting of fundamental particles with a λ

N2
c

over the

range λ

N2
c

� 1
2 . The results for the high-lying solution calculated using

the spectral density method of Brezin et al. [8] in the limit of large
color number Nc and the results obtained using the GSP method are
displayed together with the exact numerical solution. The high-lying
solutions for both methods and their extrapolations to λ

N2
c

� ( λ

N2
c

)crit

are compared with the exact numerical solution.

corresponds to the weak t’Hooft coupling, and it describes a hot
gas. The partition function in the large λ̃ regime is evaluated
exactly by the exact numerical integration over the Fourier
colors over the entire circle range (−π � θi � π ). The results
for the numerical integration are compared with the solution
for the spectral density method introduced by Brezin et. el. [8]
as well as the solution of the GSP method. The two methods
are found to produce the same results, and they fit the exact
numerical calculations when the thermal partition parameter
exceeds the critical value λ

N2
c

� 1
2 . In the regime below the

critical point λ̃0 = λ0
N2

c
, the two methods deviate from the exact

numerical one, and this deviation increases as λ
N2

c
decreases

below the critical thermal running parameter λ0
N2

c
. The largest

discrepancy is found for the small number of colors Nc = 2.
Even though the spectral density method was originally
derived for the large Nc → ∞ limit, the solution is found
satisfactory for a finite number of colors even for a relatively
small one, Nc = 2. Furthermore, the GSP method is found to
produce precisely the asymptotic solution for the large Nc →
∞ limit, although it was originally derived for a finite number
of colors. However, the extrapolations of both methods to
λ

N2
c

< λ0
N2

c
evidently fail to reproduce the exact numerical results

in the low-lying energy regime, in particular when λ
N2

c
becomes

FIG. 3. (Color online) Density of states for the color-singlet
fireballs (i.e., Hagedorn states) vs the thermal running parameter
λ

N2
c

for various color numbers Nc. The low-lying density of states
is calculated for bags consisting of fundamental particles and with
a thermal running parameter λ

N2
c

over the range λ

N2
c

� 1
2 . The results

derived by the orthogonal expansion given by Eqs. (56) and (57)
are displayed together with the exact density of states evaluated
numerically.

sufficiently small, λ
N2

c
� 1

2 . The failure of the large energy
extrapolation to reproduce the correct asymptotic low-lying
energy solution indicates the existence of a possible phase
transition near the point λ0

N2
c

= 1
2 . This deviation from the exact

numerical solution increases significantly as λ
N2

c
decreases

below the critical one λ0
N2

c
. The low-lying energy solution

for the small thermal running parameter domain λ
N2

c
� 1

2 with
various color numbers Nc = 2, 3, 4, and 5 is displayed in
Fig. 3. The exact numerical solution is compared with the
asymptotic analytical solution ln Z = λ2/N2

c for the low-lying
energy solution which is derived for the small thermal running
parameter λ

N2
c
. The asymptotic analytical low-lying energy

solution matches the exact numerical one in the range λ
N2

c
� 1

2 .
This agreement between the low-lying energy solution and
the exact numerical one is found satisfactory even for a small
color number, Nc = 2. The critical point λ̃crit = λcrit/N

2
c for

the phase transition from the asymptotic low-lying energy
solution for the range λ

N2
c

� λ0
N2

c
to the asymptotic high-lying

energy solution for the range λ
N2

c
� λ0

N2
c

is determined when both
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FIG. 4. (Color online) The match between the asymptotic low-lying energy for λ

N2
c

over the range λ

N2
c

� ( λ

N2
c

)crit and the asymptotic high-lying

energy solution for λ

N2
c

over the range λ

N2
c

� ( λ

N2
c

)crit for a color-singlet bag consisting of only fundamental particles. The asymptotic low-lying
solution is calculated using the λ-power expansion and the group orthogonality over the entire color range |θ | � π . The asymptotic high-lying
energy solution is computed using (a) the GSP method and (b) the spectral density method [8].

asymptotic solutions match each other from left and right sides,
respectively. Roughly speaking, they split only with a small
redundant constant due to several approximations considered
in the derivation. This additive constant vanishes smoothly
as the rough approximations are eliminated, and the solution
approaches the exact one.

The solutions for the asymptotic low- and high-lying λ
N2

c

energy domains are displayed in Fig. 4. Both solutions are
displayed with various color numbers Nc and compared with
the exact numerical one. The phase transition is found to
be a third-order one. This means that the asymptotic low-
and high-lying energy solutions and their first and second
derivatives are equal. This implies that both solutions are
smoothly tangent to each other and lie above each other. They
look like they do not really tend to be intersected but instead
are approaching each other. The critical point is the midpoint
in the interpolation between the low- and high-lying λ

N2
c

energy

solutions. The matching of the asymptotic large λ
N2

c
solution

that is calculated using the GSP method with the asymptotic
small λ̃ solution is displayed in Fig. 4(a). It is found that at the
critical point, the low-lying and high-lying energy solutions

are split to the minimum with a small redundant additive
constant. This redundant constant emerges due to consequent
approximations adopted in the analytical solutions with a finite
Nc. Although the two solutions deviate from each other by
a small redundant constant, evidently, it is always possible
to find a smooth interpolation between the two solutions.
Since the phase transition is a third order, then the tangent
slope and its derivative are interpolated smoothly. The exact
numerical solution is shown to match the low-lying energy
solution; and then when λ

N2
c

exceeds the critical point, the
exact numerical solution deviates the asymptotic low-lying
energy solution. The exact numerical solution continues to
match the asymptotic high-lying energy solution instead of
the low-lying energy solution. This tiny redundant constant
should not worry us at all, and the location of the critical
point is realized in the midway of the interpolation between
the two asymptotic solutions, and this constant should be
vanished in order to preserve the continuation. In this case, the
interpolation between the two solutions is smooth and has a
soft deflection characteristic at the critical point. On the other
hand, the high-lying energy solution that is obtained by the
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spectral density of eigenvalues solution for the range λ
N2

c
� λ0

N2
c

is displayed in Fig. 4(b). It is shown that the low- and high-lying
energy solutions are smoothly tangent to each other and located
adjacent to each other for a finite range where the Gross-Witten
point λ0

N2
c

= 1
2 is located in the midway. The tangent slope and

its derivative for both left and right solutions are equal. Hence,
both low-lying and high-lying energy solutions are scaled to
be equal at the Gross-Witten point.

C. Phase transition critical point

The critical point for the phase transition is the solution of
the spectral density method, and it comes naturally when the
integration over the Fourier color variable does not complete
the entire circle range but rather covers an incomplete circle
range |θi | � θc where |θc| < π . The spectral density method
produces a solution for the small thermal running parameter
λ

N2
c

� 1
2 and another solution for the large parameter λ

N2
c

� 1
2 .

The critical point is determined by matching the two solutions.
It is interesting to point out that the small- and large-̃λ
parameters correspond to the strong and weak couplings in
the Gross-Witten scenario [7], respectively.

On the other hand, the GSP method produces the high-lying
energy solution only for the thermal running parameter that
runs over the interval λ

N2
c

� 1
2 . Hereinafter, this is labeled as

the solution (II). In solution (II), the Fourier color variables θi

are assumed to be dominated in a narrow domain. However,
the low-lying energy solution for λ

N2
c

� 1
2 is known to be

distributed uniformly over the entire circle with respect to
the color angle. Under this condition, the partition function is
evaluated trivially by expanding the integral with respect to
the group basis powers and using the orthogonality and then
finally resumming the resultant terms. Hereinafter, we label the
low-lying energy solution as solution (I). The extrapolation of
both solutions fails to reproduce the asymptotic results far
away outside their domains. The point of the phase transition
is determined by examining the continuity when both solutions
match each other along the axis of the thermal running
parameter λ̃ ≡ λ

N2
c
. The thorough study of solution (II) sheds

more light on the location of the critical point for the phase
transition. Solution (II) is concave up for the small parameter
λ

N2
c
. The extremum left-hand point for solution (II), namely,(

lim
Nc→∞

ln Z(II)(̃λ)

N2
c

)
= −1

2
ln 2̃λ + 2̃λ − 3

4
, λ̃ � λ̃(II)min,

(59)

is determined by

∂

∂λ̃

(
lim

Nc→∞
ln Z(II)(̃λ)

N2
c

) ∣∣∣∣∣̃
λ(II)ext

= 0 → λ̃(II)ext = 1

4
. (60)

This point is the bottom of the concave up solution (II):

∂2

∂λ̃2

(
lim

Nc→∞
ln Z(II)(̃λ)

N2
c

) ∣∣∣∣∣̃
λ(II)ext

→ + at λ̃(II)min = 1

4
. (61)

The left-hand extremum point is found to be the minimum of
the solution, and the physical solution Z(II)(̃λ) is found for λ̃

runs over the range ∞ � λ̃ � λ̃(II)min. This means that solution
(II) is the satisfactory solution for the range λ̃ > λ̃(II)min. The
critical point λ̃crit is located somewhere above λ̃(II)min,

λ̃ � λ̃crit � λ̃(II)min, where λ̃(II)min = 1
4 . (62)

Therefore, when the low-lying energy solution Z(̃λ) ≈ Z(I)(̃λ)
over the range λ̃ < λ̃crit is not known, the GSP method still can
give much information about the critical point location and the
continuous high-lying energy production threshold.

To determine the precise location of the critical point, we
need solution (I) for the energy domain λ̃ < λ̃(I)max = 1. The
critical point is determined whenever solution (II) from above
and solution (I) from below match each other somewhere in
the interval that is bounded by the interval

λ̃(I)max � λ̃crit � λ̃(II)min. (63)

In our case, solution (I) reads

ln Z(I)(̃λ)

N2
c

= λ̃2 for λ̃ < λ̃(I)max. (64)

Hence, the critical point for the phase transition between the
two solutions is computed by matching the extrapolation of
the left- and right-hand solutions as follows:

ln Z(I)(̃λ)

N2
c

= ln Z(II)(̃λ)

N2
c

, at λ̃ = λ̃crit. (65)

It is found that λ̃crit = 1
2 .

D. Saddle points approximation with the Vandermonde
potential

To understand the validity of the Gaussian-like approxima-
tion, it is essential to show that the color saddle points are
distributed in a narrow domain (|θc| � π ) as the parameter λ̃

runs over the range λ̃ � λ̃crit. The canonical partition function
for the fundamental particles obeying U (Nc) can be written as

Z(̃λ) = 1

Nc!

Nc∏
k

∫
dθk

2π
exp

[
1

2

Nc∑
n=1

Nc∑
m=1

ln sin2

×
(

θn − θm

2

) ∣∣∣∣∣
n�=m

+ 2Nc̃λ

Nc∑
n=1

cos θn

]
. (66)

The above partition function is extremely difficult to be
evaluated exactly. Fortunately, it can be integrated over the
color variables using the saddle points approximation. The
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exponent under the integral can be written as

ln Z(̃λ, {θ}) =
[

1

2

Nc∑
n=1

Nc∑
m=1

ln sin2

(
θn − θm

2

) ∣∣∣∣∣
n�=m

+ 2Nc̃λ

Nc∑
n=1

cos θn

]
+ const. (67)

To avoid the singularity in the exponent, the color saddle points
are distributed uniformly over the complete circle and do not
approach each other (θ i �= θm). However, when these points
approach each other in the limit θ i → θm, the exponent blows
up and diverges, and subsequently the saddle points integral
approximation is badly broken down, and another analytic
solution must emerge beyond this critical point. The color
saddle points are evaluated using the stationary conditions

∂

∂θi

ln Z(̃λ, {θ})|θi=θ i
= 0, i = 1, 2, . . . , Nc(or Nc − 1),

(68)

for U(Nc) or SU(Nc). Hence the saddle points are determined
by the set of equations

2Nc̃λ sin θ i =
Nc∑
n�=i

cot

(
θ i − θn

2

)
, θ i �= θm. (69)

These points satisfy the set of nonlinear equations as follows:

2̃λ

(
1

Nc

Nc∑
i=1

sin θi

)
= 1

N2
c

Nc∑
i

Nc∑
n

cot

(
θ i − θn

2

)
i �=n

. (70)

This nonlinear set is the root of the spectral density that is
derived using the spectral density method in the large Nc

limit. The Gaussian-like integral around the saddle points is
approximated as

Z(̃λ) ∼
∏

i

∫ π

−π

dθi

2π
exp[ln Z(̃λ, {θ})]

≈ Z(̃λ, {θ})
∏

i

∫ ∞

−∞

dθi

2π
e−∑ij

1
2 	(θ i ,θj )θiθj , (71)

where the exponential elements are determined at the saddle
points (θi, i = 1, 2, . . . , Nc) as

	(θ i, θj ) = − ∂2

∂θi∂θj

ln Z(̃λ, {θ})|θi=θ i
. (72)

Equation (71) is evaluated around the saddle points using the
Gaussian integral as follows:

Z(̃λ)
.= N exp[ln Z(̃λ, {θ})], (73)

where the preexponential normalization satisfies the integral∫
dθi

2π
= 1 and is determined by

N = (2π )−Nc/2[det 	(θ i, θj )]−1/2 � 1. (74)

However, it is not always possible to find real values for
the saddle points distributed uniformly over the entire circle
range for the parameter λ̃ that runs along the real axis. These
real saddle points cease to exist when the thermal running
parameter λ̃ reaches the critical value. The Vandermonde

potential characteristics is modified at the critical point. This
point is the threshold for another solution with a different
behavior.

VI. ADJOINT PARTICLES

The color-singlet bags consisting of a gas of fundamental
and antifundamental particles represent the mesonic and
baryonic states with no gluonic component. On the other
hand, the color-singlet bags consisting only of the adjoint
particles represent glueball states with no quark component.
The low-lying hadronic states are likely mesons, baryons,
and glueballs. The Hagedorn states with fundamental and
adjoint constituent particles are essential to understanding the
highly thermal excited hadronic states near and just below the
deconfinement phase transition diagram.

The canonical ensemble for the bags consisting only of the
adjoint particles projected in the color-singlet state reads

Z(β) =
∫

dµ(g) exp

[
Dg

∫
V

d3r

∫
d3p

(2π )3
Gadj(θ )e−βE(p,r)

]
,

(75)

where Dg is the degeneracy such as the spin multiplicity
Dg = (2j + 1). The internal color structure for the adjoint
constituents in the Fock space is given by

Gadj(θ ) = 1

dimg

tr [Radj(g)], (76)

where dimg = N2
c and (N2

c − 1) for U(Nc) and SU(Nc),
respectively. The partition function for the gas of free particles
occupying the volume V is approximated to

λg = Dg

∫
V

d3r

∫
d3p

(2π )3
e−βE(p,r), (77)

where E(p, r) is the energy for each constituent particle
species. To simplify our notation, we define the following
thermal running parameter

λ̃g = λg

dimg

. (78)

Hence, the canonical ensemble is simplified as

Z(λg) =
∫

dµ(g) exp[λ̃gtrc[Radj(g)]]. (79)

The adjoint group representation reads

tr [Radj(g
k)] = tr [Rfun(gk)] tr [R∗

fun(gk)] − 1

= (Nc − 1) +
Nc∑

n=1

Nc∑
m=1

cos k(θn − θm)|n�=m,

θNc
=

Nc−1∑
i=1

θi, (80)

and

tr [Radj(g
k)] = tr [Rfun(gk)] tr [R∗

fun(gk)], (81)

for the groups SU(Nc) and U(Nc), respectively.
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We use the GSP method developed in the previous section
to calculate the asymptotic high-lying energy solution for the
canonical ensemble with a large thermal running parameter
λ̃g � (λ̃g)crit. In this range, the Fourier color variables are
assumed to be dominant only in a narrow range. The adjoint
action near the saddle points is approximated to

λ̃gtrc[Radj(g)] = λ̃g

{
(Nc − 1) +

Nc∑
n=1

Nc∑
m=1

cos(θn − θm)|n�=m

}

≈ λ̃g

[(
N2

c − 1
)− 1

2

Nc∑
n=1

Nc∑
m=1

(θn − θm)2

]
. (82)

The above approximation reduces the canonical ensemble to

Z(λg)|SU(Nc) ≈ Z(II)(λg)|SU(Nc),

(for λ̃g over the range λ̃g � λ̃g(II)min),

Z(II)(λg)|SU(Nc) = e(N2
c −1)λ̃g

1

N !

∫ π

−π

dθNc
δ

(
Nc∑
i=1

θi

)

×
(

Nc−1∏
k

∫ ∞

−∞

dθk

2π

)
Nc∏

n>m

(θn − θm)2

× exp

[
− λ̃g

2

Nc∑
n=1

Nc∑
m=1

(θn − θm)2

]

≈
(

1

2Ncλ̃g

) N2
c −1
2

e(N2
c −1)λ̃g

×
[

1

Nc!(2π )
Nc
2 −1

Nc∏
n=1

n!
1√

2πNc

]
, (83)

for the SU(Nc) group representation, where the following
relation has been adopted

Ii =
(

Nc∏
k

∫ ∞

−∞

dθk

2π

)
2πδ

(
Nc∑
i=1

θi

)

×
 Nc∏

n�=m

(θn − θm)2


1
2

e[− λ̃g

2

∑Nc
n=1

∑Nc
m=1(θn−θm)2]

≡
(

Nc∏
k

∫ ∞

−∞

dθk

2π

)
2πδ

(
Nc∑
i=1

θi

)

×
[

Nc∏
n>m

(θn − θm)2

]
e[− 2Ncλ̃g

2

∑Nc
n=1 θ2

n ]. (84)

The same procedure can be followed for U(Nc) symmetry. The
canonical ensemble is reduced to

Z(II)(λg)|U(Nc) ≈
(

1

2Ncλ̃g

) N2
c −1
2

eN2
c λ̃g

×
[ √

Nc

Nc!(2π )
Nc−1

2

Nc∏
n=1

n!

]∫ ∞

−∞

dθNc

2π

≈ eN2
c λ̃g

(
1

2Ncλ̃g

) N2
c −1
2

[ ∏Nc

n=1 n!

Nc!(2π )
Nc
2

]

×
√

2πNc

∫ π

−π

dθNc

2π
,

(for λ̃g over the range λ̃g � λ̃g(II)min). (85)

Using Stirling’s approximation as done in Eq. (52) for the large
Nc limit, the partition function becomes

Z(II)(λg)|U(Nc) ≈
(

1

2λ̃g

) N2
c −1
2

e(N2
c λ̃g− 3

4 N2
c )

→
(

1

2λ̃g

) N2
c

2

e(N2
c λ̃g− 3

4 N2
c +N2

c Cadj),

(for λ̃g over the range λ̃g � λ̃g(II)min), (86)

for the U(Nc) representation. The additional constant Cadj

ensures that the term ln Z(II)(λg)/N2
c is a non-negative quantity,

and it should satisfy the boundary near the critical point;
furthermore, it throws away any redundant constant. This
additional constant stems from the normalization transforma-
tion in the Gaussian-like integration

∫∞
−∞

dθ
2π

e0 → ∫ π

−π
dθ
2π

= 1.
Hence, the solution for the large parameter λ̃g > λ̃g(II)min reads(

lim
N2

c →large

ln Z(II)(λg)

N2
c

) ∣∣∣∣∣
U(Nc)

= −1

2
ln 2λ̃g + λ̃g − 3

4
+ Cadj,

� 0, (87)

in the large Nc limit. This function is concave up. The value
λ̃g(II)min is calculated as follows(

lim
N2

c →large

∂

∂λg

ln Z(II)(λg)

N2
c

)
λ̃g(II)min

= 0 → λ̃g(II)min = 1

2
,

(88)(
lim

N2
c →large

∂2

∂λ2
g

ln Z(II)(λg)

N2
c

)
λ̃g(II)min

→ (+) → concave up.

This means that our solution is valid only when λ̃g runs over
the range λ̃g � λ̃g(II)min. The value Cadj is determined from(

lim
N2

c →large

ln Z(II)(λg)

N2
c

)
� 0, (89)

for the point λ̃g(II)min to ensure that our solution is non-negative
in the entire λ̃ range and to preserve the analytic continuation
of the solution. This leads to Cadj = 1

4 . Hence, the canonical
partition in the range λ̃g � λ̃g(II)min in the large Nc limit reads

Z(II)(λg) ≡
(

1

2λ̃g

) N2
c

2

exp

(
N2

c λ̃g − N2
c

2

)
. (90)

It will be shown below [e.g., in Eq. (100)] that for
λ̃g � λ̃g(I)max, where λ̃g(I)max < 1, the canonical ensemble
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becomes

lim
N2

c →large
ln Z(λg) = lim

N2
c →large

ln Z(I)(λg),

= − 1

N2
c

ln(1 − λ̃g), ≈ 0,

(for λ̃g over the range λ̃g � λ̃g(I)max).

(91)

We are now in the position to compute the Gross-Witten critical
point:

λ̃g(I)max � λ̃gcrit � λ̃g(II)min. (92)

The critical point for the phase transition is determined as
follows:

lim
N2

c →large

ln Z(I)(λ)

N2
c

= lim
N2

c →large

ln Z(II)(λ)

N2
c

,

(at the point λ̃g = λ̃gcrit). (93)

It is found that the critical point is located at λ̃gcrit = 1
2 . This

procedure is very useful in determining the point for the phase
transition for a finite number of colors Nc, and it will be
more appropriate when more complicated physical situations
are involved. Furthermore, it seems that the GSP method
is more straightforward and easier than the spectral density
method.

The solution of the canonical ensemble for the adjoint
particles in the range λ̃g � λ̃g(I)max is nontrivial because of the
color structure for SU(Nc) and U(Nc) group representations.
Fortunately, the adjoint color structure can be simplified to
a fundamental-like structure by introducing the Lagrange
multiplier. The inclusion of the Lagrange multiplier trick
reduces the partition function with the U(Nc) group structure
to

Z(λg) =
∫

dµ(g) exp

(
λg

1

dimg

trRadj(g)

)
=
∫

dµ(g) exp(λ̃gtr Rfun(g)tr R∗
fun(g))

= N2
c

2λ̃g

∫ ∞

0
dξ ξe

− Ncξ2

4λ̃g

∫
dµ(g)

× exp

[
Ncξ

2
(tr Rfun(g) + tr R∗

fun(g))

]
. (94)

This equation is decomposed into two parts:

Z(λg) = Z1(λg) + Z2(λg), (95)

where

Z1(λg) = N2
c

2λ̃g

∫ ξ0

0
dξξe

− N2
c ξ2

4λ̃g e
N2

c ξ2

4 , (96)

and

Z2(λg) = N2
c

2λ̃g

∫ ∞

ξ0

dξ ξe
− N2

c ξ2

4λ̃g (ξ )−N2
c /2 eN2

c ξ−3N2
c /4. (97)

The integration over the color-singlet state takes into account
the splitting into the small and large domains 0 � ξ � ξ0 and
ξ0 � ξ � ∞, respectively, where ξ0 = 1. The integration over

the range (0 � ξ � ξ0) reduces Eq. (96) to

Z1(λg) = N2
c

4λ̃g

∫ ξ0

0
dξ 2 exp

[
−N2

c ξ 2

4

(
1

λ̃g

− 1

)]
, (98)

where λ̃g is assumed to run only over the range λ̃g � λ̃g(I)max <

1. The extrapolation of the integration upper limit ξ0 → ∞
approximates the partition function to

Z(λg) = Z1(λg) + Z2(λg)

≈ N2
c

4λ̃g

∫ ∞

0
dξ 2 exp

[
−N2

c ξ 2(1 − λ̃g)

4λ̃g

]
≈ N2

c

4λ̃g

4λ̃g/N
2
c

(1 − λ̃g)
. (99)

This integration is trivial and is reduced to

Z(λg) ≈ Z1(λg),

Z1(λg) ≈ 1

1 − λ̃g

,

= exp[− ln(1 − λ̃g)] ∼ exp[function(λ̃g)]. (100)

The integration over ξ0 � ξ � ∞ where ξ0 = 1 for the case
λ̃g � 1

2 � λ̃g(I)max is approximated to

Z2(λg) = N2
c

4λ̃g

∫ ∞

ξ 2
0

dξ 2(ξ 2)−N2
c /4e

− N2
c ξ2

4λ̃g eN2
c ξ− 3

4 N2
c

�
N2

c

4λ̃g

∫ ∞

ξ 2
0

dξ 2e
− N2

c ξ2

4λ̃g eN2
c ξ �

N2
c

4λ̃g

∫ ∞

x0

dx e
− N2(1−λg )x

4λ̃g .

(101)

This integral complements the integral given by Eq. (99) which
runs over the interval 0 � ξ � ξ0. In Eq. (99), when ξ0 is
extended and extrapolated to ∞ in the term Z1(λg), then the
second term is suppressed.

On the other hand, the analytical solution behaves differ-
ently in the energy domain λ̃g � 1 � λ̃g(II)min. In this energy
domain, the integral over 0 � ξ � ξ0 is suppressed and Z1(λg)
becomes negligible,

Z1(λg) ∝ 1

λg

∼ 0. (102)

The integration over the range ξ0 � ξ � ∞ and λ̃g � 1 approx-
imates Eq. (97) to

Z(λg) ≈ Z2(λg)

= N2
c

2λ̃g

∫ ∞

ξ0

dξξe
− N2

c ξ2

4λ̃g (ξ )−N2
c /2eN2

c ξ−3N2
c /4

=
∫ ∞

ξ0

dξef (ξ ), (103)

where

f (ξ ) ≈
[
− 1

4λ̃g

ξ 2 − 1

2
ln ξ + ξ − 3

4

]
. (104)

When the saddle point becomes ξsp � 1, the above equation is
approximated to

Z(λg) ≈
∫ ∞

0
dξ ef (ξ ). (105)
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The saddle point can be found by the solution

(ξ 2 − 2λ̃gξ + λ̃g)ξ=ξsp = 0. (106)

The saddle point solution reads

ξsp = 1 +
√

1 − 1

λ̃g

, (with the constraint λ̃g � 1),

ξsp ≈ λ̃g

[
2 − 1

2λ̃g

]
,

ξsp ≈ 2λ̃g. (107)

The saddle point can, alternatively, be derived from Eq. (106)
as follows: (

1 − 2λ̃g

1

ξ
+ λ̃g

1

ξ 2

)
1/ξ=1/ξsp

= 0,

→ 1/ξsp = 1 −
√

1 − 1

λ̃g

≈ 1

2λ̃g

. (108)

This result is analogous to Eq. (118). The above approximation
softens and extrapolates the constraint to

ξsp = 2λ̃g,
(
with constraint λ̃g � 1

2 , and ξsp � 1
)
. (109)

Hence, by substituting the saddle point into Eq. (104), we get

f (ξsp) = − 1

4λ̃g

[
ξ 2

sp − 2λ̃gξsp + λ̃g

]+ ξsp

2
− 1

2
ln ξsp − 1

2

= ξsp

2
− 1

2
ln ξsp − 1

2

= 1

2s2
0

+ 1

2
ln s2

0 − 1

2
= f

(
s2

0

)
, (110)

where we have introduced s2
0 = 1/ξsp for our convenience. In

terms of s2
0 , the partition function is reduced to

Z2(s2
0 ) = Nξ exp

[
N2

c

(
1

2s2
0

+ 1

2
ln s2

0 − 1

2

)]
≈ exp

[
N2

c

(
1

2s2
0

+ 1

2
ln s2

0 − 1

2
+ O

(
ln N2

c

N2
c

))]
,

(111)

where

Nξ = N2
c

2λ̃g

√
2π

−f ′′(ξ0)

= exp

[
N2

c O
(

1

N2
c

ln(N2
c )

)]
. (112)

With the approximation s2
0 = 1

2λ̃g
and λ̃g � 1

2 , the partition
function reads

Z(λ̃g) = exp

[
N2

c

(
λ̃g − 1

2
ln 2λ̃g − 1

2

)]
. (113)

This result is identical to the result in Eq. (120) to be derived
using the spectral density method. However, the saddle point
derived from Eq. (106) can be approximated to

ξsp = 2λ̃g − 1
2 . (114)

This approximation in the large Nc limit leads to

Z(λ̃g) ≈ lim
λ̃g→large

exp

[
N2

(
λ̃g − 1

2
ln

(
2λ̃g − 1

2

)
− 3

4

)]

≈ exp

[
N2

(
λ̃g − 1

2
ln(2λ̃g) − const.

)]
,

const. = 3

4
, (115)

with an additive constant equivalent to the one in the GSP
method. The discrepancy between the GSP method and the
spectral density method comes from a redundant additive
constant that emerges because of the kind of approximation
considered. This redundant constant appears in the gas of
only adjoint particles in the U(Nc) representation. The SU(Nc)
representation does not have this kind of problem. To verify the
results of the GSP method, we compare them with the results of
the method of the spectral density of color eigenvalues [8]. The
canonical ensemble in the adjoint representation is computed
in a similar way as done in the fundamental representation.
Using a similar transformation, the canonical ensemble in the
term of the spectral density is reduced to

Z(λg) = C exp

[
N2

c

2
P
∫ π

−π

dθρ(θ )

×
∫ π

−π

dθ ′ρ(θ ′) ln sin2

(
θ − θ ′

2

)

+ λ̃g

{
Nc + N2

c P
∫ π

−π

dθρ(θ )

×
∫ π

−π

dθ ′ρ(θ ′) cos(θ − θ ′)

}]

≈ C exp

[
N2

c

{
1

2
P
∫ π

−π

dθρ(θ )

×
∫ π

−π

dθ ′ρ(θ ′) ln sin2

(
θ − θ ′

2

)

+ λ̃g

∫ π

−π

dθρ(θ )
∫ π

−π

dθ ′ρ(θ ′) cos(θ − θ ′)

}]
,

(116)

where the integral prefactor C is analogous to that given in
the fundamental representation. Using the symmetry property
of the spectral density ρ(θ ) in the range −π � θ � π , the
stationary equation reads

2λ̃g

[∫ π

−π

dθ ′ρ(θ ′) cos θ ′
]

sin θ

= P
∫ π

−π

dθ ′ρ(θ ′) cot

(
θ − θ ′

2

)
. (117)
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The solution for the range 2λ̃g � 1 is already known [7,8,22,
23]. The density of eigenvalues reads

ρ(θ ) = 1

π

cos θ
2

sin2 θ0
2

√
sin2

θ0

2
− sin2

θ

2
, −θ0 � θ � θ0,

= 0, π � |θ | > θ0, (118)

where

sin2

(
θ0

2

)
= 1 −

√
1 − 1

λ̃g

. (119)

However, in the limit λ̃g � 1, we get sin2(θ0/2) = 1/(2λ̃g).
In the context of the spectral density method, the canonical
ensemble, in the large Nc limit, becomes

Z(λ̃g) ≈ exp

[
N2

c λ̃g − N2
c

2
ln(2Ncλ̃g) + N2

c

2
ln Nc − N2

c

2

]

∼=
(

1

2λ̃g

) N2
c

2

exp

[
N2

c λ̃g − N2
c

2

]
, λ̃g �

1

2
. (120)

The solution for the energy domain λ̃g � 1
2 � λ̃g(I)max < 1

reads

ln Z(λ̃g) ≈ const. × exp[function(λg)], λ̃g � 1
2 , (121)

for the entire color range |θi | � π , where the function of λg is
independent of Nc. Hence, in the limit Nc → ∞, we have

lim
Nc→∞

ln Z(λ̃g)

N2
c

= 0. (122)

It means that in the limit Nc → ∞, the adjoint particle
contribution vanishes, and only the fundamental particles
contribute to the low-lying energy solution for the energy range
λ̃g � 1

2 . This result is interpreted as follows: the low-lying
gluonic spectrum vanishes and the glueballs appear only
as highly excited states in the high-lying mass spectrum.
Fortunately, the existed hadronic mass spectrum agrees with
this interpretation.

The logarithm of partition function ln Z(λg) for the gas of
color-singlet bags of adjoint particles versus the thermal par-
tition parameter λ̃g with various color numbers Nc = 2, 3, 4,
and 5 is displayed in Fig. 5. The partition function for the
high-lying energy λ̃g � λ̃0 is solved using the spectral density
method and the GSP method. Both solutions are extrapolated
to the low-lying energy range λ̃g < λ̃0. It is shown that the
solution of the GSP method is adjacent and almost parallel
to that of the spectral density method, and they are splitting
by a tiny additive constant over the high-lying energy domain
λ̃g � 1

2 . Furthermore, the exact numerical solution is found
midway between the two solutions. The tiny split between
the exact numerical solution and the asymptotic high-lying
energy solution for the two methods becomes less pronounced
as Nc increases. The extrapolation of the asymptotic high-lying
energy solution found by either method deviates from the exact
numerical solution as the thermal running parameter runs over
the range λ̃g < 1

2 . This deviation increases significantly as λ̃g

FIG. 5. (Color online) High-lying density of states for the color-
singlet bag consisting of only adjoint particles vs the thermal running
parameter λ

N2
c

for various color numbers Nc. The asymptotic high-
lying energy solutions computed using the GSP and spectral density
methods over the range λ

N2
c

� λ(II)min

N2
c

= 1
2 and their extrapolation to

the small λ

N2
c

are compared with the exact numerical ones.

decreases farther from the critical point. The extrapolation of
the high-lying energy solution fails to fit the low-lying energy
solution. This characteristic behavior indicates a possible
phase transition to another analytic solution. The high-lying
energy solution is simply deflected at the Gross-Witten
point.

The asymptotic low-lying energy solution versus λ̃g in
the energy domain λ̃g � λ̃g(crit) is displayed in Fig. 6. The
asymptotic analytical solution for the low-lying energy states
is basically obtained by the power expansion over λ̃g and the
orthogonal relations in the fundamental group representation.
The solution for adjoint representation is obtained by using
the convolution trick and introducing the Lagrange multiplier.
The exact numerical solution coincides with the asymptotic
low-lying energy solution in the energy domain λ̃g � λ̃g(crit).
When the thermal running parameter reaches the Gross-Witten
point λ̃g(crit) → λ̃0 = 1

2 , it deviates from the exact numerical
one, and this deviation grows significantly as λ̃g increases and
exceeds the Gross-Witten point λ̃0 = 1

2 . The extrapolation of
the low-lying energy solution fails to fit the high-lying energy
solution, and subsequently this mechanism indicates that the
low-lying energy solution is deflected and a phase transition
to another analytical solution takes place. To demonstrate that
the analytical low-lying energy solution is a correct one, we
expand it with respect to the thermal partition parameter λ̃g .
The results are displayed in Fig. 7 and show that the asymptotic
analytic low-lying energy solution coincides with the exact
numerical one, and when the analytical solution is truncated
to a lower order it deviates from the exact numerical one
significantly.
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FIG. 6. (Color online) Asymptotic low-lying energy solution for
a bag of adjoint particles in the color-singlet state in the limit
Nc → ∞ vs the thermal running parameter λ

N2
c

, compared with the
exact numerical one for various color numbers Nc = 3, 4, and 5. The
exact numerical solution fits the asymptotic low-lying energy solution
over the range λ

N2
c

� λ(II)min

N2
c

= 1
2 � λcrit

N2
c

. The low-lying energy solution

vanishes as limN2
c →∞

1
N2

c
ln[Zlow(λ/N 2

c )] → 0. The asymptotic high-

lying energy solution limN2
c →∞

1
N2

c
ln[Zhigh(λ/N 2

c )] vanishes to match
the low-lying solution at the point of phase transition.

VII. FUNDAMENTAL AND ADJOINT REPRESENTATION
FOR SU(3) AND U(3)

In the QCD, the low-lying hadronic states and the fireballs
are treated as bags consisting of fundamental quark-antiquark
particles and adjoint gluon particles as well. Generally speak-
ing, the adjoint particles are assumed to be the interaction
among the fundamental particles, their antiparticles, and the
adjoint particles themselves. It will be a reliable approximation
to treat the hadronic states as an ideal gas of fundamental and
adjoint particles in the color-singlet state. It would be also
a good approximation to ignore the interaction among the
constituent particles in the present model.

A. Maxwell-Boltzmann statistics

For highly thermal excitations, the Maxwell-Boltzmann
statistics becomes a reliable approximation. Fortunately, the
Maxwell-Boltzmann statistics is also relatively simple. In

FIG. 7. (Color online) Density of states for the color-singlet
fireballs (i.e., the Hagedorn states) vs the thermal running parameter
λ

N2
c

with various color numbers Nc. It is calculated for color-singlet
bags consisting of only adjoint particles. The exact numerical
solution is compared with the asymptotic low-lying energy solution
with various analytic approximations for the small thermal running
parameter λ

N2
c

� λ(II)min

N2
c

= 1
2 � λcrit

N2
c

. The exact numerical solution is

found to fit the asymptotic analytic solution Z(λ) = 1/(1 − λ

N2
c

).

the context of this statistics, the partition function for the
fundamental and adjoint particles reads

Z(λg, λqq) =
∫

dµ(g) exp

[
λg

1

dimg

trcRadj(g)

+ λqq

1

Nc

trc(Rfun(g) + R∗
fun(g))

]
. (123)

To simplify our notation, we rescale the thermal running
parameters λ̃g = λg

dimg
, dimg = N2

c − 1, and λ̃qq = λqq

N2
c

. With
these redefinitions, the canonical ensemble is simplified to

Z(λg, λqq)|SU(Nc) =
∫

dµ(g) exp

[
λ̃g

{(
N2

c − 1
)

+
Nc∑

n=1

Nc∑
m=1

cos(θn − θm)

}

+ 2Nc̃λqq

Nc∑
n=1

cos θn

]
. (124)
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For the large thermal running parameter limit λ̃g � λ̃g(II)min and
λ̃qq � λ̃qq(II)min, it is straightforward to evaluate the partition
function using the GSP method. In the asymptotic large λ̃g

and λ̃qq , the saddle points are dominated in a narrow interval
around the origin. The expansion around the saddle points
θi ≈ 0 reduces the partition function to

Z(λg, λqq)|SU(Nc) = Z(II)(λg, λqq)|SU(Nc),

Z(II)(λg, λqq)|SU(Nc) = Z
(0)
SU(Nc)

∫
dµ(g)

× exp

[
− 2Ncλ̃g

2

1

2Nc

Nc∑
n=1

Nc∑
m=1

× (θn − θm)2 − 2Nc̃λqq

2

Nc∑
n=1

θ2
n

]
,

.= Z
(0)
SU(Nc)

∫
dµ(g) exp

[
− (2Nc̃λqq

+ 2Ncλ̃g)
1

2

Nc∑
n=1

θ2
n

]
,

(
for

{
λ̃g

λ̃qq

}
over the range

{
λ̃g � λ̃g(II)min

λ̃qq � λ̃qq(II)min

})
, (125)

where

Z
(0)
SU(Nc) = exp

[(
N2

c − 1
)
λ̃g + 2N2

c λ̃qq

]
. (126)

The invariance measure is approximated to

1

2π

∫ π

π

dµ(g) → 1

2π

∫ ∞

−∞
dµsp. (127)

The Gaussian-like integration over SU(Nc) leads to

Z(II)(λg, λqq)|SU(Nc) = 1

Nc!(2π )Nc−1

(2π )Nc/2∏Nc

n=1 n!√
2πNc

×
(

1

2Nc(λ̃g + λ̃qq)

) N2
c −1
2

Z
(0)
SU(Nc).

(128)

The same calculation can be carried out in the same manner
for the U(Nc) group. In the asymptotic large thermal running
parameters λ̃qq � λ̃qq(II)min and λ̃g � λ̃g(II)min, the canonical
ensemble for U(Nc) becomes

Z(II)(λg, λqq)|U(Nc) = (2π )Nc/2∏Nc

n=1 n!

Nc!(2π )Nc−1

1√
2π

×
[∫ π

−π

dθ

2π
e− 2Ncλ̃qq

2 θ2

]

× Z
(0)
U(Nc)

(2Nc(λ̃g + λ̃qq))
N2

c −1
2

,

= (2π )Nc/2∏Nc

n=1 n!

Nc!(2π )Nc−1

1

2π

1√
2Nc̃λqq

× Z
(0)
U(Nc)

(2Nc(λ̃g + λ̃qq))
N2

c −1
2

, (129)

where

Z
(0)
U(Nc) = exp

[
N2

c λ̃g + 2N2
c λ̃qq

]
. (130)

The canonical ensemble is simplified for a further analytical
investigation. Using Stirling’s approximation in the large
Nc → ∞ limit and approximating the summation over n

to an integration over n, the canonical ensemble can be
approximated to

lim
Nc→large

Z(λg, λqq )|U(Nc)

= lim
Nc→large

Z(II)(λg, λqq )|U(Nc)

= 1√
2̃λqq

exp
[
N2

c λ̃g + 2N2
c λ̃qq − 3N2

c

4

]
(2(λ̃g + λ̃qq))

N2
c −1
2

,

(
for

{
λ̃g

λ̃qq

}
over the range

{
λ̃g � λ̃g(II)min

λ̃qq � λ̃qq(II)min

})
.

(131)

In contrast, it is hard to compute the spectral density in the
large λ̃g and λ̃qq limits in the context of the spectral density
method. Nonetheless, in that method, the canonical ensemble
can be calculated only when the spectral density is known first.

Under certain conditions when both λ̃g and λ̃qq become
small, the color eigenvalues are distributed uniformly over the
entire interval −π � θi � π . In this case, the partition function
in the U (Nc) representation is written as

Z(λg, λqq) =
∫ π

−π

dµ(g) e
λg

1
dimg

tr R(g)tr R∗(g)
eλqq

1
Nc

tr(R(g)+R∗(g))

=
∫ π

−π

dµ(g) eλ̃g tr R(g)tr R∗(g)eNcλ̃qq tr(R(g)+R∗(g))

=
∫ π

−π

dµ(g)

{
N2

c

2λ̃g

∫ ∞

0
dξξe

− N2
c ξ2

4λ̃g

× e
Ncξ

2 tr(R(g)+R∗(g))

}
eNcλ̃qq tr(R(g)+R∗(g))

= N2
c

2λ̃g

∫ ∞

0
dξξe

− N2
c ξ2

4λ̃g

×
∫ π

−π

dµ(g){eNc[ ξ

2 +̃λqq ]tr(R(g)+R∗(g))}, (132)

where the Lagrange multiplier ξ has been introduced to
simplify the equation. By expanding the exponential and
evaluating the series term by term using the group bases
orthogonality and then finally resumming the resultant terms,
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the partition function is reduced to

Z(λg, λqq) = N2
c

2λ̃g

∫ ξ0

0
dξξe

− N2
c ξ2

4λ̃g eN2
c ( ξ

2 +̃λqq )2

+ N2
c

2λ̃g

∫ ∞

ξ0

dξξe
− N2

c ξ2

4λ̃g

×
(

exp
[
N2

c (ξ + 2̃λqq) − 3N2
c

4

]
[ξ + 2̃λqq]N2

c /2

)
, (133)

where ξ0 is determined by the constraint(
ξ0

2
+ λ̃qq

)
� 1 −→ ξ0 � 2(1 − λ̃qq), and λ̃qq �

1

2
.

(134)

This leads to an additional constraint ξ0 � 1. It is possible to
approximate Eq. (133) for the energy domain λ̃qq � 1

2 in the
following way:

Z(λg, λqq) �
N2

c

2λ̃g

{∫ ξ0

0
dξξe

− N2
c ξ2

4λ̃g exp

[
N2

c

(
ξ

2
+ λ̃qq

)2
]

+
∫ ∞

ξ0

dξξe
− N2

c ξ2

4λ̃g exp

[
N2

c(ξ + 2̃λqq ) − 3N2
c

4

]}
�

N2
c

2λ̃g

{∫ ξ0

0
dξξe

− N2
c ξ2

4λ̃g exp

[
N2

c

(
ξ

2
+ λ̃qq

)2
]

+
∫ ∞

ξ0

dξξe
− N2

c ξ2

4λ̃g exp

[
N2

c

(
ξ

2
+ λ̃qq

)2
]}

= N2
c

2λ̃g

∫ ∞

0
dξξ exp

[
−N2

c ξ 2

4λ̃g

+ N2
c

(
ξ

2
+ λ̃qq

)2
]
.

(135)

After evaluating the integral over the parameter ξ in Eq. (135),
the partition function is approximated to

Z(I)(λg, λqq) = 1

1 − λ̃g

exp

[
N2

c λ̃2
qq

1 − λ̃g

]

×
(

2
∫ ∞

0
dxxe−(x−b0)2

)
, (136)

where

b0 = Ncλ̃qq

√
λ̃g

1 − λ̃g

. (137)

The integral on the right-hand side of Eq. (136) can be
approximated to∫ ∞

0
dx xe−(x−b0)2 = 1

2

[
e−b2

0 + b0
√

π (1 + erf(b0))
]

≈ 1

2
e−b2

0 (when b0 � 1). (138)

Using the approximation given by Eq. (138), the partition
function is reduced to

Z(I)(λg, λqq) ≈ 1

1 − λ̃g

exp
[
N2

c λ̃2
qq

]
. (139)

To verify the result, we assume that λ̃g = 0 for a system con-
sisting only of fundamental particles. The partition function is
reduced to

lim
λ̃g→0

Z(I)(λg, λqq ) = exp
[
N2

c λ̃2
qq

]
. (140)

On the other hand, in the limit λ̃qq = 0, Eq. (139) is converted
to

lim
λ̃qq→0

Z(I)(λg, λqq) = exp[− ln(1 − λ̃g)], (141)

for a system consisting only of adjoint particles.
We are in a position to determine the critical point for the

phase transition. This can be done by analyzing the canonical
partition function. Solution (II) is given for the thermal
running parameters over the ranges (λ̃g � λ̃gcrit � λ̃g(II)min) and
(̃λqq � λ̃qqcrit � λ̃qq(II)min). Usually this solution corresponds
to the continuous high-lying hadronic mass spectrum. The
logarithm of solution (II) is given by Eq. (131), and it reads

lim
N2

c →Large

ln Z(II)(λ̃g, λ̃qq)

N2
c

= λ̃g + 2̃λqq − 3

4
− 1

2
ln 2(λ̃g + λ̃qq). (142)

This function is concave up where the minimum is located at
the points λ̃g(II)min and λ̃qq(II)min. However, the solution along
the thermal running coupling axis in the range less than the
minimum points λ̃g(II)min and λ̃qq(II)min is excluded, since it
will not be physical. Usually, the running thermal parameters
λ̃qq and λ̃g are not strictly independent, but rather they are
functions of the variable ζ . They can be written as λ̃g(ζ ) and
λ̃qq(ζ ). The variable ζ could be the hadronic mass m or V/β3,
etc. The extreme left-side threshold of the solution (II) range
is determined by finding the solution’s minimum location as
follows:

lim
N2

c →large

[(
∂

∂λ̃g

ln Z(II)(λ̃g, λ̃qq)

N2
c

)
∂λ̃g

∂ζ

+
(

∂

∂λ̃qq

ln Z(II)(λ̃g, λ̃qq)

N2
c

)
∂λ̃qq

∂ζ

]
ζ=ζ(II)min

= 0. (143)

It leads to

λ̃g + λ̃qq �
1

2

 ∂λ̃g

∂ζ
+ ∂λ̃qq

∂ζ

∂λ̃g

∂ζ
+ 2 ∂λ̃qq

∂ζ


ζ=ζ(II)min

. (144)

The minimum thresholds are given by

λ̃qq(II)min = λ̃qq(ζ(II)min),
(145)

λ̃g(II)min = λ̃g(ζ(II)min).

However, in the case that λ̃qq and λ̃g are independent
parameters, then the minimum points are determined by the
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set of equations

lim
N2

c →large

∂

∂λ̃qq

(
ln Z(II)(λ̃g, λ̃qq)

N2
c

)
λ̃qq =̃λqq(II)min

= 0,

(146)

lim
N2

c →large

∂

∂λ̃g

(
ln Z(II)(λ̃g, λ̃qq)

N2
c

)
λ̃g=λ̃g(II)min

= 0.

The set of constraints for the solution (II) is given by

λ̃qq � λ̃qq(II)min = 1
4 ,

or

λ̃g � λ̃g(II)min = 1
2 ,

[The allowed range for solution (II)]. (147)

However, the number of constraints must be kept to a
minimum. When the thermal running parameters λ̃qq and λ̃g

are strictly independent of each other, then the the thermal
running parameter λ̃qq for the fundamental particles is adopted
as the master constraint for the minimum limit, while the
constraint for λ̃g is restrained in order to obtain a feasible
solution. Nevertheless, in the realistic QCD, both parameters
λ̃qq and λ̃g depend on a characteristic variable such as the
hadronic mass m or even V/β3 as mentioned above.

On the other hand, the solution (I) that runs over the
range (0 � λ̃qq � λ̃qq(I)max) and (0 � λ̃g � λ̃g(I)max) is given
by Eq. (139). For both small λ̃qq̄ and λ̃g , the solution can
be approximated to Eq. (148)

lim
N2

c →Large

ln Z(I)(λ̃g, λ̃qq)

N2
c

≈ λ̃2
qq, (148)

where λ̃qq and λ̃g are again assumed to be strictly independent
on each other. Solution (I) usually corresponds to the discrete
low-lying hadronic mass spectrum. Furthermore, the set of
constraints associated with solution (I) reads

λ̃2
qq � 1,

→ λ̃2
qq � λ̃2

qq(I)max < 1,

[The allowed range for solution (I)]. (149)

The critical points λ̃qq and λ̃g for the phase transition are
determined at the point where the two asymptotic solutions
match each other, that is,

lim
N2

c →Large

ln Z(I)(λ̃g, λ̃qq)

N2
c

= lim
N2

c →Large

ln Z(II)(λ̃g, λ̃qq)

N2
c

→ (λ̃g, λ̃qq)crit. (150)

The solutions are found to match each other at the critical
points

λ̃qqcrit = 1
2 , λ̃gcrit = 0. (151)

This solution is very interesting and is interpreted that the low-
lying hadronic mass spectrum does not mix the fundamental
particles and the adjoint ones significantly. The hadronic
states with the constituent fundamental particles (e.g., quarks)
have no significant adjoint components in the low-energy
domain. This scenario explains why the low-lying hadronic
mass spectrum is likely to consist of mesons and baryons

and is unlikely to consist of exotic hadronic states mixed
with significant gluonic components (e.g., hybrid: quarks,
antiquarks, and glueballs are not common in the low-lying
mass spectrum).

The second example is the QCD with Nc = 3 nfl = 2.
According to Eqs. (157) and (164), we have λ̃g = 16

21 λ̃qq . In
this example, we get from the constraint given by Eq. (150) the
critical point λ̃qqcrit ≈ 0.6 � λ̃qq(II)min where λ̃qq(II)min ≈ 0.18.
It is shown that the low-lying solution given by Eq. (148)
has not an adjoint component, and subsequently it leads to an
overestimation for λ̃qqcrit. However, for a rather large adjoint
component, the solution given by Eq. (148) is not appropriate
for determining precisely the critical point.

To determine the threshold limit of the (pre-)critical point
we can return to Eq. (125). Notice that Eq. (125) can be written
as a semifundamental representation as follows:

Z(II)(λg, λqq)|SU(Nc)

.= Z
(0)
SU(Nc) ×

∫
dµ(g)e−(2Ncλ̃qq+2Ncλ̃g ) 1

2

∑Nc
n=1 θ2

n ,

→ Z
(0)
SU(Nc)

∫
dµ(g)e− 1

2 (2Ncλ̃)
∑Nc

n=1 θ2
n . (152)

The (pre-)critical point is determined by

λ̃ ≡ 1

2Nc

(2Nc̃λqq + 2Ncλ̃g)crit = 1

2
. (153)

This result is analogous to the critical point derived in Sec. VII.
The advantage of this method is that the explicit expression for
the low-lying solution is not needed and it gives the threshold
limit of the critical point λ̃(pre-)crit � λ̃crit. Here, we will adopt
the above procedure to estimate the location of the critical
point and set the correspondence λ̃(pre-)crit → λ̃crit.

The grand canonical potential for the color-singlet bags of
fundamental and adjoint particles versus the thermal running
parameter λ̃ with various color numbers Nc = 2, 3, 4, and 5
is displayed in Fig. 8. In this toy calculation, we have set
λ̃ = λ̃qq = λ̃g . The asymptotic analytical high-lying energy
solution is displayed for the GSP method. The asymptotic high-
lying energy solution is compared with the exact numerical
solution. It is shown that the asymptotic analytical solution
fits precisely the exact numerical one for the energy domain
λ̃ � λ̃crit even with a small number of colors Nc = 2. The
extrapolation of the high-lying energy solution to the range
λ̃ < λ̃crit deviates from the exact numerical solution. This
deviation becomes significant as λ̃ decreases. It is evident
that the extrapolation of the high-lying energy solution to the
low-lying solution is unphysical. Moreover, it is evident that
the grand potential is deflected at the Gross-Witten point.
Hence, the high-lying energy solution undergoes a phase
transition to another analytical function that describes the
low-lying energy solution more successfully.

The asymptotic analytical low-lying energy solution is
displayed in Fig. 9. The low-lying energy solution is ap-
proximated by expanding the canonical ensemble as a power
expansion over λ̃ and then integrating it over the entire color
circle and using the Lagrange multiplier and the convolution
for the adjoint particles. The low-lying energy solution fits
the exact numerical one over the range λ̃ < λ̃crit even with
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FIG. 8. (Color online) High-lying density of states and its
extrapolation for the color-singlet bag consisting of fundamental and
adjoint particles with the same thermal running parameter vs the
thermal running parameter λ

N2
c

with various color numbers Nc. The
high-lying energy solution is the asymptotic solution for the thermal
running parameter over the range λ

N2
c

� λcrit
N2

c
� λ(pre-)crit

N2
c

� λ(II)min

N2
c

. The
asymptotic high-lying energy solutions are computed using the GSP
and spectral density methods and compared with the exact numerical
one.

a small number of colors Nc = 2. It deviates from the exact
numerical solution when λ̃ increases and exceeds the critical
point λ̃qq + λ̃g = 2λ̃ � 2λ̃crit. The numerical calculations show
that the split between the exact numerical solution and the low-
lying energy solution [i.e., solution (I)] becomes noticeable
at the point λ̃ = λ

N2
c

≈ 0.34 � λ̃(pre-)crit = 1
4 in agreement with

the result of Eq. (150). Furthermore, the extrapolation of
the low-lying energy solution to a larger thermal running
parameter λ̃ > λ̃crit deviates from the exact numerical solution
significantly. This failure of the low-energy extrapolation
indicates that the analytic solution is deflected in the middle
between the low-lying and high-lying energy solutions and
proves the existence of the phase transition.

To demonstrate the phase transition and the deflection
point for the analytic solution, we display the low- and
high-lying energy solutions and their extrapolations in Fig. 10.
The asymptotic analytical solutions and their extrapolations
for the entire energy domain are compared with the exact
numerical one. It is shown that the low-lying energy solution
fits the numerical one for the small thermal running parameter
λ̃ � λ̃crit. But when the thermal running parameter λ̃ reaches
the Gross-Witten critical point, the solution starts to deviate
significantly from the exact numerical one as λ̃ increases and
runs far from that point. On the other hand, the high-lying
energy solution fits the exact numerical one for the large
thermal running parameter over the range λ̃ � λ̃crit, whereas its
extrapolation to small values deviates from the exact numerical

FIG. 9. (Color online) Asymptotic low-lying energy solution for
color-singlet bags consisting of fundamental and adjoint particles
with the same thermal running parameter λ

N2
c

for both fundamental

and adjoint particles vs λ

N2
c

with various color numbers Nc. The exact
numerical solution is compared with the analytic approximation of
the low-lying energy solution for the thermal running parameter over
the range λ

N2
c

� 1
2 . The exact numerical solution fits the approximate

analytical one for small values of λ

N2
c

. When the thermal running

parameter exceeds the (pre-)critical one λ

N2
c

� ( λ

N2
c

)(pre-)crit, the exact
numerical solution starts to deviate slightly from the approximate
analytical solution; this deviation becomes noticeable beyond the
point λcrit

N2
c

= ( λ

N2
c

)match = 0.34.

one, and this deviation increases significantly as the thermal
running parameter λ̃ decreases below the Gross-Witten point
and approaches the origin. Evidently, the extrapolations of
both solutions fail to fit the exact numerical one when they
go far beyond the critical point in the opposite directions.
This demonstrates how the analytical solution is smoothly
deflected at the critical point. This soft deflection causes the
asymptotic analytic low- and high-lying solutions to lie just
above each other and reduces the intersection possibility to the
minimum in any realistic rough approximations. Therefore,
the Gross-Witten point is then determined midway between
the smooth interpolation from the low- to high-lying energy
domain or from a small to the large thermal running parameter
λ̃. The exact numerical solution matches the asymptotic
low-lying energy solution from the left, and then it matches the
asymptotic high-lying energy solution from the right beneath
this small interval around the Gross-Witten point. However,
when the low-lying energy solution is not known, the extreme
left-hand critical point is determined by the minimum point of
the high-lying energy solution extrapolation. This point is the
extreme left-hand threshold of the high-lying energy solution.
This threshold point can shed light on the existence of the phase
transition even for a complicated realistic physical situation
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FIG. 10. (Color online) Asymptotic low- and high-lying energy
solutions and their extrapolations for the color-singlet bag of
fundamental and adjoint particles with the same thermal running
parameter vs λ

N2
c

for various color numbers Nc. The exact numerical
solution fits the asymptotic low-lying energy solution over the range
λ

N2
c

� λcrit
N2

c
and fits the high-lying energy solution over the range

λ

N2
c

� λcrit
N2

c
. The two solutions split by a small redundant constant at the

critical point of the phase transition. This redundant small constant
emerges because of the kind of approximations considered.

that cannot be solved using the spectral density method. The
characteristic solutions of the low-lying and high-lying energy
domains are found to be not restricted to the large Nc → ∞
limit and are satisfactory even for a small number of colors
Nc = 2.

B. Quark and gluon fireball

The hadronic states are bound states of quarks and gluons
confined by a color-singlet state. The excited hadronic states
are assumed to be Hagedorn states. The Hagedorn states are
approximated as bags of ideal quark and gluon gases, and
each bag is in the color-singlet state. In the realistic QCD,
quarks are fundamental particles that satisfy the Fermi-Dirac
statistics, while gluons are adjoint particles that satisfy the
Bose-Einstein statistics. The canonical potential in the Fock
space for quark and antiquark with an internal color structure
is formalized as follows:

ln Zqq(β, V ) = 1

Nc

trc
∑

fl

(∑
α

ln[1 + R(g)e−βEqα ]

+
∑

α

ln[1 + R∗(g)e−βEqα ]

)
= 1

Nc

trc
∑

fl

∑
α

ln[1 + (R(g)

+ R∗(g))e−βEqα + e−2βEqα ]. (154)

For the highly thermal excited hadronic states, the color saddle
points become dominant over a tiny interval around the origin.
These highly thermal excited states correspond to the energy
domain λ � λcrit � λ(II)min and the analog solution Z(II)(β, V ).
In the Hagedorn Hilbert space, the quark-antiquark canonical
potential is approximated to

ln Zqq(β, V ) ≈
∑

fl

∑
α

ln[1 + 2e−βEqα + e−2βEqα ] − 1

2

1

Nc

×
Nc∑
i

θ2
i

[∑
fl

∑
α

2e−βEqα

[1 + 2e−βEqα + e−2βEqα ]

]

= �
(0)
qq − 1

2
�

(2)
qq

Nc∑
i

θ2
i , (155)

where the following parameters are introduced to simplify our
notation:

�
(0)
qq =

∑
fl

∑
α

ln[1 + 2e−βEqα + e−2βEqα ],

(156)

�
(2)
qq = 1

Nc

∑
fl

∑
α

2e−βEqα

[1 + 2e−βEqα + e−2βEqα ]
.

The sum over states for an ideal gas of massless quarks
and antiquarks confined in a cavity with a sharp boundary
is approximated by the integration over the density of states:

�
(0)
qq = (2j + 1) · Ncnfl

∫
V d3k

(2π )3
2 ln[1 + e−βp]

= 7π2

360
(2j + 1)Ncnfl

V

β3
, (157)

and

�
(2)
qq = (2j + 1) · Ncnfl

1

Nc

∫
V d3p

(2π )3

2e−βp

(1 + e−βp)2

= 1

6
(2j + 1)nfl

V

β3
, (158)

where V is the bag volume, and (2j + 1) comes from the spin
degeneracy. Since the constituent adjoint gluons satisfy the
Bose-Einstein statistics, the canonical potential for the gas of
gluons reads

ln Zg(β, V ) = − 1

dimg

trc
∑

α

ln[1 − Radj(g)e−βEgα ]. (159)

The internal color structure for the SU(Nc) [or U(Nc)]
symmetry group is separated and evaluated as follows

trc{ln[1 − λRadj(g)]}

=
∞∑

k=1

λktrcRadj(g
k)

=
∞∑

k=1

λk


 Nc∑

i �=j

cos k(θi − θj )

+ (Nc − 1)
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= �
∞∑

k=1

λk


 Nc∑

i �=j

eik(θi−θj )

+ (Nc − 1)


= �

 Nc∑
i �=j

ln[1 − λei(θi−θj )]

+ (Nc − 1) ln[1 − λ].

(160)

The approximation of the gluon canonical potential around
the color saddle points, which are dominant near the origin,
becomes

ln Zg(β, V ) ≈ −
∑

α

ln[1 − e−βEgα ] − 1

2

Nc∑
n=1

Nc∑
m=1

(θn − θm)2

×
[

1

dimg

∑
α

e−βEgα

[1 − e−βEgα ]2

]
,

= �(0)
g − 1

2
�(2)

g

Nc∑
n=1

Nc∑
m=1

(θn − θm)2. (161)

The terms

�(0)
g =

∑
α

ln[1 − e−βEgα ], (162)

and

�(2)
g = 1

dimg

∑
α

e−βEgα

[1 − e−βEgα ]2
, (163)

are introduced for our convenience to simplify our notation.
Furthermore, we have the dimension dimg = (N2

c − 1) and
the color constraint θNc

= −∑Nc−1
i=1 θi for the SU(Nc) group

representation. Since the quarks and gluons are assumed to be
confined in a cavity with a sharp boundary, then the summation
over the energy states is performed as follows:

�(0)
g = (2j + 1)dimg

∫
V d3k

(2π )3
ln[1 − e−βp]

= π2

90
(2j + 1)dimg

V

β3
, (164)

and

�(2)
g = (2j + 1)

∫
V d3k

(2π )3

e−βk

[1 − e−βk]2

= 1

6
(2j + 1)

V

β3
. (165)

The partition function for an ideal quark and gluon gas, which
is in the color-singlet state in the Hilbert space of the Hagedorn
state, is the tensor product of Fock spaces for the quark and
gluon partition functions. The resultant tensor product is then
projected into a color-singlet state as

Zqqg(β, V ) =
∫

dµ(g)Zg(β, V )Zqq(β, V ). (166)

The integration over the Fourier color variables is evaluated by
the Gaussian quadrature integration around the saddle points.

In the extreme condition in the limit β → 0, the color saddle
points become dominant in a tiny range around the origin.
Hence, the canonical ensemble for the highly thermal excited
states is then approximated by the quadratic expansion around
the saddle points as follows:

Zqqg(β, V ) ≈ Zqqg(II)(β, V )

Zqqg(II)(β, V ) = exp
[
�

(0)
qq + �(0)

g

]
×
∫

dµ(g)sp exp

[
−1

2
�

(2)
qq

Nc∑
i

θ2
i

− 1

2

(
2Nc�

(2)
g

)
2Nc

Nc∑
n=1

Nc∑
m=1

(θn − θm)2

]
,

(167)

where the approximate Haar measure near the saddle points
is embedded in the Gaussian integration. After evaluating the
Gaussian-like integral over the Fourier color variables, the
canonical ensemble becomes

Zqqg(II)(β, V )

= Nqqg

(
1

2Nc�
(2)
g + �

(2)
qq

) N2
c −1
2

exp
[
�

(0)
qq + �(0)

g

]
, (168)

where the prefactor normalization is given by

Nqqg = 1

Nc!(2π )Nc−1

(2π )Nc/2∏Nc

k=1 k!√
2πNc

. (169)

To be in a position to compute the microcanonical ensemble, it
is appropriate to extract the thermodynamic ensembles (V, β3)
in the following way:

Zqqg(II)(β, V ) = Nqqg

(
β3/V

2Nc�̃
(2)
g + �̃

(2)
qq

) N2
c −1
2

× exp

[
V

β3

(
�̃

(0)
qq + �̃(0)

g

)]
. (170)

The functions �̃
(0)
qq , �̃

(0)
g , �̃

(2)
qq , and �̃(2)

g are independent of V

and β and calculated by dividing the un-tilde terms by V
β3 ,

�̃
(0)
qq = �

(0)
qq

/
V

β3
,

�̃
(2)
qq = �

(2)
qq

/
V

β3
,

(171)

�̃(0)
g = �(0)

g

/
V

β3
,

�̃(2)
g = �(2)

g

/
V

β3
.
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The microcanonical ensemble is found by calculating the
inverse Laplace transformation as

Zqqg(II)(W,V ) = 1

2πi

∫ βc+i∞

βc−i∞
dβeβWZqqg(II)(β, V )

= Nqqg

2πi

∫ βc+i∞

βc−i∞
dβeβWβ

3
2 (N2

c −1)

×
exp
[

V
β3

(
�̃

(0)
qq + �̃(0)

g

)]
V

N2
c −1
2
(
2Nc�̃

(2)
g + �̃

(2)
qq

) N2
c −1
2

. (172)

It is appropriate to define explicitly the following constants
which are independent of β and V ,

�̃
(0)
qqg = [�̃(0)

qq + �̃(0)
g

]
= (2j + 1)

[
7π2

360
Ncnfl + π2

90

(
N2

c − 1
)]

, (173)

and

�̃
(2)
qq + 2Nc�̃

(2)
g = 1

6 (2j + 1)[nfl + Nc]. (174)

The Laplace transform is evaluated using the steepest-descent
method. The Laplace saddle point is determined at the
following point

β0 =
[

3V

W
�̃

(0)
qqg

] 1
4

. (175)

The microcanonical ensemble for the Hagedorn states corre-
sponds to the high-lying energy solution as follows:

ZHagedorn(W,V ) → Zqqg(II)(W,V ). (176)

The microcanonical ensemble for quark and gluon bag in the
color-singlet state reads

Zqqg(II)(W,V ) ≈ 1

2
√

2π
NqqgN�̃

1

W

(
1

V W 3

) N2
c −2
8

× exp

[
4

3

(
3�̃

(0)
qqg

) 1
4 W 3/4V 1/4

]
, (177)

where the prefactor constant N�̃ is given by

N�̃ =
(
3�̃

(0)
qqg

) 3N2
c −2
8(

2Nc�̃
(2)
g + �̃

(2)
qq

) N2
c −1
2

. (178)

After scaling the bag energy with respect to its volume
x = W/V, which is denoted as the bag energy density, the
microcanonical ensemble becomes

Zqqg(II)(x, V ) ≡ 1

2
√

2π
NqqgN�̃V − N2

c
2 x− 3N2

c +2
8

× exp

[
4

3

(
3�̃

(0)
qqg

) 1
4 x3/4V

]
. (179)

In the real world of the relativistic heavy ion collisions, the
story is more complicated. The masses for the constituent
quarks even for the light flavors do not identically vanish
to zero under the Gross-Witten phase transition line to the
Hagedorn phase due the chiral bound interaction. Although

the constituent zero mass approximation for the light flavors is
satisfactory, in particular for the hadronic phase just below the
deconfinement phase transition point, the constituent strange
flavor mass still deviates significantly from zero. Therefore,
the inclusion of massive flavors such as strangeness degrees
of freedom will drastically modify the numerical results
quantitatively. The calculation of the microcanonical ensemble
becomes more complicated for the massive flavors. The major
trouble comes from the analytical calculation for the location
of the Laplace saddle point in the steepest-descent method. In
this case, after integration by parts, the quark and antiquark
partition function, namely,

�
(0)
qq ≡ �

(0)
qq (β, V ),

(180)

�
(0)
qq (β, V ) = (2j + 1)Ncnfl

∫
V d3k

(2π )3
2 ln
[
1 + e−β

√
k2+m2]

,

is reduced to

�
(0)
qq (β, V ) = (2j + 1)Ncnfl

V

β3

1

π2

×
∫ ∞

0
dk

1

3

β4k3√
β2k2 + β2m2

1[
e
√

β2k2+β2m2 + 1
]

= (2j + 1)Ncnfl
V

β3

1

π2
I
�

(0)
qq

(mβ), (181)

where the integration term reads

I
�

(0)
qq

(mβ) =
∫ ∞

0
dx

1

3

x3√
x2 + β2m2

1[
e
√

x2+β2m2 + 1
] . (182)

The same thing can also be done for the second-order
function �

(2)
qq . When the mixed-grand canonical ensemble

is transformed to the microcanonical ensemble, the massive
flavor produces a complicated transcendental function for the
stationary Laplace saddle point solution. Generally speaking, it
is possible to solve the transcendental equation by the iteration.
At first, the solution for the zeroth iteration is assumed to be
β

(0)
0 m = 0. Then in the first iteration, we solve the stationary

saddle point β0 = β
(1)
0 . In the second iteration, the massive

flavor is considered explicitly, and then we repeat the iteration
to the higher order until the convergence is achieved. This
procedure is summarized as

βm → 0,

βm → β
(0)
0 m,

βm → β
(1)
0 m,

.... (183)

Nonetheless, it is expected that the convergence is achieved
very rapidly, and subsequently the first-order iteration is an ad-
equate and sufficient approximation for light flavors including
the strangeness. Therefore, the first-order iteration truncation
βm → β

(1)
0 m is an appropriate one for the relativistic heavy

ion collisions

�
(0)
qq (β, V ) = (2j + 1)Ncnfl

V

β3

1

π2
I
�

(0)
qq

(
β

(0)
0 m

)
. (184)
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The value of the point β
(0)
0 can be simplified in the context of

the standard MIT bag model. After considering the bag’s total
energy m = W + BV and the volume V = m/4B constraints,
the stationary point becomes

β
(0)
0 = [(�̃(0)

qq + �̃(0)
g

)/
B
] 1

4

= 1

Tβ

. (185)

The term Tβ can be interpreted as an effective temperature for
the screening mass. Alternatively, to overcome any possible
complication in the microcanonical ensemble, it is possible to
assume the ansatz

βm → m

T
, and Tβ ∼ O(1), (186)

for the high-temperature approximation. This assumption
simplifies the mixed-grand canonical ensemble significantly,

�
(0)
qq (β, V ) = (2j + 1)Ncnfl

V

β3

1

π2
I
�

(0)
qq

(m

T

)
. (187)

An alternative assumption regarding the highly compressed
hadronic matter reads

βm ∝ 1

µ
m. (188)

Nonetheless, the density of states for the highly compressed
matter at low temperature needs more consideration. In this
regime, the physics is rich due to the configuration space,
flavor, and/or flavor-color correlations. Furthermore, a new
equation of state is expected to emerge due to the formation of
the color superconductivity.

On the other hand, in the limit of low-lying energy β � 1
(i.e., the diluted and relatively cold matter which is analogous
to the Z(I)(λ) solution where λ � λcrit � λ(I)max), the partition
function for an ideal gas of quarks and antiquarks can be
approximated to

ln Zqq(β, V ) = trc
∑

fl

∑
α

ln[1 + R(g)e−βEqα ]

+ trc
∑

fl

∑
α

ln[1 + R∗(g)e−βEqα ]

≈
∑

fl

[
trcR(g)

∑
α

e−βEqα

+ trcR∗(g)
∑

α

e−βEqα

]

=
∑

fl

(∑
α

e−βEqα

)
trc[R(g) + R∗(g)]. (189)

The low-lying energy limit for the gluon gas reads

ln Zg(β, V ) = −trc
∑

α

ln[1 − Radj(g)e−βEgα ]

≈ trc
∑

α

Radj(g)e−βEgα

=
(∑

α

e−βEgα

)
trcRadj(g). (190)

By substituting the following thermal running parameters

λqq =
∑

fl

∑
α

e−βEqα ,

(191)
λg =

∑
α

e−βEgα ,

we get the partition function

Zqqg(I)(λqq, λg)

=
∫ π

−π

dµ(g) e
λg

1
dimg

trcR(g)trcR∗(g)
eλqq

1
Nc

trc(R(g)+R∗(g)), (192)

for the SU(Nc) group representation. This equation is similar
to Eq. (132). The result reads

Zqqg(I)(λqq, λg) = 1

1 − λg

(N2
c −1)

exp
[
λ2

qq

/
N2

c

]
, (193)

where λqq = Nc

π2
(2j+1)V

β3 nfl for massless flavors and λg =
(N2

c −1)
π2

(2j+1)V
β3 . This approximation is an appropriate solu-

tion over the energy domain λqq � λqqcrit � λqq(I)max and
λg � λgcrit � λg(I)max. This result is analogous to the result given
in Eq. (139). Furthermore, we have for massive flavors, the
following thermal qq-running parameter

λqq = Ncnfl
(2j + 1)V

β3

m2
qβ

2

2π2
K2(mqβ), (194)

where K2(x) is a Bessel function of the second kind. For the
low-lying energy with massive flavors in the limit βmq � 1,
the qq-running parameter becomes

λqq ≈ Ncnfl
(2j + 1)V

β3

(
mqβ

2π

)3/2

e−βmq . (195)

Nonetheless, in the realistic case, the density of states derived
from the microcanonical transformation of the low-lying
mixed-canonical ensemble given by Eq. (193) will be found
in Sec. VIII to be replaced by the discrete low-lying mass
spectrum.

VIII. MICROCANONICAL ENSEMBLE AS A DENSITY OF
STATES

The microcanonical ensemble becomes known after calcu-
lating the inverse Laplace transform of the mixed-canonical
ensemble,

Z(W,V ) = 1

2πi

∫ βc+i∞

βc−i∞
dβeβWZ(β, V ),

= 1

2πi

∫ βc+i∞

βc−i∞
dβ exp[βW + ln Z(β, V )]. (196)

The above integral can be computed by the steepest-descent
method. In this method the integral is approximated to the
Gaussian-like integral around the saddle point. The general
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result reads

Z(W,V ) = 1

2

1√
2π

exp[βW + ln Z(β, V )][(
1

Z(β,V )
∂Z(β,V )

∂β

)2 − 1
Z(β,V )

∂2Z(β,V )
∂β2

]1/2
β=β

,

(197)

where the saddle point β of the stationary condition is
determined at the extremum point

W + 1

Z(β, V )

∂Z(β, V )

∂β

∣∣∣∣
β=β

= 0. (198)

In the standard MIT bag model, the density of states is
determined for constituent particles confined in a cavity with
a sharp boundary. In a realistic model, it is possible to deform
the cavity’s boundary. The δ function for the sharp boundary in
the standard MIT bag model can be smeared by the Gaussian
smoothing function. The extreme conditions in the relativistic
heavy ion collisions may smooth the sharp boundary for the
quark and gluon bag. Therefore, the microcanonical ensemble
for the gas of bags with extended boundaries is approximated
to

Z(W,V ) =
∫

dvδ(v − V )Z(W, v)

=
∫

dvfsm(v − V )Z(W, v), (199)

where the boundary surface is extended by the Gaussian
smoothing function

fsm(v) =
√

π

	/W
e− 	

W
v2(1− v0

v
)2
. (200)

The bag’s boundary becomes more extended with respect to
the energy when the bag’s energy increases with respect to
temperature, while on the contrary, the surface turns out to be
sharper for the low energy. The bag volume is proportional to
its energy v0 ∝ W . In the low-energy limit, the bag’s boundary
is reduced to a δ function

lim
W→0

fsm(v) = δ(v − v0). (201)

Hence, the Hagedorn’s density of states for the standard MIT
bag with a sharp surface boundary reads

ρ(II)(m, v) = δ
(
v − m

4B

)
Z(W, v), (202)

where W = m − Bv. The microcanonical ensemble Z(W, v)
is given by Eq. (177). The density of states can be rewritten as

ρ(II)(m, v) = δ(m − 4Bv)Z(m, v). (203)

The generalization of the microcanonical ensemble to take into
account the inclusion of volume variation reads

ρ(II)(W, v) = fsm(v)Z(W, v). (204)

The volume fluctuation effect is studied in detail in Ref. [28],
and the bag stability needs further investigation.

A. Critical mass for the bag consisting of fundamental particles
obeying Maxwell-Boltzmann statistics

The canonical ensemble for a gas with the internal color
symmetry U(Nc) reads

Z(β, V ) ≈ Z(I)(β, V ),

Z(I)(β, V ) = eN2
c λ̃2

, (205)

λ̃ �
1

2
� λ(I)max � 1,

and

Z(β, V ) ≈ Z(II)(β, V ),

Z(II)(β, V ) =
(

1

2̃λ

) N2
c

2

e(2N2
c λ̃− 3

4 N2
c ), (206)

λ̃ �
1

2
� λ̃(II)min,

for the low- and high-lying energy solutions, respectively.
The effective thermal running parameter λ̃ for an ideal gas
of fundamental particles embedded in the thermal bath and
satisfying Maxwell-Boltzmann statistics reads

λ̃ = λ
/
N2

c ,

= 1

Nc

(2j + 1)
∫

V d3p

(2π )3
e−β

√
p2+m2

∣∣∣∣
m=0

,

= 1

π2

(2j + 1)

Nc

V

β3
. (207)

The low-temperature 1/β phase has a free energy of order
O(N0

c ). The high-temperature phase has a free energy of order
O(N2

c ). It is characterized by the Hagedorn growth in its
density of states.

The microcanonical ensemble is computed by calculating
the inverse Laplace transform as follows:

Z(II)(W,V ) = lim
W→∞

1

2πi

∫ βc+i∞

βc−i∞
dβeβWZ(II)(β, V ),(

for λ̃ �
1

2
� λ̃(II)min

)
,

= 1

2
√

2π

1√
12Nc

[
π2Nc

2(2j + 1)

] N2
c +1
2

×β
(3N2

c +5)/2
0 V −(N2

c +1)/2

× exp

[
4

3

(
6(2j + 1)Nc

π2

)1/4

×V 1/4W 3/4 − 3

4
N2

c

]
. (208)

The stationary point for the steepest-descent method is found
at

β0 =
(

6(2j + 1)Nc

π2

V

W

) 1
4

. (209)
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In the microcanonical representation, the effective thermal
running parameter and the energy constraint for the highly
excited states are reduced to

λ̃ = 1

6N2
c

(
6(2j + 1)Nc

π2

)1/4

W 3/4V 1/4,

�
1

2
� λ̃(II)min. (210)

In the standard MIT bag model, the effective bag mass and
volume are given by the relations

m = W + BV, (211)

m = 4BV, (212)

W = 3

4
m, (213)

V = m

4B
. (214)

In the present model, the Hagedorn states appear in the
hadronic mass spectrum when the energy reaches the threshold
λ̃ � λ̃(pre-)crit = 1

2 � λ̃(II)min and subsequently the Hagedorn
mass threshold exceeds the limit

m � 2
√

2πN (1+3/4)
c

[
2B

(2j + 1)

]1/4

� 6.2 GeV with B1/4 = 180 MeV. (215)

This threshold mass is relatively large due to the classi-
cal Maxwell-Boltzmann statistics considered in the present
scenario.

On the other hand, the situation is rather different for the
low-lying energy for the small thermal running parameter
λ̃ � 1

2 � λ̃(I)max (usually λ̃(I)max < 1), where the microcanonical
ensemble is evaluated as

Z(I)(W,V ) = 1

2πı

∫ βc+i∞

βc−i∞
dβeβWZ(I)(β, V )

= 1

2πı

∫ βc+i∞

βc−i∞
dβeβWe

[d2
q

V 2

β6 ]
, (216)

where dq = (2j+1)
π2 . In the standard MIT bag, we have the

effective bag energy W ≈ 3
4m. For the energy excitation

less than the threshold λ̃ � 1
2 � λ̃(I)max, we have the low-lying

hadronic mass spectrum, which ends when the energy scale
reaches the critical point

m � m(̃λ(pre-)crit) : 6.2 GeV, with B1/4 = 180 MeV,

� m(I)max : 10 GeV, (217)

where the upper limit m(I)max will be given by Eq. (251). When
the energy scale exceeds this point, the microcanonical ensem-
ble for the low-lying hadronic states becomes inappropriate.
The extrapolation of the steepest-descent approximation leads
to the density of states, i.e.,

Z(I)(W,V ) = 1

2
√

2π

[
6d2

q

]1/14

√
7V −1/7W 4/7

× exp

[
7

6

[
6d2

q

]1/7
V 2/7W 6/7

]

∼ (· · ·)V 1/7W−4/7 exp[(· · ·)V 2/7W 6/7],

(for m � m(I)max). (218)

This approximation is not valid for small W or m � m(I)max

if the low-lying spectrum is a discrete one, as will be found in
the realistic physical situation in Sec. VIII B. We will assume
that m(I)max � mcrit ∼ mphysical, where mphysical ≈ 2.0 GeV
is the maximum mass for the known physical particles found
experimentally without strangeness [45]. For the low-lying
hadronic mass spectrum, we have considered the density of
states for the known mass spectrum particles

Zlow(W,V ) → Z(I)(W,V ),

ρlow(W,V ) ∝ Zlow(W,V ),

≈
mcrit∑
mi,vi

δ(m − mi)δ(v − vi). (219)

Nonetheless, the microcanonical extrapolation given in
Eq. (218) is useful to show that the discrete hadronic low-lying
mass spectrum is essential. If the standard MIT bag model with
a sharp surface boundary is applied to Eq. (218), no phase
transition to an explosive QGP takes place. To see this, let us
adopt the standard MIT bag approximation where W ∝ V .
This consideration leads to a continuous density of states
ρ ∼ (. . .)v−3/7e(...)v8/7

. This density leads to a divergence in the
isobaric partition function, and this standard approximation of
the MIT bag for the low-lying mass spectrum fails. It is evident
that the Hagedorn states do not appear in the low-lying mass
spectrum limit. Furthermore, if we argue that the continuous
density of states grows exponentially as a linear exponential
growth with respect to the hadron’s excluded volume, it is
possible to extrapolate V 2/7W 6/7 ∝ V or W ∝ V 5/6. With
this approximation, the density of states is reduced roughly
speaking to ρ ∼ (. . .)v−1/3e(...)v . This density gives no phase
transition to the QGP. Both of the above approximations show
that a continuous low-lying mass spectrum cannot generate
explosive bags.

B. Critical mass for the quark and gluon fireball (e.g.,
Hagedorn state threshold)

In QCD, the Hagedorn state is assumed to be a bag of
weakly interacting quarks and gluons confined in a color-
singlet state. The canonical ensemble for a quark and gluon gas
in the color-singlet state is given by Eq. (170). The logarithm
of the canonical partition function is simified as follows:

ln(Zqqg(V/β3)) ≈ ln(Zqqg(II)(V/β3)),

ln(Zqqg(II)(V/β3)) = V

β3

[
�̃

(0)
qq + �̃(0)

g

]
− N2

c − 1

2
ln

V

β3
+ const., (220)

for the energy domain λqqg � λqqg(II)min, where λqqg ∝ V/β3.
The critical point for the phase transition is determined by
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finding the extremum left-hand point as

∂

∂
(

V
β3

) ln Zqqg(II)(V/β3) = 0. (221)

The parameter V
β3 is related to the running coupling parameter

λ, and it determines the threshold point of a possible phase
transition to the Hagedorn phase. The extreme left-hand side
location for the prospective phase transition is located at

1

N2
c − 1

(
V

β3

) [
�̃

(0)
qq + �̃(0)

g

]
�

1

2
. (222)

Below the minimum left-hand side point, the solution must
be already deflected to another analytical solution, and in this
sense the critical point is bounded from below by the extreme
left-hand side point. The minimum limit for the threshold
Hagedorn mass (i.e., m(II)min where mcrit � m(II)min) for the
phase transition from the low-lying mass spectrum to the
highly excited spectrum of fireballs or more precisely the con-
tinuous Hagedorn states in the context of the microcanonical
ensemble is given by the condition

1

3
(
N2

c − 1
) [3(�̃(0)

qq + �̃(0)
g

)
V W 3] 1

4 �
1

2
. (223)

The stationary point of the steepest-descent method for the
inverse Laplace transform to the microcanonical ensemble is
determined by Eq. (175). In the context of the standard MIT
bag model with a sharp boundary surface, the point of the
critical point is determined by the constraint

[3V W 3]1/4 = 3m

4B1/4
. (224)

The minimum limit for the threshold Hagedorn mass produc-
tion in the context of the MIT bag with the sharp surface
boundary approximation is given by the constraint

(2j + 1)1/4

2(N2
c − 1)

[
7π2

360
Ncnfl + π2

90
(N2

c − 1)

]1/4
m

B1/4
� 1,

→ m � m(II)min (the resultant constraint). (225)

Hence, the threshold Hagedorn mass production for Nc = 3
and B1/4 = 180 MeV is given by

m � m(II)min,

m � 2206 MeV (one massless flavor),

� 2029 MeV (two massless flavors),

� 1906 MeV (three massless flavors). (226)

The critical point for the phase transition from the discrete
low-lying mass spectrum to the continuous Hagedorn density
of states is located just above the maximum mass of the
known hadronic particles found in the Data book [45].
The highest experimental nonstrange hadron state is roughly
estimated to be mmax ∼ 2.0–2.3 GeV. The critical point exists
above the minimum point solution of the Hagedorn threshold
mcrit � m(II)min. The estimation of the Hagedorn critical mass
threshold will be given in Eqs. (270) and (271).

The low-lying mass spectrum is considered a discrete
density of states that includes all the known mass spectrum

particles

Zlow(W,V ) = Zqqg(I)(W,V ),
(227)

ρlow(m, v) ∼
mmax∑
mi,vi

δ(m − mi)δ(v − vi).

Using the following connections between the canonical en-
semble and the density of the states

ρ(W,V ) ∝ Zqqg(I)(W,V ) + Zqqg(II)(W,V ),

∝ Zlow(W,V ) + Zfireballs(W,V ), (228)

the density of states for the entire hadronic states is approxi-
mated to

ρ(m, v) ≈
mmax∑
mi,vi

δ(m − mi)δ(v − vi) + Zfireballs(W, v)

× (volume-mass fluctuation), (229)

where the microcanonical ensemble Zqqg(II)(W,V ) is the
continuous mass spectrum for the Hagedorn states [i.e.,
Zfireballs(W,V )]. In the standard MIT bag model with the sharp
surface boundary, the volume-mass fluctuation is determined
by the relation δ(m − 4BV ). For any fuzzy bag model, the
volume-mass fluctuation becomes nontrivial and may change
the order of the phase transition.

IX. DENSITY OF STATES

The density of states can be evaluated by using the phase-
space integral. The calculation for an ideal gas of particles in
finite size has been evaluated and studied without the internal
color structure [3]. We use the same procedure to re-derive the
density of states reached in the previous sections, in particular
Sec. VII B. The density of states from the phase-space integral
reads

ρ(W,V ) =
∞∑

n=2

Nn
c (2j + 1)n

n!

×
[

n∏
i=1

∫
V d3pi

(2π )3

]
δ

(
W −

n∑
i=1

ε( �pi)

)
, (230)

where the constituent particle energy ε( �pi) =
√

�p2
i + m2, and

it is reduced to ε( �pi)
.= | �p| for the massless one. Here j is the

particle quantum number, and V and W are the bag volume and
energy, respectively. The internal color symmetry is embedded
in the phase-space integral as follows:

ρ(W,V ) =
∞∑

n=2

(2j + 1)n

n!

[
n∏

i=1

tr[R(g) + R∗(g)]
∫

V d3pi

(2π )3

]

× δ

(
W −

n∑
i=1

| �pi |
)

=
∞∑

n=2

(2j + 1)n

n!
(tr[R(g) + R∗(g)])n
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×
(

V

2π2

)n 2nW 3n−1

(3n − 1)!

= 1

W

∞∑
n=2

1

n!(3n − 1)!
(a{W 3V }(R))n. (231)

In Eq. (231), the following function has been introduced:

a{W 3V }(R) = ã{W 3V }tr[R(g) + R∗(g)]

= π2ã{W 3V }tr
(

R(g)
∫

dx

2π2
x2e−x

+ R∗(g)
∫

dx

2π2
x2e−x

)
, (232)

where

ã{W 3V } = (2j + 1)

π2
[W 3V ]. (233)

The summation over the number n is approximated with the
help of Stirling’s formula to an integration over the variable n

ρ(W,V ) = 1

W

∫ ∞

0
dn exp[n ln(a{W 3V }(R))

− ln n! − ln(3n − 1)!]. (234)

The above integration is evaluated using the saddle point
approximation. The saddle point is found as follows

n ≈
(

a{W 3V }(R)

27

) 1
4

. (235)

In this approximation, the density of states is reduced to

ρ(W,V ) =
√

3

2π

1

W
exp

[(
256

27
a{W 3V }(R)

)1/4
]

× Cn(W,V ),

(236)

where

Cn(W,V ) =
∫ ∞

0
dn exp

[
−1

2

(
256 × 27

a{W 3V }(R)

)1/4

n2

]

= 1

2

√
2π

(
a{W 3V }(R)

256 × 27

)1/8

. (237)

Hence the density of states reads

ρ(W,V ) = 1

4
√

2π
(3a{W 3V }(R))

1
8

1

W

× exp

[
4

3
(3a{W 3V }(R))1/4

]
. (238)

After tracing over the color index for U(Nc) [or SU(Nc)],
Eq. (232) becomes

a{W 3V }(R) = 2ã{W 3V }
Nc∑
i=1

cos θi . (239)

The projection over the color-singlet state reduces the density
of states to

ρsinglet =
∫ π

−π

dµ(g)ρ(W ). (240)

The density of states under the integral is approximated to
the Gaussian-like integral over the color variables, since it
dominates a tiny range around the origin along the real axis of
Fourier color variables, that is,

ρ(W,V ) = 1

4
√

2π

(
6ã{W 3V }

Nc∑
i

cos θi

) 1
8

1

W

× exp

4

3

(
6ã{W 3V }

Nc∑
i=1

cos θi

)1/4


= Cρ × exp

[
−1

2
Dρ

Nc∑
i=1

θ2
i

]
, (241)

where the preexponential coefficient reads

Cρ = 1

4
√

2π
(6Ncã{W 3V })

1
8

1

W
exp

[
4

3
(6Ncã{W 3V })1/4

]
.

(242)

The exponential term is given by

Dρ = 4

3

1

4N
3/4
c

(6ã{W 3V })1/4

= 1

3Nc

[
6(2j + 1)Nc

π2
W 3V

]1/4

. (243)

The color-singlet density of states for the groups U(Nc) and
SU(Nc) is, respectively, approximated to

ρsinglet(W,V ) = Cρ

∫ θc

−θc

dµ exp

[
−1

2
Dρ

Nc∑
i=1

θ2
i

]
,

≈
∏Nc

n=1 n!

Nc!(2π )Nc/2
×
(

1

Dρ

)N2
c /2

× Cρ, for U(Nc),

≈
∏Nc

n=1 n!

Nc!(2π )Nc/2

√
2π

Nc

×
(

1

Dρ

)(N2
c −1)/2

× Cρ, for SU(Nc), (244)

where Dρ/Nc � 1. Furthermore, the approximation carried out
in Eqs. (241) and (244) requires the constraint Dρ/Nc � 1.
This is derived trivially using the analogous behavior
ρ(λ̃) ∝ e2N2

c λ̃
∫

dµ(g) exp[− 1
2 (2Ncλ̃)

∑
i θ

2
i ], where λ̃ � 1/2.

The constraint Dρ/Nc � 1 is exactly the same constraint given
by Eq. (210). The asymptotic color-singlet density of states
for the U(Nc) and SU(Nc) group representations behaves as
follows

ρsinglet(W,V ) ∝ 1

W

[
1

W 3V

] N2
c −1
8

× exp [const. (W 3V )1/4], for U(Nc),

∝ 1

W

[
1

W 3V

] N2
c −2
8

× exp [const. (W 3V )1/4], for SU(Nc),

(with constraint Dρ/Nc � 1). (245)
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To analyze the results for the low-energy limit, it would be
worthy to perform the analysis in the language of the canonical-
like ensemble rather than the microcanonical ensemble. The
density of states in term of the canonical-like ensemble can be
defined as

ρsinglet(W,V ) = 1

2

1

W

1

2
√

2π
(3a{W 3V }(R))

1
8

× exp

[
4

3
(3a{W 3V }(R))1/4

]
∼ 1

2

1

W

1

2πi

∫ ζ0+i∞

ζ0−i∞
dζ eζy

× exp

[
1

ζ 3
(a{W 3V }(R))

]
y=1

. (246)

The projection of the color-singlet state reduces the density of
states to

ρsinglet(W,V ) ∼= 1

2

1

W

∫
dµ(g)

1

2πi

∫ ζ0+i∞

ζ0−i∞
dζeζy

× exp

[
1

ζ 3
(a{W 3V }(R))

]
y=1

∼= 1

2

1

W

1

2πi

∫ ζ0+i∞

ζ0−i∞
dζeζy

∫
dµ(g)

× exp

[
1

ζ 3
(a{W 3V }(R))

]
y=1

. (247)

Hence, the analysis of the above equation becomes similar

to the Gross-Witten critical point solution. For
ã{W3V }
Ncζ 3 � 1,

the color saddle points will be distributed uniformly over the
invariance measure

∫ π

−π
dµ(g). It is evaluated as follows

ρlow(W,V ) ∼= 1

2

1

W

1

2πi

∫ ζ0+i∞

ζ0−i∞
dζ eζy

∫ π

−π

dµ(g)

× exp

[
ã{W 3V }

ζ 3
(tr R(g) + tr R∗(g))

]
y=1

= 1

2

1

W

1

2πi

∫ ζ0+i∞

ζ0−i∞
dζ eζy exp

[(
ã{W 3V }

ζ 3

)2
]

y=1

,

(i.e., continuous low-lying spectrum). (248)

Under the constraint
ã{W3V }
Ncζ 3 � 1, the integration over the

Laplace transform is evaluated using the steepest-descent
method. It is reduced to

ρ(I)(W,V ) = ρlow(W,V )

= 1

2

1

W

1√
2π

1√
7

(
6ã2

{W 3V }
)1/14

× exp

[
7

6

(
6ã2

{W 3V }
)1/7
]

∝ 1

2

1

W
(W 3V )1/7 exp [const. (W 3V )2/7], (249)

where the saddle point of the stationary condition is found at

ζ = [6ã2
{W 3V }

]1/7
. (250)

The location of the saddle point must satisfy the energy
constraint

ã{W 3V }

Ncζ
3 = 1

64/7N
8/7
c

(6Ncã{W 3V })1/7 � 1,

→ 1

6N2
c

(6Ncã{W 3V })1/4 � 1,

→ 1

6N2
c

(
6(2j + 1)Nc

π2

)1/4

[W 3/4V 1/4] � 1,

→
[

1

6N2
c

(
6(2j + 1)Ncnfl

π2

)1/4

[W 3/4V 1/4]

]
� 1,

→ m � 10 GeV (for two flavors). (251)

In the realistic QCD, the quarks obey Fermi-Dirac statistics,
while the gluons obey Bose-Einstein statistics. The partition-
like function for a gas of massless quarks and antiquarks
confined in a finite size cavity with the internal color structure
SU(Nc) [or U(Nc)] reads

aqq(R) = (2j + 1)

π2
(W 3V )nfl tr

(∫ ∞

0
dx x2 ln[1 + Rfun(g)e−x]

+
∫ ∞

0
dxx2 ln[1 + R∗

fun(g)e−x]

)
. (252)

Similarly, the partition-like function for a gas of gluons is
reduced to

ag(R) = − (2j + 1)

π2
(W 3V )

× tr

(∫ ∞

0
dx x2 ln[1 − Radj(g)e−x]

)
. (253)

It is interesting to note here that when ãqq/ζ
3 � O(1)crit

and ãg/ζ
3 � O(1)crit, the color saddle points are distributed

uniformly over the entire circle. In this case, the Maxwell-
Boltzmann statistics can be produced as follows:

ln[1 + R∗
fun(g)e−x] ≈ R∗

fun(g)e−x,
(254)

− ln[1 − Radj(g)e−x] ≈ Radj(g)e−x.

On the other hand, in the case of ãqq/ζ
3 > O(1)crit

and ãg/ζ
3 > O(1)crit, the color saddle points become more

dominant in a narrow domain around the origin. In this domain,
the partition-like function is expanded around the color saddle
points. The coefficients of the expansion around the saddle
points for the quark and antiquark partition-like function read

aqq(R)|{θ}=0 = 7π2

360
Ncnfl(2j + 1)(W 3V ),

(255)
∂2aqq(R)

∂θ2
i

∣∣∣∣
{θ}=0

= −1

6
nfl(2j + 1)(W 3V ).

Moreover, the same thing can be calculated for the gluons:

ag(R)|{θ}=0 = π2

90

(
N2

c − 1
)
(2j + 1)(W 3V ),

(256)
∂2ag(R)

∂(θi − θj )2

∣∣∣∣
{θ}=0

= −1

6
(2j + 1)(W 3V ).
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The coefficient of the quark, antiquark, and gluon gas is
reduced to

a{W 3V }(R) = aqq(R) + ag(R). (257)

The coefficient of the zeroth approximation reads

a{W 3V }(R)|{θ}=0 = dqqgW
3V, (258)

where

dqqg = (2j + 1)

(
7π2

360
Ncnfl + π2

90

(
N2

c − 1
))

. (259)

The density of states is approximated to the Gaussian-like
function around the saddle points as follows:

ρ(II)(W,V ) = ρhigh(W,V )

= 1

4
√

2π

1

W
(3a{W 3V }(R))1/8

× exp

[
4

3
(3a{W 3V }(R))1/4

]
≈ Cqqg(W,V ) exp

[
−1

2
λ

(2)
qq

Nc∑
i=1

θ2
i

− 1

2

2Ncλ
(2)
g

2Nc

Nc∑
i=1

Nc∑
j=1

(θi − θj )2

 , (260)

where the preexponential coefficient reads

Cqqg(W,V ) = 1

4
√

2π

1

W
(3dqqgW

3V )1/8

× exp

[
4

3
(3dqqgW

3V )1/4

]
. (261)

The quadratic terms in the exponential read

λ
(2)
qq = −

(
1

3dqqgW 3V

)3/4
∂2aqq(R)

∂θ2
i

∣∣∣∣
0

= 1

(3dqqg)3/4

1

6
(2j + 1)nfl(W 3V )1/4, (262)

and

λ(2)
g =

(
1

3dqqgW 3V

)3/4
∂2ag(R)

∂(θi − θj )2

∣∣∣∣
0

= 1

(3dqqg)3/4

1

6
(2j + 1)(W 3V )1/4. (263)

The color-singlet state for the density of states is projected as

ρ(II)(W,V ) = Cqqg(W,V )
∫ θc

−θc

dµ(g) exp

[
−1

2
λ

(2)
qq

Nc∑
i=1

θ2
i

− 1

2

2Ncλ
(2)
g

2Nc

Nc∑
i=1

Nc∑
j=1

(θi − θj )2


.= Cqqg(W,V )

∫ θc

−θc

dµ(g)

× exp

[
−1

2

(
λ

(2)
qq + 2Ncλ

(2)
g

) Nc∑
i=1

θ2
i

]
. (264)

The result of Eq. (264) resembles Eq. (167), and its evaluation
leads to

ρ(II)(W,V ) = cqqg

1

W
(3dqqgW

3V )1/8

(
1

λ
(2)
qq + 2Ncλ

(2)
g

) N2
c −1
2

× exp

[
4

3
(3dqqgW

3V )1/4

]
, (265)

where the constant cqqg reads

cqqg = 1

4Nc!(2π )Nc−1/2

(2π )Nc/2∏Nc

k=1 k!√
2πNc

. (266)

In terms of �̃
(2)
qq and �̃(2)

g , Eq. (265) becomes

ρ(II)(W,V ) = cqqg

(
3dqqg

�̃
(2)
qq + 2Nc�̃

(2)
g

) N2
c −1
2

× 1

W

(
1

3dqqgW 3V

) N2−2
8

× exp

[
4

3
(3dqqgW

3V )1/4

]
, (267)

where

λ
(2)
qq = (W 3V )

1/4
�̃

(2)
qq

/
(3dqqg)3/4,

(268)
λ(2)

g = (W 3V )
1/4

�̃(2)
g

/
(3dqqg)3/4.

The Hagedorn density of states is given by ρ(II)(W,V ) =
ρhigh(W,V )δ(m − 4BV ) for the bags with the sharp surface
boundary. It is found that Eq. (267) is identical to the result
given in Eq. (177). The constraint of the thermal running
parameter for Eq. (264) validity is given by

λ̃ ≡ 1

2Nc

(
λ

(2)
qq + 2Ncλ

(2)
g

)
�

1

2
, (269)

where λ̃(pre-)crit = 1
2 . Using the standard MIT bag model, we

get

1

2Nc

1

24d
3/4
qqgB

1/4
(2j + 1)(nfl + 2Nc)m �

1

2
, (270)

where (W 3V )1/3 = 33/4m/(4B1/4) and B1/4 = 180 MeV.
Equation (225) gives the minimum mass limit m(II)min,
while the (pre-)critical mass threshold mcrit is determined by
Eq. (270) with the condition mcrit � m(II)min. The Hagedorn
mass constraint is bounded from below by the (pre-)critical
mass m � mcrit. Nonetheless, Eq. (270) gives the following
estimations

m � mcrit = 2060 MeV (massless flavors : nfl = 1),

m � mcrit = 2315 MeV (massless flavors : nfl = 2), (271)

m � mcrit = 2482 MeV (massless flavors : nfl = 3).

It is worth noting that Eq. (225) gives the constraint for the
minimum mass limit for the Hagedorn threshold production
where the (pre-)critical mass determined by Eq. (270) must
lie above this minimum mass limit mcrit � m(II)min. According
to Eqs. (226) and (271), the minimum mass threshold and the
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(pre-)critical mass for the two-flavor hadronic mass spectrum
are found to be mcrit = 2315 MeV � m(II)min = 2029 MeV. The
experimental data book indicates that the maximum limit for
the discrete mass spectrum is estimated to be around 2250–
2300 MeV. The critical mass for the production of fireballs
has to be just above the the known discrete mass spectrum.
The present work predicts that the maximum limit for the two-
flavor discrete hadronic mass spectrum is 2315 MeV, and above
this limit the continuous Hagedorn spectrum is produced.

X. GAS OF BAGS WITH VAN DER WAALS REPULSION

A. Isobaric partition function

The partition function for a gas of bags in the Maxwell-
Boltzmann statistics reads

Z(T , V ) =
∑

N � 0

1

N !

N∏
i=1

Qi(�), (272)

where

Qi(�) =
∫

dmidvi

∫ (
V −

N∑
k=1

vk

)
d3pi

(2π )3
ρ(�; mi, vi)

× e−Ei/T �

(
V −

N∑
k=1

vk

)
, (273)

and vi,mi, and Ei are the hadron volume, mass, and total
energy, respectively. The fugacity � is the constraint of all
possible charge conservations such as baryonic, strangeness,
etc., and is given by

� = {eiθB . . .} ≡ {e µB
T . . .}. (274)

The density of states given by Eq. (272) consists all the discrete
known mass spectrum particles and the continuous Hagedorn
density of states as follows:

ρ(�; mi, vi, . . .) = ρ(I)(m, v, T ,�) + ρ(II)(m, v, T ,�),

(275)

where ρ(I)(m, v, T ,�) corresponds to the discrete low-lying
hadronic mass spectrum, while ρ(II)(m, v, T ,�) corresponds
to the continuous Hagedorn mass spectrum. The discrete low-
lying density of states of the known mass spectrum particles
reads

ρ(I)(m, v, T ,�)

=
baryons∑

i

DFD(m, v, T ,�i)δ(m − mi)δ(v − vH )

+
mesons∑

i

DBE(m, v, T ,�i)δ(m − mi)δ(v − vH ). (276)

The sum runs over the baryon and meson mass spectra that
are satisfying the Fermi-Dirac and Bose-Einstein statistics, re-
spectively. The terms DFD(m, v, T ,�i) and DBE(m, v, T ,�i)
are the degeneracies as well as the single-particle statistic
ensemble functions for Fermi and Bose particles, respectively.
The continuous part ρ(II)(m, v, T ,�) is the Hagedorn density

of states, and these states correspond to the hadronic bubbles
with relatively large hadronic masses that could emerge as
fireballs just above the highest mass of the known hadronic
particle without strangeness m � 2.0 GeV represented by the
discrete low-lying mass spectrum. In the simplest approx-
imation, there is no reason to prefer the Fermi-Dirac or
Bose-Einstein statistics for the exotic hadronic states such as
Hagedorn states. The Hagedorn states are assumed to obey
simply the classical Maxwell-Boltzmann statistics due to their
relatively large masses. The grand canonical ensemble for a
gas of noninteracting multiparticle species obeys the tensor
product of their Fock spaces [38],

Z(T , V ; �) =
∏

baryons

Z(T , V )
∏

mesons

Z(T , V )

×
∏

Hagedorns

Z(T , V ) · θ

(
V −

∑
i

vi

)
. (277)

To overcome the volume step function problem in Eqs. (272)
and (273), the isobaric ensemble trick is introduced. The
isobaric partition function is calculated by taking the Laplace
transformation of the grand partition function [35–39]

Ẑ(T , s; �) ≡
∫ ∞

0
dV exp(−sV )Z(T , V ; �)

= 1

/[
s −

∫
i

exp(−vis)ϕS (T ; mi,�i)

]
= 1/[s − fhadrons(T , s)], (278)

where vi is the hadron’s Van der Waals excluded volume. It
is reduced to a continuous Van der Waals variable v for the
continuous mass spectrum. The isobaric function found in the
denominator in the right-hand side of Eq. (278) is decomposed
as follows

fhadrons(T , s) =
∫

i

exp(−vis)ρ(m, v, T ,�)ϕS (T ; mi,�i),

=
∑

i

∫
exp(−vis)ρ(I)(mi, vi, T ,�)

×ϕS (T ; mi,�i) (discrete low-lying)

+
∫

dv dm exp(−vs)ρ(II)(m, v, T ,�)

×ϕS (T ; m,�) (continuous Hagedorn)

= flow(T , s) + ffireballs(T , s). (279)

The first term flow(T , s) denotes the isobaric function consist-
ing of all the known hadronic mass spectrum particles and
resonances as well as their antiparticles embedded in the hot
and dense medium. The masses of these particles are taken
from the particle data book [45]. The nonstrange hadronic
spectrum consists of 76 mesons and 64 baryons. This isobaric
function is given as

flow(T , s) =
mesons∑

i

[ϕBE(T ; mi,�
�
i ) + ϕBE(T ; mi,�

�

i )]

+
baryons∑

i

[ϕFD(T ; mi,�
�
i ) + ϕFD(T ; mi,�

�

i )]. (280)
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The ensemble functions for single-particle species obey-
ing the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein
statistics, respectively, read

ϕMB(T ; mi,�i) = (2Ji + 1)�i

∫
d3k

(2π )3
e− 1

T

√
k2+m2

i , (281)

ϕFD(T ; mi,�i) = (2Ji + 1)
∫

d3k

(2π )3

× ln
[
1 + �ie

− 1
T

√
k2+m2

i

]
, (282)

and

ϕBE(T ; mi,�i)

= −(2Ji + 1)
∫

d3k

(2π )3
ln
[
1 − �ie

− 1
T

√
k2+m2

i

]
, (283)

where Ji is the quantum number stemming from the internal
degrees of freedom (e.g., spin multiplicity). The effective
chemical potentials read

��
i = e−vs�i, �

�

i = e−vs�i, (284)

where the isobaric pressure times the Van der Waals volume
(s × v) enters as an exponential prefactor of the particle
fugacity. The second term in Eq. (279) corresponds to the
isobaric pressure of Hagedorn bubbles. The isobaric function
for a gas of Hagedorn states reads

ffireballs(T , s) =
∫ ∞

v0

dv

∫ ∞

m0

dm e−vsρ(II)(m, v, T ,�)

×ϕMB(T ; m,�), (285)

where the first integration is over the hadron mass, while
the second one is over the hadron excluded volume. The
asymptotic behavior of the function ϕMB(T ; m,�) in the limit
of the large bag mass m � T reads

ϕMB(T ; m,�) =
∫

d3k

(2π )3
exp(−

√
k2 + m2/T )

=
[
m2T

2π2

]
K2(m/T )

≈
(

mT

2π

)3/2

e−m/T . (286)

By introducing Eq. (286) in Eq. (285), Eq. (285) is reduced to

ffireballs(T , s) =
∫ ∞

v0

dv

∫ ∞

m0

dm e−vsρ(II)(m, v, T ,�)

×
(

mT

2π

)3/2

e−m/T , (287)

where ρ(II)(m, v, T ,�) measures the mass spectral density and
the volume fluctuation of the continuous Hagedorn states.

It is known from the property of the Laplace transformation
that the asymptotic behavior of Z(T , V ) as V → ∞ is
determined by the extreme right-hand singularity of Ẑ(T , s; �)
with respect to the isobaric variable s on the real axis. We
denote this singularity point by s∗. The Laplace parameter s∗
plays the role of the isobaric pressure. In the thermodynamic

limit V → ∞, the pressure reads

p = T lim
V →∞

1

V
ln Z(T , V ) = T s∗. (288)

The isobaric partition function with the isobaric ensembles
(T , s) is convenient for a system characterized by the external
pressure p = T s rather than the fixed volume V . The isobaric
partition function has another singularity besides the first
singular point s0 = s∗. This singularity is determined by the
nonlinear equation s∗ = fhadrons(T , s∗) given by Eq. (278). The
second pole sc is the singularity when the isobaric function
ffireballs(T , sc) diverges because the fireball’s internal pressure
exceeds the external pressure of the gas of hadrons, i.e.,

ffireballs(T , sc) → ∞. (289)

The density of states for the Hagedorn states described by
the standard MIT bag model with a sharp surface boundary
reads

ρ(II)(m, v) = δ(m − 4Bv)Z(II)qqg(W, v), (290)

where W = m − Bv, and the microcanonical ensemble

Z(II)qqg(W, v) = Cv−N2
c /2x−( 3N2

c +2
8 ) exp

[
4

3
ax3/4v

]
, (291)

with (W, v) → (x = W/v, v), is the microcanonical ensemble
for a quark and gluon gas projected on the color-singlet
state and confined in a spherical cavity with a specific
volume v. This microcanonical ensemble has been derived in
Secs. VIII and IX. Hence the isobaric pressure for the
continuous spectrum of the hadronic bubbles becomes

ffireballs(T , s) =
∫ ∞

v0

dv

∫ ∞

m0

dme−vsδ(m − 4Bv)

×Z(II)qqg(W, v)

(
mT

2π

)3/2

e−m/T

= C ′(T )
∫ ∞

v0

dv v−N2
c /2+3/2 exp[−v(s − s0)],

(292)

where the bag’s isobaric internal pressure is given by

s0 =
[

4

3

(
�̃

(0)
qqg

) 1
4

(3B)3/4 − 4B

T

]
. (293)

The integral prefactor, which is independent of the volume
fluctuation, reads

C ′(T ) = C[3B]−( 3N2
c +2
8 )

(
4BT

2π

)3/2

. (294)

In the case of QCD, we have Nc = 3, C�(T ) = C ′(T )|Nc=3 and
the isobaric pressure for the Hagedorn gas reads

ffireballs(T , s) = C�(T )
∫ ∞

v0

dv v−3 exp[−v(s − s0)]. (295)

The pressure p = T s∗ is typically calculated from the isobaric
function extreme right singularity. The external isobaric
pressure of the hadronic gas and the pressure of the Hagedorn
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gas, respectively, read

s∗ = fhadrons(T , s∗),
(296)

pfireballs = T × ffireballs(T , s),

where

ffireballs(T , s) = C�(T )

(
z0

v0

)2 ∫ ∞

z0

dz z−3e−z, (297)

and

z0 = v0 (s − s0). (298)

B. Order of the phase transition

To analyze the phase transition, it is useful to introduce the
exponential integral function

zn
0

∫ ∞

z0

dz z−n−1e−z = zn
0�(−n, z0). (299)

This function diverges for n � 0 as follows:

lim
z0→0

zn
0

∫ ∞

z0

dz z−n−1e−z = lim
z0→0

zn
0�(−n, z0) → diverge.

(300)

For n = 0, it diverges logarithmically. In contrast, it converges
to 1/n for n > 0. Hence, the analysis to find the order of the
phase transition in the limit s → s0 becomes a straightforward
one. It is useful to adopt the approximation

s = shadrons + C�(T )
∫ ∞

v0

dv v−αe−v(s−s0)

∣∣∣∣
s→s0

,

(301)

s ≈ C�(T )
∫ ∞

v0

dv v−αe−v(s−s0)

∣∣∣∣
s→s0

.

Indeed, Eq. (301) leads to the following conclusions [28],

for α > 1 : s → finite (a possible phase transition),
(302)

for α � 1 : s → diverge (no phase transition).

In the case α � 1, the fireball pressure diverges in the limit
s = s0 and subsequently the phase transition does not exist.
On the other hand, for α > 1, the fireball isobaric pressure
converges in the limit s = s0, though it diverges as the
bag’s internal isobaric pressure exceeds the hadronic external
isobaric pressure s0 > s, and the phase transition to an
explosive QGP takes place in the system.

The order of the phase transition is determined by examin-
ing the continuation of the isobaric pressure outside and inside
the Hagedorn bag and its nth derivative as well. Its derivative
with respect to temperature (or any thermodynamical ensem-
ble) reads

s ′ = (C�(T ))′
∫ ∞

v0

dv v−αe−v(s−s0)

−C�(T )(s ′ − s ′
0)
∫ ∞

v0

dv v−α+1e−v(s−s0). (303)

The exponential integral in Eq. (303) at the point of the phase
transition leads to the following conditions:

(s ′ − s ′
0) ≈ finite value

lims→s0

∫∞
v0

dv v−α+1e−v(s−s0)

= 0, for 2 � α >1(a higher order phase transition),

�= 0, for α > 2 (a first-order phase transition).

(304)

In the summary, first- and second-order phase transitions take
place under the following constraints:

∞ � α > 2, (first-order phase transition), (305)

and

2 � α > 1 + 1
2 , (second-order phase transition), (306)

respectively. The nth-order phase transition takes place when-
ever α takes the value

1 + 1

n − 1
� α > 1 + 1

n
, (nth-order phase transition).

(307)

Finally, there is no phase transition for the bag of an internal
structure of

α � 1, (no phase transition). (308)

The Hagedorn bubbles considered in the present work are
color-singlet states with an internal structure of α = 3. They
may appear in RHIC and LHC as fireballs (i.e., the Hagedorn
states). This means that the gas of fireballs (i.e., the Hagedorn
phase) undergoes a first-order phase transition to an explosive
QGP. However, when the explosive QGP appears, it expands
rapidly. Nevertheless, in the context of an alternative scenario,
it is reasonable to assume that the colored bags could appear
in the system before the appearance of an explosive QGP. The
isobaric function can be written as

ffireballs(T , s)/fcolored(T , s)

∼
∫ ∞

v0

dv v−3e−v(s−s0)

/∫ ∞

v0

dv v− 1
2 e−v(s−s0). (309)

In this case, the phase transition from the Hagedorn phase to
the gas of colored bags is a first-order phase transition. The
surprise in this scenario is that the phase transition from the gas
of colored bags to the explosive QGP is not possible, keeping
in mind that in this scenario we only consider a simple color
group symmetry with no other associated symmetry. This leads
to the conclusion that the explosive QGP must take place for
the quark and gluon bags with some specific internal structure.

On the other hand, it is also possible to think about
a gas of colored bags with a specific internal color-flavor
correlation associated with additional configuration-space
internal symmetry such as O(N ) or SO(N ) or even any other
associated nontrivial effect. Then the generalization of the
isobaric function for a gas of exotic colored bags becomes

fexotic(T , s) ∼
∫ ∞

v0

dvv−αee−v(s−s0), (310)
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with an internal structure 1
2 < αe � 3

2 . Then is this scenario,
it is possible that the Hagedorn gas f (T , s)fireballs/f (T , s)exotic

undergoes a higher order phase transition to a gas of non-color-
singlet bags. The resultant gas of non-color-singlet bags then
undergoes a higher order phase transition to an explosive QGP.

XI. ROLE OF CHIRAL PHASE TRANSITION

In this section, the role of the chiral phase transition is
considered in detail. A comprehensive review of the chiral
fields can be found in Ref. [46]. In the context of the
Gell-Mann–Lévy model, namely, the σ model, the quark
is assumed to be coupled to the chiral field of the linear
σ model. The model can also be studied in the context of
the Nambu–Jona-Lasinio (NJL) model in a similar way. The
analysis of the chiral restoration in the context of the NJL
model and color deconfinement will be considered elsewhere
[47]. We can extend the Lagrangian density of the σ model
of Refs. [48,49] to include the flavor chemical potentials as
follows:

L = q

[
iγ µ∂µ − m0 − gYMγ µAbµτb − gσ (σaλa + iγ5λaπa)

+ i
1

β
(θB + θS + · · ·)γ 0

]
q + 1

2
[∂µσa∂

µσa

+ ∂µπa∂
µπa] − 1

4
FbµνF

µν

b − U (σ, �π ), (311)

where the axial scalar and axial pseudoscalar field potential is
given by

U (σ, �π ) = λ2
σ

8

[
σ 2

a + π2
a − f 2]2

+ ησ

12

[
trF [(σaλa + iπaλa)(σaλa − iπaλa)]2

− 1

3
[trF (σaλa + iπaλa)(σaλa − iπaλa)]2

]
− κ2

2
[det(σaλa + iπaλa) + det(σaλa − iπaλa)].

(312)

The non-Abelian color-gluon field reads

Fbµν = ∂µAbν − ∂νAbµ − gYMfbb′b′′Ab′µAb′′ν . (313)

The quark satisfies the color fundamental representation
defined by the following group transformation Ufun =
exp(ıθaτa), where τa is a set of the fundamental symmetric
group SU(Nc) generators. On the other hand, the gluon satisfies
the adjoint group representation defined by the transformation
Uadj = exp(ıφaTa), where Ta is the set of adjoint generators
of the same group that generates the fundamental generators.
Furthermore, the adjoint color parameters φa are related to the
fundamental ones by the relation φa ∝ (θi − θj ), where the
index a runs over 1, . . . , (N2

c − 1), and the i, j indices run over
1, . . . , Nc. The adjoint and fundamental indices are related
by a ≡ (ij ). The set of generators that commute with the
Hamiltonian is retained with the corresponding conservative
parameters set θi . The details will be given elsewhere [47].

The last term in the Lagrangian

VU1 = −κ2

2
[det(σaλa + iπaλa) + det(σaλa − iπaλa)]

(314)

is the Uaxial(1) symmetry breaking term. For two flavors Nf =
2, we have ησ = 0. The model can be simplified further by
retaining only one scalar σ field and three pseudoscalar πi

fields and the constant κ2 = 0 of the axial symmetry breaking
term. The easiest way to analyze the chiral phase is to adopt
the mean-field approximation by replacing the σ and πi fields
by the their expectation values or condensations σ ≈ 〈σ 〉 and
πi ≈ 〈πi〉, respectively. The trivial example is the set for the
symmetric nuclear matter 〈πi〉 = 0. Finally, we neglect the
interaction between the gluons and quarks by setting the non-
Abelian coupling constant to gYM = 0. The small coupling
gYM can be treated perturbatively [47].

The effective chiral Lagrangian reads

L = Lqq + Lg + Lσ . (315)

The quark term becomes

Lqq ≈ q

[
iγ µ∂µ − m∗

q(σ ) + i
1

β
θBγ 0

]
q

.= q

[
iγ µ∂µ − m∗

q(〈σ 〉) + i
1

β

µB

T
γ 0

]
q, (316)

where the chiral constituent quark mass is given by m∗
q(〈σ 〉) =

m0 + gσ 〈σ 〉, while the conservative charge parameter such
as the baryonic charge is defined by ıθB = µB

T
. Hereinafter,

we shall neglect the chemical potential µB, because we are
interested in the phase transition along the temperature axis
for the diluted and hot nuclear matter. The hot hadronic
matter at zero baryonic density simplifies the calculations
drastically. The gluon-Lagrangian part in the limit of zero
coupling constant, gYM = 0, is reduced to

Lg ≈ − 1
4Fa

µνF
aµν, (317)

where the color-gluon field becomes

Fa
µν = ∂µAa

ν − ∂νA
a
µ. (318)

There is an additional term in the Lagrangian due the chiral
interaction. This chiral-Lagrangian term is responsible for the
chiral restoration phase transition at high temperature. The
chiral-Lagrangian reads

Lσ ≈ 1
2∂µσ∂µσ − U (σ )

.= −U (〈σ 〉). (319)

Hereinafter, the mean-field brackets are discarded and rede-
fined as 〈σ 〉 = σ .

The partition function for a gas of quarks and gluons and
chiral source is given by a tensor product of the quark, the
gluon, and the chiral field Fock spaces:

Zqqgσ (β, V ; σ ) = Zqq(β, V ; σ ) · Zg(β, V ) · Zσ (β, V ; σ ).

(320)

However, the chiral potential is to be subtracted from the quark
and gluon bag energy when the microcanonical ensemble
is computed. The whole idea is that the hadronic bags are

034916-36



THERMODYNAMICS FOR A HADRONIC GAS OF . . . PHYSICAL REVIEW C 78, 034916 (2008)

embedded in the chiral field background, and the constituent
quarks are coupled to the external chiral field.

The color-singlet state is projected as

Zsingletσ (β, V ; σ ) =
∫

dµ(g)Zqqgσ (β, V ; σ ),

=
∫

dµ(g)Zqq(β, V ; σ ) · Zg(β, V )

×Zσ (β, V ; σ ),

=
[∫

dµ(g)Zqq(β, V ; σ ) · Zg(β, V )

]
×Zσ (β, V ; σ ). (321)

The quark-antiquark partition function with an internal color
degree of freedom is given by

Zqq(β, V ; σ ) = exp

[
(2j + 1)

1

Nc

trc

∫
V d3 �p
(2π )3

× ln
[
1 + (Rfun(g) + R∗

fun(g))e−β
√

�p2+m∗2
q (σ )

+ e−2β
√

�p2+m∗2
q (σ )]]. (322)

The gluon partition function is not modified by the chiral field,
and it reads

Zg(β, V ) = exp

[
− (2j + 1)

N2
c − 1

trc

∫
V d3 �p
(2π )3

× ln
[
1 − Radj(g)e−β

√
�p2+m∗2

g
]]

, (323)

where the gluon mass remains mg = 0 in the hadronic phase.
Finally, the σ energy partition function is calculated from the
σ potential as

Zσ (β, V ; σ ) = e−βV U (σ ). (324)

The microcanonical ensemble is calculated by finding the
inverse Laplace transform of the mixed-canonical ensemble

Z(W,V ; σ ) = 1

2πi

∫ βc+∞

βc−i∞
dβ eβWZsingletσ (β, V ; σ ). (325)

The σ -potential background is to be subtracted from the bag
energy in order to correctly scale the quark and gluon bag
energy. The σ field is the scalar chiral field interaction among
the bags, and it is coupled to the constituent quarks. The quark
and gluon bag energy W̃ is scaled and redefined as

W̃ = W − V Uσ (σ ). (326)

Hence, the microcanonical ensemble of the chiral quark and
gluon bag is calculated as

Z(W̃ , V ; σ ) = 1

2πi

∫ βc+i∞

βc−i∞
dβ eβW̃+βV Uσ (σ )Zsingletσ (β, V ; σ )

= 1

2πi

∫ βc+i∞

βc−i∞
dβ eβW̃ eβV Uσ (σ )Zsingletσ (β, V ; σ ).

(327)

The resultant microcanonical ensemble given by Eq. (327)
is equivalent to starting from the beginning with a mixed-
canonical ensemble as a tensor product of the Fock spaces of

chiral quark and gluon projected in the color-singlet state as

Z(W̃ , V ; σ ) = 1

2πi

∫ βc+i∞

βc−i∞
dβ eβW̃Zsinglet(β, V ; σ ), (328)

where W̃ is the quark and gluon bag energy, while the chiral
color-singlet mixed-canonical partition function is given by

Zsinglet(β, V ; σ ) =
∫

dµ(g)Zqq(β, V ; σ ) · Zg(β),

=
∫

dµ(g)Zqqg(β, V ; σ ). (329)

It is demonstrated in Secs. VII and VIII that the nonchiral
hadronic phase undergoes a third-order phase transition from
a hadronic gas dominated by the low-lying mass spectrum to
another hadronic gas dominated by the continuous Hagedorn
mass spectrum. It is interpreted that low-lying mass spectrum
corresponds to the discrete hadronic mass spectrum found
experimentally and consisting of meson, baryons, and any
exotic hadronic mass spectrum that could be found in the
data book [45]. On the other hand, the Hagedorn states are
the highly excited metastable hadronic states produced just
above the discrete low-lying mass spectrum. The density of
states for the continuous Hagedorn mass spectrum is calculated
from the microcanonical ensemble. In the calculation of
the color-singlet canonical ensemble, the multi-integrations
over the colors are performed. The standard procedure is to
adopt the saddle points approximation. In the limit of chiral
Hagedorn states, the quark and gluon canonical ensemble is
approximated by expanding the exponential around the color
saddle points up to the quadratic term similar to the same
procedure performed on the nonchiral Hagedorn states. The
quadratic expansion of the chiral quark ensemble given by
Eq. (322) with respect to the color saddle points reads

ln Zqq(β, V, σ ) = �
(0)
qqσ − 1

2
�

(2)
qqσ

Nc∑
i=1

θ2
i . (330)

The coefficients of the zeroth and quadratic terms read,
respectively,

�
(0)
qqσ = 2Nc

∫
V d3 �p
(2π )3

2 ln
[
1 + e−β

√
�p2+m∗

q
2(σ )]

= V

β3

2Nc

π2

∫ ∞

0
dx x2 ln

(
1 + e−

√
x2+β2m∗

q
2(σ ))

= V

β3
�̃

(0)
qqσ (βm∗

q(σ ))

= V

β3
�̃

(0)
qqσ (βm∗

q(σ )), (331)

and

�
(2)
qqσ = 2Nc

1

Nc

∫
V d3 �p
(2π )3

2e−β
√

�p2+m∗
q

2(σ )(
1 + e−β

√
�p2+m∗

q
2(σ ))2

= V

β3

2

π2

∫ ∞

0
dxx2 e−

√
x2+β2m∗

σ
2(σ )(

1 + e−
√

x2+β2m∗
σ

2(σ )
)2
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= V

β3
�̃

(2)
qqσ (βm∗

q(σ ))

= V

β3
�̃

(2)
qqσ (βm∗

q(σ )), (332)

where m∗
σ (σ ) = (m0 + gσσ ). The first-order term is not

needed in the expansion thanks to the saddle point constraint
of extremization.

The same thing can be performed for the gluon part given by
Eq. (323). The only difference is that in the gluon ensemble, the
expansion is carried over the adjoint color variables rather the
fundamental ones as in the chiral quark-antiquark ensemble.
The gluonic quadratic color expansion is identical to that found
in the nonchiral Hagedorn, that is,

ln Zg(β) = �(0)
g − 1

2
�(2)

g

Nc∑
n=1

Nc∑
m=1

(θn − θm)2, (333)

where

�(0)
g = V

β3
�̃(0)

g , where �̃(0)
g = 2

(
N2

c − 1
)π2

90
,

(334)

�(2)
g = V

β3
�̃(2)

g , where �̃(2)
g = 1

3
.

The resultant mixed-canonical ensemble that generates the
density of states for the color-singlet chiral Hagedorn in
Eq. (329) is approximated to

Zsinglet(β, V ; σ ) ≈
∫

dµ(g)spZqq(β, V ; σ )Zg(β, V ), (335)

where
∫

dµ(g)sp is the invariance measure given by the GSP
method and Eq. (22). After evaluating the multi-integrations
over the color variables using the saddle points approximation,
the chiral color-singlet mixed-canonical ensemble is reduced
to

Z(II)qqg(β, V ; σ ) = Nqqg

(
β3/V

2Nc�̃
(2)
g + �̃

(2)
qqσ (βm∗

σ )

) N2
c −1
2

× exp

[
V

β3

(
�̃

(0)
qqσ (βm∗

σ ) + �̃(0)
g

)]
, (336)

where the prefactor normalization coefficient Nqqg is identical
to the nonchiral mixed-canonical ensemble given by Eq. (169).

The chiral color-singlet microcanonical ensemble is found
by calculating the inverse Laplace transform of the mixed-
canonical ensemble as

Z(II)qqg(W,V ; σ ) = Nqqg

1

2πi

∫ βc+i∞

βc−i∞
dβeβWβ

3
2 (N2

c −1)

×
(

1/V

2Nc�̃
(2)
g + �̃

(2)
qqσ (βm∗

σ )

) N2
c −1
2

× exp

[
V

β3

(
�̃

(0)
qqσ (βm∗

σ ) + �̃(0)
g

)]
.

(337)

The inverse Laplace transform is evaluated using the steepest-
descent method. The Laplace stationary saddle point is

determined by extremizing the exponential under the integral
in Eq. (337) with respect to the Laplace transform variable
β. Unfortunately, the solution of the Laplace saddle point is
found to be a transcendental one and cannot be written in a
closed form. However, we are concerned with the solution near
the chiral restoration phase transition where the constituent
quark masses approach their current ones. In the limit of small
constituent quark masses such as light flavors, the Laplace
saddle point is found by iteration. In this kind of transcendental
problem, the solution converges rapidly. The saddle point
solution is found as follows:

β
(1)
0 =

[
3V

W

(
�̃

(0)
qqσ (βm∗

σ ≈ 0) + �̃(0)
g

)] 1
4

,

β
(2)
0 =

[
3V

W

(
�̃

(0)
qqσ

(
β

(1)
0 m∗

σ

)+ �̃(0)
g

)] 1
4

,

(338)
...

β0 ≈ β
(In)
0 , and β ≈ β(In−1),

where In is the number of iteration. In the present kind of
transcendental equation, we assume that the value β0 = β

(2)
0

(i.e., In = 2 and β = β
(1)
0 ) is a sufficient approximation in the

limit below but close to the chiral restoration phase transition
with small constituent quark masses such as up and down
flavors. This approximation is also justified for the strangeness.
The microcanonical ensemble takes the form

Z(II)qqg(W,V ; σ ) = 1

2
√

2π
NqqgN�̃V − (N2

c −2)
8 W− (3N2

c +2)
8

× exp

[
4

3

(
�̃

(0)
qqgσ (βm∗

σ )
) 1

4 W 3/4V 1/4

]
,

(339)

for the chiral color-singlet bag of quarks and gluons. The
preexponential coefficient N�̃ is dimensionless and reads

N�̃ =
(
�̃

(0)
qqgσ (βm∗

σ )
) 3N2

c −2
8(

2Nc�̃
(2)
g + �̃

(2)
qqσ (βm∗

σ )
) N2

c −1
2

. (340)

The neutrality of the prefactor coefficient N�̃ does not generate
a power function with respect to the bag’s energy or volume.
In this sense, its variation with respect to the chiral constituent
quark mass does not play a significant role in the chiral
restoration phase transition and subsequently this variation
is neglected. Therefore, it is reasonable to ignore the chiral
effect in N�̃ and to approximate it to

N�̃ ≈
(
�̃

(0)
qqgσ (0)

) 3N2
c −2
8(

2Nc�̃
(2)
g + �̃

(2)
qqσ (0)

) N2
c −1
2

≈
[
2 × 2Nc7π2/720 + 2

(
N2

c − 1
)
π2/90

](3N2
c −2)/8

(2Nc/6 + 1/3)(N2
c −1)/2

.

(341)

In contrast, the exponential plays a significant role in the chiral
phase transition. It is decisive in determining the scalar chiral σ

034916-38



THERMODYNAMICS FOR A HADRONIC GAS OF . . . PHYSICAL REVIEW C 78, 034916 (2008)

mean field and the order of the chiral phase transition. It must
be written explicitly as a function of the chiral constituent
quark mass as follows:

�̃
(0)
qqgσ (βm∗

σ ) = �̃
(0)
qqσ (βm∗

σ ) + �̃(0)
g . (342)

The explicit expression with respect to the chiral constituent
quark mass reads

�̃
(0)
qqσ (βm∗

σ ) = 2Nc

π2

∫ ∞

0
dx x2 ln

[
1 + e−

√
x2+(βm∗

σ )2]
,

= 2Nc

3π2

∫ ∞

0
dx

x4√
x2 + (βm∗

σ )2

× 1[
1 + e−

√
x2+(βm∗

σ )2] . (343)

The variation of the exponential with respect to the scalar
chiral σ mean field is essential for calculating the scalar chiral
σ field. This can be done by extremizing the isobaric pressure.
The explicit variation of �̃

(0)
qqσ (βm∗

σ ) with respect to the scalar
chiral σ field takes the form

δ

δσ

(
�̃

(0)
qqσ (βm∗

σ )
)

= −
2Nc

π2

∫ ∞

0
dx x2 1[

e
√

x2+(βm∗
σ )2 + 1

]
× β

2
m∗

σ√
x2 + (βm∗

σ )2

 δm∗
σ

δσ
. (344)

The variable transformations x = W/V and v = V transform
the independent variable set as follows {W,V } → {x, v}.
However, this transformation set simplifies the analysis of
phase transition in terms of the bag’s energy density and
volume rather than the bag’s energy and volume. Nonetheless,
according to the standard MIT bag model, the bag’s mass
is given by subtracting the bag’s energy constant, i.e., W =
m − Bv, where BV is interpreted as the bag’s vacuum energy.
The microcanonical ensemble as a function of two independent
variables {x, v} is displayed as

Z(II)qqg(x, v; σ ) ≡ 1

2
√

2π
NqqgN�̃v− N2

c
2 x− 3N2

c +2
8

× exp

[
4

3

(
�̃

(0)
qqgσ (βm∗

σ )
) 1

4 x3/4v

]
. (345)

The Hagedorn density of states in the context of the MIT bag
model with a sharp surface boundary becomes

ρbags = δ(m − 4Bv)Z(II)qqg(x, v; σ ),

= 1

v
δ(x − 3B)Z(II)qqg(x, v; σ ). (346)

The advantage of adopting the standard bag model with a
sharp surface boundary condition is that it simplifies the model
dramatically. However, in the realistic physical situations, it is
expected that the bag surface boundary has an extended surface
in the extreme hot bath rather than a sharp one. Furthermore, it
would be reasonable to think that the bag’s surface boundary

is distorted and becomes a fuzzy one. It is argued that the
bag’s surface boundary is important in the determining the
order of the phase transition and the existence of the tricritical
point in the phase transition diagram [28,50]. Nonetheless,
the surface distortion may cause a mechanical instability.
Such a mechanical instability is ignored here. The Hagedorn
isobaric pressure is calculated by integrating the degenerate
single-particle ensemble function over the mass and volume
distribution function. It is reasonable to assume that the gas of
Hagedorn states is satisfying the Maxwell-Boltzmann statistics
in order to simplify the model analysis. The Hagedorn isobaric
function is integrated over the continuous mass and volume
variables as follows:

ffireballs(T , s) =
∫ ∞

v0

∫ ∞

m0

dv dm e−vsρbags(m, v)ϕMB(T ; m).

(347)

Because the initial Hagedorn mass is relatively heavy, it is
adequate to adopt the following approximation:

ffireballs(T , s) =
∫ ∞

v0

∫ ∞

m0

dv dm e−vsρbags(m, v)

×
(

mT

2π

)3/2

e−m/T

=
∫ ∞

v0

∫ ∞

x0

dv dxe−vsδ(x − 3B)Z(II)qqg

× (x, v; σ )

(
(x + B)vT

2π

)3/2

e−(x+B)v/T .

(348)

The integration over the δ function eliminates the energy
density integration and reduces the isobaric function to an
integration only over the Hagedorn excluded volume as
follows:

ffireballs(T , s) =
∫ ∞

v0

dv e−vsZ(II)qqg(x, v; σ )

∣∣∣∣
x=3B

×
(

4BT

2π

)3/2

v3/2e−(4B/T )v. (349)

To simplify the analysis, the chiral isobaric function for the
Hagedorn gas is shortened to

ffireballs(T , s) = C ′(T )
∫ ∞

v0

dv v− (N2
c −3)
2 e−v(s−s0), (350)

where the integral prefactor function reads

C ′(T ) = 1

2
√

2π
NqqgN�̃(3B)−

3N2
c +2
8

(
4BT

2π

)3/2

. (351)

It is worth noting that Eq. (350) differs from Eq. (295) where
the former equation includes the scalar chiral σ field unlike the
later one. Furthermore, the Hagedorn bag’s internal isobaric
pressure is given by

pint/T = s0 = 4

3

(
�̃

(0)
qqgσ (βm∗

σ )
) 1

4 (3B)3/4 − 4B/T . (352)

On the other hand, the chiral low-lying mass spectrum
is realized as the discrete hadronic mass spectrum found
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experimentally and displayed in the data book [45]. The
scalar chiral σ mean-field potential interacts and couples
to the hadrons and generates the hadron masses. At highly
extreme conditions, the chiral symmetry will be restored,
and the hadrons with light flavors will dissolve to massless
states, while the scalar chiral σ potential vanishes. Under the
above assumption, the density of states for the low-lying mass
spectrum is generalized to take into consideration the chiral
discrete mass spectrum as follows:

ρlow(m, v, T ,�)

=
baryons∑

B

(2JB + 1)DFD(�B)δ(m − m∗
B(σ ))δ(v − vH )

+
mesons∑

M

(2JM + 1)DBE(�M )δ(m − m∗
M (σ ))δ(v − vH ).

(353)

The sums run over the baryon and the meson mass spectra
those are satisfying Fermi-Dirac and Bose-Einstein statistics,
respectively. The coupling of the scalar chiral σ field to the
constituent quark generates the hadron mass as follows

M∗
hadron = gHσσ + nqmq0 ≈ nqg

input
qσ σ, (354)

where nq = 2, 3 for meson and baryon, respectively, and
mq0 is the quark current mass, which is usually massless
for light flavors mq0 ≈ 0. In general, the coupling constants
gHσ or g

input
qσ are determined by the phenomenology in order

to fit the experimental hadronic mass spectrum. However,
the above procedure is boring and produces a tremendous
number of fitting parameters. To reduce the number of
phenomenological parameters gHσ and to include the effect
of the discrete hadronic mass spectrum, we assume that
the effective discrete hadronic mass spectra for baryons and
mesons are, respectively, generated by

m∗
B(σ ) = (MB − Mnucleon) + 3gqσ σ,

(355)
m∗

M (σ ) = (MM − 2
3Mnucleon

)+ 2gqσ σ.

In the computational calculations, a special consideration is
given for light mesons such as pions, because they are replaced
by the scalar σ mean field. Furthermore, the ω meson is
replaced by the vector mean field, while the other nonstrange
hadrons are left as hadron particles. The generalization of
the isobaric function of the discrete low-lying hadronic mass
spectrum, namely, the chiral low-lying isobaric function, is
given by

flow(T , s) =
baryons∑

B

[ϕFD(T , s; m∗
B(σ ),��

B)

+ϕFD(T , s; m∗
B(σ ),�

�

B)]

+
mesons∑

M

[ϕBE(T , s; m∗
M (σ ),��

M )

+ϕBE(T , s; m∗
M (σ ),�

�

M )]. (356)

The ensemble functions for single-particle species obeying the
Fermi-Dirac and Bose-Einstein statistics read, respectively,

ϕFD(T , s; m∗
B(σ ),��

B)

= (2JB + 1)
∫

d3k

(2π )3
ln
[
1 + �Be−vse− 1

T

√
k2+m∗2

B (σ )
]
,

(357)

and

ϕBE(T , s; m∗
M (σ ),��

M ))

= −(2JM + 1)
∫

d3k

(2π )3
ln
[
1 − �Me−vse− 1

T

√
k2+m∗2

M (σ )].
(358)

The pressure p = T s∗ is determined by finding the isobaric
extreme right-hand singularity as follows:

s∗ = ffireballs(T , s∗) + flow(T , s∗) + fσ (T , s∗)

= ffireballs(T , s∗) + flow(T , s∗) − U (σ ), (359)

where the isobaric term of the scalar chiral σ field is given by
fσ (T , s∗) = −U (σ ).

The value of the scalar chiral σ mean field is determined
by extremizing the chiral isobaric pressure as follows

∂

∂σ
s∗ = 0. (360)

The chiral variation of the Hagedorn isobaric function reads

∂

∂σ
ffireballs(T , s∗) = C ′(T )

∫ ∞

v0

dv v−α+1e−v(s−s0) ∂s0

∂σ

+ (· · ·)∂s∗

∂σ
. (361)

The chiral variation of the bag’s internal pressure reads

∂pint

∂σ
= T

∂s0

∂σ
, (362)

where

∂s0

∂σ
= 1

3

(
3B

�̃
(0)
qqgσ (βm∗

σ )

)3/4

× δ�̃
(0)
qqgσ (βm∗

σ )

δσ
. (363)

The asymptotic approximation of the chiral variation of the
Hagedorn isobaric function reads

∂

∂σ
ffireballs(T , s∗) ∝ −m∗

q

∫ ∞

v0

dv v−α+1e−v(s−s0)

+ (· · ·)∂s∗

∂σ
. (364)

The variation of the chiral isobaric function of the discrete
low-lying mass spectrum with respect to the scalar chiral σ

field reads

∂

∂σ
flow(T , s∗) =

baryons∑
B

[
ϕ

(σ )
FD (T , s∗; m∗

B(σ ),��
B)

+ϕ
(σ )
FD (T , s∗; m∗

B(σ ),�
�

B)
]

+
mesons∑

M

[
ϕ

(σ )
BE (T , s∗; m∗

M (σ ),��
M )
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+ϕ
(σ )
BE (T , s; m∗

M (σ ),�
�

M )
]

+ (· · ·)∂s∗

∂σ
. (365)

The explicit expressions used in the above equations are
displayed as

∂

∂σ
ϕFD(T , s∗; m∗

B(σ ),��
B)

= ϕ
(σ )
FD (T , s∗; m∗

B(σ ),��
B) + (· · ·)∂s∗

∂σ
,

ϕ
(σ )
FD (T , s∗; m∗

B(σ ),��
B)

= −(2JB + 1)gqσ

∫
dkk2

2π2

m∗
q (σ )
T

/√
k2 + m∗2

B (σ )[
�−1

B evs∗
e

1
T

√
k2+m∗2

B (σ ) + 1
] ,

(366)

and

∂

∂σ
ϕBE(T , s∗; m∗

M (σ ),��
M )

= ϕ
(σ )
BE (T , s∗; m∗

M (σ ),��
M ) + (· · ·)∂s∗

∂σ
,

ϕ
(σ )
BE (T , s∗; m∗

M (σ ),��
M )

= −(2JM + 1)gqσ

∫
dkk2

2π2

m∗
q (σ )
T

/√
k2 + m∗2

M (σ )[
�−1

M evs∗
e

1
T

√
k2+m∗2

M (σ ) − 1
] ,

(367)

where the result ∂m∗
q(σ )/∂σ = gqσ is adopted. Finally, the

variation of the scalar chiral σ potential is written for simplicity
as

− ∂U (σ )

∂σ
≡ M2

σ (σ )σ + (· · ·), (368)

where Mσ (σ ) is interpreted as the effective mass of the scalar
chiral σ field particle. The dots term represents the remaining
terms that do not affect our final interpretation and conclusion
in the chiral restoration phase transition.

The scalar chiral σ mean-field condensate is determined by
extremizing the total isobaric pressure (i.e., grand potential) in
the following way:

T
∂s∗

∂σ
= 0,

−∂U (σ )

∂σ
= − ∂

∂σ
[ffireballs(T , s∗) + flow(T , s∗)]. (369)

Equation (369) is approximated and simplified to

M2
σ (σ )σ = − ∂

∂σ
[ffireballs(T , s∗) + flow(T , s∗)]. (370)

It has been pointed out that the hadronic phase exhibits the
Gross-Witten point in a way that the gas of the discrete low-
lying mass spectrum undergoes a third-order phase transition
from the discrete low-lying hadronic mass spectrum phase to
a hadronic phase dominated by the continuous Hagedorn mass
spectrum. This leaves three possibilities in order to study the
chiral phase transition.

In case (I), we have mixed low-lying and Hagedorn phases
near the Gross-Witten point. In this case, the Gross-Witten and
chiral restoration phase transitions overlap around the Gross-
Witten point, although the chiral restoration phase transition
is a cross-over one unlike the third-order Gross-Witten phase
transition. Moreover, both transitions take place below and far
away from the deconfinement phase transition to an explosive
QGP.

In case (II), the chiral restoration phase transition takes
place in the hadronic phase dominated by the discrete low-
lying hadronic mass spectrum particles. In this scenario [i.e.,
case (II)], the chiral restoration phase transition is a smooth
cross-over and is located below the Gross-Witten point and
far away from the phase transition to an explosive QGP. In
case (II), the scalar chiral σ mean field is determined by solving
the equation of extremization,

M2
σ (σ )σ ≈ −∂U (σ )

∂σ
= − ∂

∂σ
[flow(T , s∗)]. (371)

This equation produces a smooth cross-over chiral restoration
phase transition where the scalar chiral σ mean field decreases
smoothly. This class of equation has been studied extensively
in the context of the Walecka model, where the Van der
Waals effect is neglected. When the bag’s excluded volume
is ignored, we get the standard σ model

M2
σ (σ )σ ≈ − ∂

∂σ
[flow(T , s∗)]

= 2(JB + 1)gqσ

∑
B

∫
dkk2

2π2

m∗
q (σ )
T

/√
k2 + m∗2

B (σ )[
e

1
T

√
k2+m∗2

B (σ ) + 1
]

+ 2(JM + 1)gqσ

×
∑
M

∫
dkk2

2π2

m∗
q (σ )
T

/√
k2 + m∗2

M (σ )[
e

1
T

√
k2+m∗2

M (σ ) − 1
] , (372)

where the fugacities are set to �B = 1 and �M = 1, because
the present analysis focuses on the region near zero baryonic
chemical potential along the temperature axis. In this case,
the chiral restoration phase transition takes place before the
Gross-Witten point, in contrast to case (I) where the chiral
restoration phase transition overlaps the Gross-Witten point
and is located far from the deconfinement phase transition to
an explosive QGP. Hence, case (II) seems to fail to produce
the continuous Hagedorn threshold, since it generates massless
hadron masses before the continuous Hagedorn mass spectrum
is reached. Since in this scenario the Hagedorn mass threshold
is much higher than the maximum discrete mass spectrum,
the continuous Hagedorn states production is denied. The
self-consistent phase transition from the hadronic phase to
a QGP is not possible in the context of case (II), because
the gas of bags will never be produced, unlike in cases (I)
and (III). Hence, the Gibbs construction becomes essential
in case (II) if we want to study the phase transition to QGP.
It is hard to picture an explosive QGP phase transition in
this case. However, case (I) appears to be more physical
than case (II), since in the former case the chiral restoration
phase transition overlaps the third-order Gross-Witten point.
This overlapping mechanism virtually makes the Hagedorn
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phase difficult to be detected directly experimentally [51].
Furthermore, in this case, the chiral restoration phase transition
is supposed to take place prior to the color-deconfinement
phase transition to an explosive QGP. Technically speaking, it
will be hard to distinguish the color-deconfinement from the
chiral restoration phase transition. Nonetheless, the indirect
detection and analysis can distinguish the explosive QGP from
the static hadronic phase [52,53].

Finally, case (III) is the most important case. Indeed, in this
case, the chiral phase transition takes place in a hadronic phase
dominated by the Hagedorn gas. The chiral restoration phase
transition takes place at least just above the Gross-Witten point
and at most simultaneously with the point of the deconfinement
phase transition to an explosive QGP. The scalar chiral σ mean
field is determined by extremizing the isobaric pressure as
follows:

− ∂U (σ )

σ
≈ M2

σ (σ )σ
.= − ∂

∂σ
[ffireballs(T , s∗)]. (373)

Hence, the hadronic matter dominated by the fireballs (i.e., the
Hagedorn states) leads to the following equation

M2
σ (σ )σ

.= (· · ·)m∗
q

∫ ∞

v0

dvv−α+1e−v(s−s0). (374)

Equation (374) has very important characteristics that have
been discussed in detail in Sec. X and Ref. [28]. At the point
just below the phase transition from the Hagedorn phase to an
explosive QGP, it is shown that Eq. (374) has the following
characteristic properties:

M2
σ (σ )σ ∝ m∗

q lim
s→s0

(s − s0)α−2�(−α + 2, v0(s − s0)),

∼ finite for α > 2,

∼ ∞ for α � 2 → σ = 0, (375)

where �(−n, x) is the exponential integral function of order
n where n > 0. The integral on the right-hand side of
Eq. (374) diverges whenever the bag’s internal isobaric
pressure s0 exceeds the external one s. The phase transition
from the hadronic phase to an explosive QGP takes place in the
limit (s − s0) → 0 when the bag’s internal isobaric pressure s0

reaches the external isobaric hadronic pressure s from below.
The solution σ = 0 is the only nontrivial solution for the
scalar chiral σ mean-field condensate when the explosive QGP
takes place subsequent the point (s − s0) = 0−. The abrupt
vanishing of the scalar chiral σ mean field indicates evidently
that the chiral symmetry restoration phase transition takes
place below or at most at the same point of the phase transition
to an explosive QGP. Actually, the point s = s0 decides
the order of the chiral phase transition when it takes place
simultaneously with the deconfinement phase transition to an
explosive QGP. However, if the cross-over chiral restoration
phase transition takes place prior to the deconfinement phase
transition, then it takes place far from the explosive QGP phase
transition.

The same analysis done in Sec. X to determine the order of
the phase transition can be carried out for the chiral symmetry
restoration phase transition. As the isobaric ensemble reaches
the limit (s − s0) = 0+ just below the point of the phase
transition, the scalar chiral σ mean-field solution is finite for

the gas of bags with an internal structure of α > 2, while it
must vanish for α � 2 in order to get the physical solution.
This means that for the gas of bags with internal structures of
α � 2, the chiral restoration phase transition takes place below
the point of the deconfinement phase transition to an explosive
QGP. In this case, the order of the phase transition will be a
rapid cross-over transition. Furthermore, the chiral restoration
phase transition must be completed far from the point at which
the phase transition to an explosive QGP is reached. If the
smooth cross-over phase transition is not completed prior to the
deconfinement point, then the chiral restoration is prohibited
for α � 2.

On the other hand, the case is completely different for the
gas of bags with the internal structure of α > 2. In this case, the
gas of bags undergoes the chiral restoration phase transition
simultaneously at the same point of the explosive QGP phase
transition. The order of the chiral restoration phase transition
is found to be second order for α = 3, whereas it is a higher
order for 3 � α > 2. Finally, the chiral phase transition is first
order for the gas of bags with an internal structure of α > 3.

In the context of a model consisting of hadronic matter
dominated by fireballs with an internal structure of α = 3
(i.e., the color-singlet bag), the scenario of the phase transition
is summarized as follows. The gas of the discrete low-lying
hadronic mass spectrum particles undergoes a third-order
phase transition to the Hagedorn phase at the Gross-Witten
point. The chiral restoration phase transition likely takes place
in the hadronic matter that is dominated by the continuous
Hagedorn states. The chiral restoration phase transition is
located above the critical Gross-Witten point, and it takes
place simultaneously with the point of the phase transition
to an explosive QGP. The chiral restoration phase transition
is of the second order, and it takes place just below or almost
simultaneously with the point of the phase transition to an
explosive QGP. Finally, the Hagedorn phase undergoes a
first-order phase transition to an explosive QGP. Nonetheless,
this scenario does not exclude the possibility for the sharp
cross-over chiral restoration phase transition to take place
subsequent to Gross-Witten point but far away from the point
of the phase transition to an explosive QGP. However, in
the case that the smooth cross-over chiral restoration phase
transition is not completed yet in the Hagedorn phase, then
the second-order chiral restoration phase transition must take
place simultaneously with the point of the phase transition to
an explosive QGP.

Indeed, in this scenario, it seems likely that the chiral
restoration phase transition takes place in the continuous
Hagedorn spectrum phase rather than in the discrete low-lying
mass spectrum phase. The continuity of the Hagedorn mass
spectrum makes the Hagedorn phase domain narrow in the hot
bath. The narrowness of the Hagedorn phase range, besides the
restoration phase transition being above the Gross-Witten point
and taking place at most simultaneously with the deconfine-
ment phase transition, makes the continuous Hagedorn states
difficult to distinguish from the QGP. It also makes it harder
to distinguish the chiral restoration phase transition from the
deconfinement phase transition. For example, it has been
argued that the heavy Hagedorn states have large widths [51].
Nevertheless, this scenario is inconclusive, although it explains
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the existence of the Gross-Witten point, the chiral restoration
and deconfinement, and even the existence of the tricritical
point for some class of bag internal structures. The existence
of the tricritical point is essential in the multiprocess scenario.

Other alternative scenarios for a hadronic gas dominated
by fireballs can also be imagined. The fireball internal
structure α varies under extreme conditions because of the
color-flavor correlations and the modification of the bag’s
volume fluctuations. When the bag’s internal structure is of
order α > 3, then both the chiral restoration and the color
deconfinement are of first-order phase transitions if they take
place simultaneously. In contrast, the chiral restoration phase
transition is of a higher order for the gas of bags with the
internal structure of 3 � α > 2. The phase transition to an
explosive QGP is first order for α > 2 and a higher order
for 2 � α > 1.

In the class of scenarios in which the chiral restoration and
deconfinement phase transitions overlap, the nth-order chiral
restoration phase transition takes place simultaneously with the
first-order phase transition to an explosive QGP. Nonetheless,
the Gross-Witten point remains a third-order phase transition
point. However, the simultaneous phase transition to the chiral
restoration and to an explosive QGP is not conclusive. If
the fireball has the internal structure of 2 � α > 1, then the
deconfinement phase transition is of nth order, while the chiral
phase transition must take place far from the point of phase
transition to an explosive QGP. Moreover, the gas of hadronic
bags with the internal structure of α � 1 never undergo the
phase transition to an explosive QGP. It is interesting to
note that most of the above scenarios are precursors to the
scenario that the smooth cross-over chiral restoration phase
transition takes place below and far from the point of the phase
transition to an explosive QGP, and moreover as the chiral
restoration phase transition approaches the point of the phase
transition to QGP, the cross-over restoration phase transition
becomes more sharp and rapid.

XII. CONCLUSIONS

To study the chiral restoration and deconfinement phase
transitions in QCD, the hadronic density of states must be
known for the entire energy domain below the point of the
phase transition to the true deconfined QGP. The theoretical
procedure for finding the hadronic density of states is carried
out by computing the microcanonical ensemble. The canonical
ensemble for the color-singlet bag of constituent particles with
the underlying symmetric group SU(Nc) [and U(Nc)] has been
considered in detail. The color structure has attracted much
attention in order to understand confinement/deconfinement
in QCD [10,13–15,28–31,34] or even the extended gauge field
theories such as AdS/CFT [21–23]. However, sometime ago,
Gross and Witten argued for the existence of the tricritical
Gross-Witten point, which is thought to play a significant role
in the phase transition mechanism. It has been derived using
the spectral density of color eigenvalues method originally
introduced by Brezin et al. [8]. Recently, the Gross-Witten
critical point and the deconfinement mechanism have been
reviewed in the context of the Brezin et al. [8] method to study

the QGP in QCD [10,11,13–15] and black hole formation in
AdS/CFT [22–26].

In the present work, we have introduced a simpler alter-
native method to derive the color-singlet canonical ensemble
for the asymptotic large thermal running parameter λ/N2

c .
Furthermore, we have demonstrated in detail how to locate
the Gross-Witten critical point for the phase transition. This
novel method suits the realistic and complicated physical
situations. For the small thermal running parameter λ/N2

c , the
saddle points are distributed uniformly over the entire color
circle range |θi | � π . Since the saddle points are distributed
uniformly over the entire range, the Vandermonde determinant
contributes to the action as an additional effective potential
term. The integral of the resultant ensemble has been evaluated
trivially. However, this procedure fails when the saddle points
congregate around the origin rather than distribute uniformly
over the entire color circle range |θi | � π and the Vandermonde
effective potential develops a virtual singularity. In this case,
a further consideration must be taken into account to regulate
the action involving the Vandermonde effective potential and
finally to evaluate the canonical ensemble correctly. Therefore,
this behavior indicates that the solution changes its analytical
function characteristic and a subsequent phase transition
takes place. The solution of the asymptotic large λ/N2

c is
evaluated using the Gaussian-like saddle points (GSP) method.
The action is expanded around the stationary Fourier color
variables where only the quadratic terms are retained, while
the Vandermonde determinant is regulated in a nontrivial way.
Fortunately, in this procedure, the stationary Fourier color
points are found dominant around the origin, and this simplifies
the problem dramatically. In spite of the action complexity
due to the realistic physical situation involved, it will always
be an easy way to find the quadratic expansion around
the saddle color points, and the resultant integration over
the color variables is evaluated using the standard Gaussian
quadrature.

The critical point for the Hagedorn phase transition is
determined midway of the interpolation between the two
different analytical solutions for the small and the large
λ/N2

c , respectively. The GSP method is compared with the
spectral density of color eigenvalues method (i.e., spectral
density method, see, for example, Refs. [7,8,23]) and the
exact numerical solution as well. It is found that the exact
numerical solution fits precisely the results of the GSP method
for the large thermal running parameter λ/N2

c > λ0/N
2
c .

Furthermore, it is found to be in good agreement with the
spectral density method. When the large λ/N2

c is extrapolated
to the small λ/N2

c < λ0/N
2
c , the solution becomes slippery;

and when λ/N2
c reaches some critical value, it is deflected

to increase. This solution is concave up and has a minimum
at the critical point λ(II)min. This point is the threshold point
for the acceptable physical solution (II). The minimum point
for the extrapolation of the asymptotic large-λ/N2

c solution
is actually the minimal threshold point. The extreme left-
hand side interval for the asymptotic large-λ/N2

c solution
is presumed to start from the threshold point λ(II)min. The
extrapolation down below this threshold point is unphysical
and is declined as a solution. This means that beyond the
threshold point, the asymptotic large-λ/N2

c solution (II) is
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FIG. 11. Phase transition scenario in the context of the present
model. At low temperature, the diluted nuclear matter is dominated
by the low-lying hadronic mass spectrum such pions, nucleons, etc.
At the Hagedorn critical temperature, the system undergoes a third-
order phase transition to a system dominated by the highly excited
hadronic states known as Hagedorn states or fireballs. When the
system is thermally excited to higher temperature, the hadronic phase
undergoes a first-order phase transition to an explosive QGP.

deflected and changes its analyticity in order to match and
satisfy the asymptotic small-λ/N2

c solution (I). Solution (I) is
found in agreement with the exact numerical results for the
small λ/N2

c , and it is found to adopt standard approximations.
The action is expanded to λ-power expansion and then is
evaluated using the group orthogonality over the full color
range. The ultimate limit of the approximation validity is given
by the point λ(I)max; beyond this point, the solution will be
broken. The action structure is simplified dramatically in the
range λ � λ(I)max. For example, the quantum statistics can be
approximated always to Maxwell-Boltzmann statistics and so
on. However, the asymptotic small- and large-λ/N2

c solutions
(i.e., solutions (I) and (II), respectively) may split by a small
additional constant. This constant is simply the approximation
redundant in particular when both solutions are extrapolated
far from their asymptotic limits. The critical point λ0/N

2
c

for the phase transition from the asymptotic small-λ/N2
c to

large-λ/N2
c solutions is located near or above λ � λ(II)min

but below λ � λ(I)max. It is roughly the midway interpolation
between the small and large solutions. The advantage of the
Gaussian-like saddle points method is its simplicity in that
it can deal with a complicated physical problem such as the
deconfinement phase transition in QCD.

The QCD phase transition is studied in the context of
the color-singlet state of quark and gluon bags. It is found
that the density of states for low-lying masses is a discrete
spectrum. The low-lying density of states is determined by

FIG. 12. Same as Fig. 11, but with an alternative scenario for the
phase transition. The hadronic phase dominated by Hagedorn states
undergoes a higher order phase transition to another phase dominated
by highly excited neutral color bound quark-gluon bags (i.e., bound
state but with a color nonsinglet state). At higher temperature,
the gas of colored quark and gluon bags undergoes a higher order
phase transition to an explosive real deconfined QGP. In this scenario,
the phase transition to an explosive QGP takes place only through
more complicated processes.

the known hadronic mass spectrum particles that are found
experimentally and are available in the data book [45]. The
Hagedorn states appear just above the low-lying known
mass spectrum. The mass spectrum for the Hagedorn states
is continuous. The gas dominated by the low-lying mass
spectrum particles undergoes a third-order phase transition
to a hadronic phase dominated by the Hagedorn states. When
the system is thermally excited beyond the Hagedorn phase,
the hadronic phase undergoes another phase transition to an
explosive QGP.

The scenario for the phase transition is depicted in Fig. 11.
In the diluted nuclear matter when the temperature increases
and reaches the critical one, the gas of the discrete low-lying
hadronic mass spectrum particles undergoes a third-order
phase transition to a gas of continuous Hagedorn states
(i.e., the high-lying hadronic states). Furthermore, when the
system is thermally excited above this temperature, the gas
of Hagedorn states undergoes another first-order or higher
order phase transition to an explosive QGP. Moreover, the
scenario for the phase transition can be extended to consider
the multiple intermediate processes. An alternate scenario is
depicted in Fig. 12. The gas of Hagedorn states undergoes
a higher order phase transition to a gas of neutral colored
bags or even nonsinglet bags. These bags are not color-singlet
states but carry a neutral color charge, and this charge is fixed
by the effective color chemical potentials. Subsequently, the
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FIG. 13. Consistent chiral and deconfinement phase transition
scenario.

gas of neutral colored bags undergoes a higher order phase
transition to a gas of colored bags. The nonsinglet bags are
not colored bags and not true deconfined colors but rather
bags with specific internal color structures. In the colored
bags, the quarks and gluons are still bounded in finite size
blobs, and they carry total color charge. The phase transition
to the colored bags with conserved color charges might be
associated with breaking the group symmetry SU(Nc) to
U(1)Nc−1. These colored bags become unstable, and when the
system is perturbed slightly and thermally excited, the system
eventually undergoes another higher order phase transition to
a real deconfined QGP.

The possible consistent color-deconfinement and chiral
restoration phase transition scenarios are depicted in Fig. 13.
It is illustrated that the discrete low-lying hadronic mass
spectrum undergoes a third-order phase transition to the
Hagedorn phase. The gas of continuous Hagedorn states
with internal structures α > 2 undergoes a first-order phase
transition to an explosive QGP. However, it is possible in some
alternative scenarios that the Hagedorn phase undergoes a
higher order phase transition to the gas of nonsinglet bags (i.e.,
with α � 2), and the subsequent gas of exotic states undergoes

a higher order phase transition to an explosive QGP. The chiral
phase transition for the gas of Hagedorn states with the internal
structure α = 3 is found to be second order, and it takes
place below or at most simultaneously with the deconfinement
first-order phase transition to an explosive QGP. However, in
the case that the chiral phase transition persists to take place
in the gas of discrete low-lying hadronic mass spectrum states
prior to the Hagedorn phase, then the chiral phase transition
will be a smooth cross-over one. In this case, it will be hard to
reach the Hagedorn threshold production, and subsequently the
Hagedorn states will not be produced and no explosive QGP
will be generated. The QGP in this scenario can be found by
the Gibbs construction. It is possible in other scenarios that
the the chiral phase transition coincides with the Gross-Witten
point and it will be a cross-over transition. It seems that
the chiral restoration phase transition likely takes place in
the Hagedorn phase at most just below the deconfinement
phase transition or at least coincides with the Gross-Witten
point. In some scenarios, it is likely that the chiral phase
transition coincides with the Gross-Witten point, whereas in
other scenarios, the chiral restoration phase transition likely
takes place simultaneously with the deconfinement phase
transition to an explosive QGP. Indeed, the Hagedorn bag’s
internal structure α is found essential in the phase transition
diagram. Furthermore, it is also possible that the Hagedorn
phase undergoes a higher order phase transition through
a multiprocess internal-structure phase transition, while the
chiral restoration phase transition is a smooth cross-over
transition and takes place in the continuous Hagedorn phase.
The order of the chiral phase transition becomes sharper and
of a lower order as its point approaches the deconfinement
point to an explosive QGP. The QCD phase transition diagram
is proved to be very rich and nontrivial.

ACKNOWLEDGMENTS

I.Z. gratefully acknowledges support from the Frankfurt In-
stitute for Advanced Studies. He is indebted to Walter Greiner
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