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A new set of equations for relativistic viscous hydrodynamics that captures both weak-coupling and strong-
coupling physics to second order in gradients has been developed recently. We apply this framework to bulk
physics at the Relativistic Heavy Ion Collider (RHIC), both for standard (Glauber-type) as well as for color-
glass-condensate (CGC) initial conditions and show that the results do not depend strongly on the values for
the second-order transport coefficients. Results for multiplicity, radial flow and elliptic flow are presented, and
we quote the ratio of viscosity over entropy density for which our hydrodynamic model is consistent with
experimental data. For CGC initial conditions, early thermalization does not seem to be required in order for
hydrodynamics to describe charged hadron elliptic flow.
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I. INTRODUCTION

The experimental program at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven has generated a wealth of data
[1–4] on QCD matter at the highest energy densities obtained
in the laboratory. Remarkably, ideal hydrodynamics seems to
offer a sensible description of the experimental data for bulk
properties (multiplicity, radial and elliptic flow) of low-pT

particles for heavy-ion collisions at RHIC [5–9].
Upon closer inspection, however, not all of this success

can be attributed to modeling the system as an ideal fluid. For
instance, the energy density distribution used as an initial con-
dition for the hydrodynamic equations is customarily chosen
such that the output from the hydrodynamic model matches
the experimental data for the multiplicity. Furthermore, the
time at which the hydrodynamic model is initialized and the
temperature (or energy density) at which the hydrodynamic
evolution is stopped are typically chosen such that the model
output matches the experimental data for the radial flow. After
these parameters have been fixed, only the good description
of experimental data for the elliptic flow coefficient can be
considered a success for ideal hydrodynamics (in the sense
that it is parameter free).

To make progress and learn more about the properties of
matter created at RHIC, the task is now to both test and improve
this ideal hydrodynamic model. The obvious framework
for this task is dissipative hydrodynamics, since it contains
ideal hydrodynamics as the special case when all dissipative
transport coefficients (such as shear and bulk viscosity and
heat conductivity) are sent to zero. If the values of the
transport coefficients were known (e.g., by some first principle
calculation), then one could use dissipative hydrodynamics to
constrain, e.g., the initial energy density distribution, which
is chosen conveniently in the ideal hydrodynamic models.
Or otherwise, choosing again physically acceptable initial
conditions, one is able to constrain the allowed ranges of the
transport coefficients. Despite recent progress in first principle
calculations [10–19], the values of the hydrodynamic transport
coefficients for QCD in the relevant energy range are poorly

constrained to date, so the second option is currently the only
viable possibility.

For RHIC, the first step in this direction was carried out
by Teaney [20], who provided estimates for the sign and size
of corrections due to shear viscosity. This famous calculation,
however, did not provide a description of experimental data for
nonzero viscosity, because it was not dynamic and the initial
conditions could not be altered. Only very recently, the first
hydrodynamic calculations with shear viscosity describing
particle spectra for central and noncentral collisions at RHIC
have become available [21–23].

Several other groups have produced numerical codes
capable of performing similar matching to data [24–31].

However, the precise formulation of the viscous hydro-
dynamic equations themselves has long been debated. To
appreciate the complication, one first has to understand that a
hydrodynamic formulation for RHIC physics necessarily has
to be fully relativistic, and that the relativistic generalization
of the Navier-Stokes equations are acausal since they contain
modes that transport information at superluminal speeds.
These are high wave number modes and therefore in principle
are outside the range of validity of hydrodynamics, but
in practice, one has to find a way to deal with them in
viscous hydrodynamic simulations. A possible solution to this
problem is known as the Müller-Israel-Stewart theory, where
for each transport coefficient, a corresponding relaxation time
is introduced which controls the speed of signal propagation
for the high wave number modes [32–35]. For low-momentum
modes (up to first order in gradients), the Müller-Israel-
Stewart theory is identical to the Navier-Stokes equations,
but differs for higher order gradients. Unfortunately, this
implied that the resulting equations retained a certain degree
of arbitrariness, as it was not clear which additional terms of
second or higher order in gradients either within the Müller-
Israel-Stewart or other frameworks (see, e.g., Refs. [36–39])
were allowed. For the case of nonvanishing shear viscosity
only, it was shown recently [40] that the most general form
implies five independent terms of second order in gradients.
This form is general enough to describe the hydrodynamic
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properties of (conformal) plasmas for both weakly coupled
systems describable by the Boltzmann equation as well as
infinitely strongly coupled plasmas, which are accessible via
Maldacena’s conjecture [41].

The aim of this work is to now apply this new set of
equations for relativistic shear viscous hydrodynamics to the
problem of heavy-ion collisions at RHIC. In Sec. II, we review
the setup of conformal relativistic viscous hydrodynamics and
our numerics for the simulation of heavy-ion collisions. In
Sec. III, details about the two main models of initial conditions
for hydrodynamics are given. Section IV contains our results
for the multiplicity, radial flow, and elliptic flow in Au+Au
collisions at top RHIC energies, as well as a note on the notion
of “early thermalization.” We conclude in Sec. V.

II. SETUP

The energy-momentum tensor for relativistic hydrodynam-
ics in the presence of shear viscosity can be written as

T µν = εuµuν − p�µν + �µν, (1)

where ε and p are the energy density and pressure, related
by an equation of state p = p(ε). uµ is the fluid four-velocity
which fulfills gµνu

µuν = 1, where the signature of the metric
is gµν = (+,−,−,−). The projector �µν = gµν − uµuν is
orthogonal to the fluid velocity uµ�µν = 0. �µν is the viscous
shear tensor which is symmetric, traceless (�µ

µ = 0), and
orthogonal to the fluid velocity. Hydrodynamics describes
the evolution of the energy density and fluid velocity. The
evolution equations are simply given by the conservation of
the energy momentum tensor DµT µα = 0, where Dµ is the
(geometric) covariant derivative. Projection of uα and �µ

α on
DµT µα = 0 gives

(ε + p)Duµ = ∇µp − �µ
αDβ�αβ,

Dε = −(ε + p)∇µuµ + 1
2�µν∇〈νuµ〉, (2)

where D ≡ uαDα and ∇µ ≡ �µαDα can be thought of as
comoving time and space derivatives, respectively. Note that
Dµ = uµD + ∇µ. The brackets 〈 〉 denote the combination

A〈µBν〉 = (
�α

µ�β
ν + �α

ν �β
µ − 2

3�αβ�µν

)
AαBβ, (3)

which is a projector that is symmetric, traceless, and or-
thogonal to the fluid velocity. For later convenience, we also
introduce symmetric and antisymmetric brackets

A(µBν) = 1
2 (AµBν + AνBµ),

(4)
A[µBν] = 1

2 (AµBν − AνBµ).

The equations (2) can be considered four equations for the
four independent components of ε, uµ. A theory of viscous
hydrodynamics still has to specify the evolution or defining
equations for the five independent components of the shear
tensor �µν . To first order in gradients, these are given by the
relativistic Navier-Stokes equations

�µν = η∇〈νuµ〉, (5)

where η is the shear viscosity coefficient. As mentioned
in the Introduction, this theory suffers from acausal signal

propagation and associated numerical instabilities. To second
order in gradients, the evolution equations are given by
Ref. [40] (see also Ref. [42])

�µν = η∇〈µuν〉 − τ�

[
�µ

α�ν
βD�αβ + 4

3
�µν(∇αuα)

]

+ κ

2
[R〈µν〉 + 2uαRα〈µν〉βuβ]

− λ1

2η2
�〈µ

λ�
ν〉λ + λ2

2η
�〈µ

λω
ν〉λ − λ3

2
ω〈µ

λω
ν〉λ, (6)

where ωµν = −∇[µuν] is the fluid vorticity and Rαµνβ, Rµν are
the Riemann and Ricci tensors, respectively. The coefficients
τ�, κ, λ1, λ2, λ3 are the five new coefficients controlling the
size of the allowed terms of second order in gradients. Having
in mind an application to the problem of heavy-ion collisions,
the above set of equations can be simplified: for all practical
purposes, space-time can be considered flat, such that both the
Riemann and Ricci tensors vanish identically. Thus, only the
four coefficients τ�, λ1, λ2, λ3 enter the problem.

A. A note on bulk viscosity and conformality

Besides shear viscosity, QCD also has nonvanishing bulk
viscosity ζ which can be related to the QCD trace anomaly [43]

ζ ∼ T µ
µ = ε − 3p. (7)

QCD lattice simulations seem to indicate that the ratio bulk
viscosity over entropy density s, ζ/s, is small compared to
η/s except for a small region around the QCD deconfinement
transition temperature, where it is sharply peaked [44–46]. If
we are interested in describing effects from shear viscosity
only, we are led to consider ζ = 0, or conformal fluids. This
has been the main guiding principle in Ref. [40], and as a
consequence Eq. (6) obeys conformal invariance, unlike most
other second-order theories.1

B. First steps: 0+1 dimensions

To get a crude estimate of the effect of viscous corrections,
let us consider the arguably simplest model of a heavy-ion col-
lision: a system expanding in a boost-invariant fashion along
the longitudinal direction and having uniform energy density in
the transverse plane. Introducing the Milne variables of proper
time τ = √

t2 − z2 and space-time rapidity ξ = arctanh(z/t),
boost invariance simply translates to requiring all hydrody-
namic variables (ε, uµ,�µν) to be independent of rapidity, and
tensor components uξ ,�µξ to vanish. Assuming uniformity
in the transverse plane furthermore requires independence
from the transverse coordinates xT = (x, y). Even though this
means that all the velocity components except uτ are zero,
the system is nevertheless nontrivial in the sense that the sum
over velocity gradients does not vanish, ∇µuµ = 1

τ
, sometimes

referred to as “Bjorken flow.”

1Note that Muronga derived a version of Eq. (6) in Ref. [36] that
turns out to obey conformal symmetry.
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In a way, one has modeled an expanding system in static
space-time by a system at rest in an expanding space-time. This
has been achieved by transforming to the Milne coordinates
τ, ξ , where the metric is gµν = diag(gττ , gxx, gyy, gξξ ) =
(1,−1,−1,−τ 2). Note that even though the space-time in
these coordinates is expanding, it is nevertheless flat (e.g., has
vanishing Riemann tensor).

In this 0+1-dimensional toy model, the viscous hydrody-
namic equations become exceptionally simple [40],

∂τ ε = −ε + p

τ
+ �

ξ
ξ

τ
,

(8)

∂τ�
ξ
ξ = −�

ξ
ξ

τ�

+ 4η

3τ�τ
− 4

3τ
�

ξ
ξ − λ1

2τ�η2

(
�

ξ
ξ

)2
.

The Navier-Stokes equations are recovered formally in
the limit where all second-order coefficients vanish (e.g.,
τ�, λ1 → 0); then, one simply has

�
ξ
ξ = 4η

3τ
. (9)

Equation (8) can be solved numerically along the lines of
Refs. [38,47]. At very early times, where �

ξ
ξ > (ε + p),

the Navier-Stokes equations indicate an increase in energy
density and a negative effective longitudinal pressure p − �

ξ
ξ .

Since gradients ∇µuµ = 1/τ are strongest at early times, this
suggests that one is applying the Navier-Stokes equations
outside their regime of validity. Theories including second-
order gradients may be better behaved at early times, but
eventually they also have to break down when gradients
become too strong. Here we want to study the effects of the
second-order coefficients on the value of the shear tensor at
late times, where a hydrodynamic approach should be valid.

To this end, let us study the deviation of the shear tensor
from its first-order value, δ� = �

ξ
ξ − 4η

3τ
. At late times, Eq. (8)

implies ε ∼ τ−4/3, so η ∼ τ−1. Thus, if δ� is small compared
to the first-order value, from Eq. (8) we find

δ� = 4η

3τ

(
2τ�

3τ
− 2λ1

3τη

)
. (10)

For a strongly coupled N = 4 plasma [10,40,42,48], one has2

η

s
= 1

4π
, τ� = 2 − ln 2

2πT
, λ1 = η

2πT
, (11)

and thus �
ξ
ξ is larger than its first-order value by a factor of

1 + 1−ln 2
3πT τ

. For RHIC, T τ >∼ 1 is a reasonable estimate, so one

finds that the second-order corrections to �
ξ
ξ increase its value

by a few percent over the first-order result.
As an example of the importance of obeying conformal

invariance, imagine dropping the term involving ∇αuα in the
first line of Eq. (6). Redoing the above calculation one finds

δ�NC = 4η

3τ

(
2τ�

τ
− 2λ1

3τη

)
, (12)

2For completeness, we also mention the results κ = η

πT
, λ2 =

− η ln 2
πT

, λ3 = 0 from Refs. [40,42].

which indicates a nearly ten-fold increase of the size of δ� for
the nonconformal theory. For a weakly coupled plasma well
described by the Boltzmann equation [40], where one has τ� =
6η

sT
(λ1 is unknown but generally set to zero in Müller-Israel-

Stewart theory), the effect may be less pronounced, but still one
qualitatively expects second-order effects to be anomalously
large if conformal invariance is broken in an ad hoc manner.

Clearly, the above estimates are not meant to be quanti-
tative. Indeed, even the sign of the correction may change
when allowing more complicated (e.g., three-dimensional)
dynamics. However, the lesson to be learned from this exercise
is that second-order gradients can and indeed do modify the
shear tensor from its first-order (Navier-Stokes) value. This is
physically acceptable, as long as the second-order corrections
are small compared to the first-order ones (otherwise the
system is probably too far from equilibrium for even a
hydrodynamic description correct to second order in gradients
to be valid). A practical means for testing this is calculating
physical observables for different values of the second-order
coefficients and making sure that the results do not strongly
depend on the choice for these specific values.

C. Including radial flow: Lessons from 1+1 dimensions

Some more insight into the effect of viscous corrections
may be gained by improving the model of the previous
subsection to allow for radially symmetric dynamics in the
transverse plane (but still assuming boost invariance). This
is most easily implemented by changing to polar coordinates
(x, y) → (r, φ) with r =

√
x2 + y2 and φ = arctan(y/x). In

this case, the only nonvanishing velocity components are
uτ and ur , and hence the vorticity ωµν vanishes identically.
Although nontrivial, the radially symmetric flow case is still
a major simplification over the general form in Eq. (6), since
again the terms involving κ, λ2, λ3 drop out.

Such a formulation allows both important code tests [49]
and realistic simulations of central heavy-ion collisions [21]
to be made [note that truncated versions of Eq. (6) were
used in these works]. The advantage of this formulation is
that since the equations are comparatively simple, it is rather
straightforward to implement them numerically, and they are
not very time consuming to solve, since only one-dimensional
(radial) dynamics is involved. The shortcoming of simulations
with radially symmetric flow profiles (“radial flow”) is that
by construction they cannot be matched to experimental data
on the impact-parameter dependence of multiplicity. Thus, the
considerable freedom in the initial/final conditions inherent
to all hydrodynamic approaches cannot be eliminated in this
case.

For this reason, we choose not to discuss the case of radial
flow in more detail here, but rather will comment on it later as
a special case of the more general situation.

D. Elliptic flow: 2+1-dimensional dynamics

Retaining the assumption of boost invariance, but allowing
for general dynamics in the transverse plane, it is useful to
keep Cartesian coordinates in the transverse plane, and thus
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uτ , ux, uy are the nonvanishing fluid velocities. The main
reason is that, e.g., in polar coordinates the equations for the
three independent components of �µν would involve some
extra nonvanishing Christoffel symbols (other than �τ

ξξ = τ

and �
ξ
τξ = 1/τ ).

Fortunately, the case of two dimensions is special insofar as
the only nontrivial component of the vorticity tensor, namely,
ωxy , fulfills the equation [22]

Dωxy + ωxy

[
∇µuµ + Dp

ε + p
− Duτ

uτ

]
= O(�3), (13)

which can be derived by forming the combination ∇xDuy −
∇yDux . The expressionO(�3) denotes that the right-hand side
of Eq. (13) is of third order in gradients, and thus should be
suppressed in the domain of applicability of hydrodynamics.
For heavy-ion collisions, typically ∇µuµ � 1

τ
, so that for an

equation of state with a speed of sound squared c2
s ≡ dp(ε)

dε
∼ 1

3 ,
Eq. (13) translates to Dωxy

ωxy < 0 unless D ln uτ � (1 − c2
s )∇µuµ.

In particular, this implies that in general ωxy = 0 is a stable fix
point of the above equation, and hence we expect ωxy to remain
small throughout the entire viscous hydrodynamic evolution
if it is small initially.

Generically, one uses ux,y = 0 as an initial condition
for hydrodynamics [50], which implies ωxy = 0 initially.
Therefore, to very good approximation we can neglect the
terms involving vorticity in Eq. (6), such that again only the
second-order coefficients τ�, λ1 have to be specified.

The equations to be solved for 2+1-dimensional relativistic
viscous hydrodynamics are then (in components)

(ε + p)Dui = c2
s (gij ∂j ε − uiuα∂αε) − �i

αDβ�αβ,

Dε = −(ε + p)∇µuµ + 1

2
�µν∇〈µuν〉,

Dβ�αβ = �iα∂τ

ui

uτ
+ ui

uτ
∂τ�

iα + ∂i�
αi

+�α
βδ�

βδ + �
β

βδ�
αδ,

∂τ�
iα = − 4

3uτ
�iα∇βuβ + η

τ�uτ
∇〈iuα〉 − 1

τ�uτ
�iα

− ui�α
κ + uα�i

κ

uτ
Duκ − uj

uτ
∂j�

iα

− λ1

2η2τ�uτ
�

〈i
λ �α〉λ,

∇µuµ = ∂τu
τ + ∂iu

i + uτ

τ
,

∇〈xux〉 = 2�τx∂τu
x + 2�ix∂iu

x − 2

3
�xx∇µuµ,

∇〈xuy〉 = �τx∂τu
y + �τy∂τu

x + �ix∂iu
y

+�iy∂iu
x − 2

3
�xy∇µuµ,

∇〈ξ uξ〉 = 2τ 4�ξξ�
ξ
τξu

τ − 2

3
τ 4�ξξ∇µuµ. (14)

Here and in the following discussion, Latin indices collectively
denote the transverse coordinates (x, y), and the relation
uµ�µν = 0 has been used to derive the above equations
(similarly, uµ∇〈µuν〉 = 0 can be used to obtain the other

nontrivial components needed). Note that this particular form
of Eq. (14) has not been simplified further, since it roughly
corresponds to the equations implemented for the numerics
of Ref. [22] and is meant to facilitate understanding of the
code [51]. A simple algorithm to solve Eq. (14) has been
outlined in Ref. [49] and will be reviewed in the next subsection
for completeness.

E. A numerical algorithm to solve relativistic viscous
hydrodynamics

The first step of the algorithm consists of choosing the
independent degrees of freedom. For boost-invariant 2+1-
dimensional dynamics, a sensible choice for this set is, e.g.,
ε, ux, uy,�xx,�xy , and �yy . The pressure is then obtained
via the equation of state p(ε), and the only other nonvanishing

velocity as uτ =
√

1 + u2
x + u2

y . Similarly, the other nonzero

components of �µν are calculated using the equations �µ
µ = 0

and uµ�µν = 0.
Given the value of the set of independent components at

some time τ = τ0, the aim is then to construct an algorithm
from Eq. (14) such that the new values of the set can be
calculated as time progresses. Note that in Eq. (14), time
derivatives of the independent component set enter only
linearly. Therefore, Eq. (14) may be written as a matrix
equation for the derivatives of the independent component
set, 


a00 a01 . . . a05

a10 a11 . . . a15

. . . . . . . . . . . . . . . . .

a50 a51 . . . a55


 ·




∂τ ε

∂τu
x

. . .

∂τ�
yy


 =




b0

b1

. . .

b6


 . (15)

Denoting the above matrix and vector as A and b, respectively,
a straightforward way to obtain the time derivatives is via
numerical matrix inversion,


∂τ ε

∂τu
x

. . .

∂τ�
yy


 = A−1 · b. (16)

Choosing a naive discretization of derivatives

∂τf (τ ) = f (τ + δτ ) − f (τ )

δτ
,

(17)

∂xf (x) = f (x + a) − f (x − a)

2a
,

which is first-order accurate in the temporal grid spacing δτ

and second-order accurate in the spatial grid spacing a, one
can then directly calculate the new values of the independent
component set from Eq. (16).

Note that for ideal hydrodynamics, the algorithm Eq. (16)
would fail for this naive discretization [52]. The reason is
that ideal hydrodynamics is inherently unstable to high wave
number fluctuations (which can be thought of as the basis
for turbulence). For ideal hydrodynamics, one thus has to
use a discretization which amounts to the introduction of
numerical viscosity to dampen these fluctuations. Luckily,
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viscous hydrodynamics does not suffer from this problem,
because it has real, physical viscosity built in. For this reason,
the naive discretization can be used in the algorithm Eq. (16)
without encountering the same problems as in ideal hydrody-
namics, as long as a finite value for the viscosity η is used.3

While applicable to sufficiently smooth initial conditions, the
above algorithm is too simple to treat strong gradients such as
the propagation of shocks and should be replaced by a more
involved scheme in such cases.

Since matrix inversions are computationally intensive, one
can speed up the numerics by expressing ∂τ�

µν in terms of
∂τu

i and ∂τ ε. Inserting these into the equations for Duµ and
Dε, one only needs to invert a 3 × 3 matrix to obtain the new
values of the energy density and fluid velocities. This approach
has been used in Refs. [21,22,49].

F. Initial conditions and equation of state

As outlined in the Introduction, any hydrodynamic de-
scription of RHIC physics relies on the given initial energy
density distributions. Two main classes of models for boost-
invariant setups exist: the Glauber models and the color-glass-
condensate (CGC) models.

As will be shown in the following, both model classes
can give a reasonable description of the experimentally found
multiplicity distribution, but they differ by their initial spatial
eccentricity. A detailed discussion of the initial conditions will
be given in subsequent sections.

Besides an initial condition for the energy density, one
also needs to specify an initial condition for the independent
components of the fluid velocities and the shear tensor. For
the fluid velocities, we will follow the standard assumption
that these vanish initially [50]. Finally, when using the set
of equations (14), one also has to provide initial values for
the independent components of �µν . Extreme choices are
�µν = 0 and a shear tensor so large that a diagonal component
of the energy-momentum tensor vanishes in the local rest frame
(e.g., �ξ

ξ = p, or zero longitudinal effective pressure), with the
physical result expected somewhere in between (see, e.g., the
discussion in Ref. [53]).

Once the initial conditions for the independent hydrody-
namic variables have been specified, one needs the equation
of state to solve the hydrodynamic equations (14). Aiming for
a description of deconfined nuclear matter at zero chemical
potential, a semirealistic equation of state has to incorporate
evidence from lattice QCD calculations [54] that the transition
from hadronic to deconfined quark matter is probably an
analytic crossover, not a first- or second-order phase transition,
as often used in ideal hydrodynamic simulations. On the other
hand, continuum extrapolations for the value of the energy
density and pressure for physical quark masses are still not
accessible with high precision using current lattice methods.
For this reason, we will employ the equation of state by
Laine and Schröder [55], which is derived from a hadron

3In practice, we have used η

s
> 10−4. Typically, between η

s
= 10−2

and η

s
= 10−4 there are no significant changes in the hydrodynamic

results, and we refer to η

s
= 10−4 as “ideal hydrodynamics.”

0 0.1 0.2 0.3 0.4 0.5
T [GeV]

0

0.1

0.2

0.3

c s2

pQCDresonance gas

crossover transition
(interpolated)

FIG. 1. Speed of sound squared from Ref. [55], used in the
hydrodynamic simulations. See text for details.

resonance gas at low temperatures, a high-order weak-coupling
perturbative QCD calculation at high temperatures, and an
analytic crossover regime interpolating between the high and
low temperature regime, respectively. For hydrodynamics, an
important quantity is the speed of sound squared extracted
from the equation of state, c2

s ≡ dp(ε)
dε

. For completeness, we
reproduce a plot of this quantity in Fig. 1.

G. Freeze-out

At some stage in the evolution of the matter produced in
a heavy-ion collision, the system will become too dilute for
a hydrodynamic description to be applicable. This “freeze-
out” process most probably happens gradually, but it is
difficult to model realistically. A widely used approximation
is therefore to assume instantaneous freeze-out whenever a
certain fluid cell cools below a certain predefined temperature
or energy density (see Refs. [30,56] for different approaches).
The standard prescription for this freeze-out process is the
Cooper-Frye formula [57], which allows conversion of the
hydrodynamic variables (energy density, fluid velocity, etc.)
into particle distributions.

Specifically, in the case of isothermal freeze-out at a
temperature Tf , the conversion from hydrodynamic to par-
ticle degrees of freedom will have to take place on a
three-dimensional freeze-out hypersurface �, which can be
characterized by its normal four-vector, and parametrized by
three space-time variables [58,59]. The spectrum for a single
particle on mass shell with four-momentum pµ = (E, p) and
degeneracy d is then given by

E
d3N

d3p
≡ d

(2π )3

∫
pµ d�µf (xµ, pµ) , (18)

where d�µ is the normal vector on the hypersurface �, and f

is the off-equilibrium distribution function.
Originally, the Cooper-Frye prescription was derived for

systems in thermal equilibrium, where f is built out of a
Bose or Fermi distribution function f0(x) = exp[(x) ± 1]−1,
depending on the statistics of the particle under consideration.
To generalize it to systems out of equilibrium, one custom-
arily relies on the ansatz used in the derivation of viscous
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hydrodynamics from kinetic theory [60],

f (xµ, pµ) = f0

(
pµuµ

T

)
+ f0

(
pµuµ

T

)

×
[

1 ∓ f0

(
pµuµ

T

)]
pµpν�

µν

2T 2(ε + p)
. (19)

For simplicity, in the following we approximate f0(x) ∼
exp(−x), so similarly

f (xµ, pµ) = exp(−pµuµ/T )

[
1 + pµpν�

µν

2T 2(ε + p)

]
. (20)

The effect of this approximation will be commented on in the
following sections.

In practice, for boost-invariant 2+1-dimensional hydro-
dynamics, the freeze-out hypersurface �µ = (�t , �x , �y ,
�z) = (t, x, y, z) can be parametrized either by τ, ξ and the
polar angle φ, or by x, y, ξ :

t = τ cosh ξ, t = τ (x, y) cosh ξ,

x = x(τ, φ), x = x,

y = y(τ, φ), y = y,

z = τ sinh ξ, z = τ (x, y) sinh ξ.

(21)

The normal vector on �µ is calculated by

d�µ(τ, φ, ξ ) = εµαβγ

∂�α

∂τ

∂�β

∂φ

∂�γ

∂ξ
dτdφ dξ,

d�µ(τ, φ, ξ ) = −τ

[
cosh ξ

(
∂x

∂τ

∂y

∂φ
− ∂y

∂τ

∂x

∂φ

)
,

∂y

∂φ
,

− ∂x

∂φ
, sinh ξ

(
∂x

∂τ

∂y

∂φ
− ∂y

∂τ

∂x

∂φ

)]
dτdφdξ,

and similarly for the other parametrization [61].
For a realistic equation of state, at early times the freeze-

out hypersurface will contain the same transverse coordinate
values (x, y) for different times τ (see Fig. 2). Therefore,
the parametrization in terms of (x, y, ξ ) cannot be used for

0 2 4 6 8 10 12
 τ [fm/c]

0

2

4

6

8

x 
[f

m
]

η/s=10
-4

η/s=0.08
η/s=0.16

FIG. 2. (Color online) Space-time cut through the three-
dimensional hypersurface for a central collision within the Glauber
model. Simulation parameters used were a = 1 GeV−1, τ0 =
1 fm/c, Ti = 0.36 GeV, Tf = 0.15 GeV, τ� = 6 η

s
, and λ1 = 0 (see

next sections for definitions). As can be seen from the figure, inclusion
of viscosity only slightly changes the form of the surface.

early times. On the other hand, the parametrization in terms of
(τ, φ, ξ ) contains derivatives of (x, y) with respect to τ , which
become very large at late times (see Fig. 2). Numerically, it is
therefore not advisable to use this parametrization at late times.
As a consequence, we use the one parametrization at early
times but switch to the other parametrization at late times, such
that the integral in Eq. (18) is always defined and numerically
well behaved.4

To evaluate the integral (18), it is useful to express pµ also
in Milne coordinates,

pµ = (pτ , px, py, pξ )

= [mT cosh(Y − ξ ), px, py,
mT

τ
sinh(Y − ξ )], (22)

where mT =
√

m2 + p2
x + p2

y = √
E2 − p2

z . Here and in the

following, Y = arctanh(pz/E) is the rapidity, and m is the rest
mass of the particle under consideration. Then the ξ integration
can be carried out analytically using

1

2

∫ ∞

−∞
dξ coshn(Y − ξ ) exp[−z cosh(Y − ξ )]

= (−1)n∂n
z K0(z) ≡ K(n, z), (23)

where K0(z) is a modified Bessel function. One finds

E
d3N

d3p
= 2d

(2π )3

∫
dτ dφ exp

pxux + pyuy

T

×
{
mT

(
∂x

∂τ

∂y

∂φ
− ∂y

∂τ

∂x

∂φ

)[
T1K

(
1,

mT uτ

T

)

+ T2K

(
2,

mT uτ

T

)
+ T3K

(
3,

mT uτ

T

)]

−
(

px ∂y

∂φ
− py ∂x

∂φ

)[
T1K

(
0,

mT uτ

T

)

+ T2K

(
1,

mT uτ

T

)
+ T3K

(
2,

mT uτ

T

)]}
,

T1 = 1 + m2
T �

ξ
ξ + p2

x�
xx + p2

y�
yy + 2pxpy�

xy

2T 2(ε + p)
,

T2 = −2mT

px�xτ + py�yτ

2T 2(ε + p)
,

T3 = m2
T

�ττ − �
ξ
ξ

2T 2(ε + p)
, (24)

for the (τ, φ, ξ ) parametrization, and a similar result for the
other parametrization of the hypersurface. The remaining
integrals for the particle spectrum have to be carried out
numerically unless one is considering the case of a central
collision [21,49] where the integral has an additional symmetry
in φ.

For the simulation of a heavy-ion collision, one then also
needs to take into account the feed-down process of particle

4It may be possible that other parametrizations may turn out to
be more convenient. For instance, it is conceivable that performing
a triangulation of the three-dimensional hypersurface and replacing
the integral in Eq. (18) by a sum over triangles could turn out to be
numerically superior to our method.

034915-6



CONFORMAL RELATIVISTIC VISCOUS HYDRODYNAMICS: . . . PHYSICAL REVIEW C 78, 034915 (2008)

resonances that decay into lighter, stable particles [62,63].
Therefore, we calculate the spectra for particle resonances
with masses up to ∼2 GeV and then use available routines
from the AZHYDRO package [64] to determine the spectra
of stable particles including these feed-down contributions.
Ultimately, one would be interested in describing the last stage
of the evolution by coupling the hydrodynamics to a hadronic
cascade code [65–68]. We leave this for future work.

The particle spectra E dNcorr
d3p including feed-down contribu-

tions can then be used to calculate experimental observables
at central rapidity Y = 0, such as radial and elliptic flow
coefficients, v0, v2, respectively. These are defined as

v0(pT , b) =
∫

dφp

2π
E

dNcorr

d3p
,

E
dNcorr

d3p
= v0(pT , b)[1 + 2v2(pT , b) cos(2φp) + · · ·],

(25)

where φp = arctan(py/px) and pT =
√

p2
x + p2

y . Further-

more, the total multiplicity per unit rapidity dN
dy

and the mean
transverse momentum 〈pT 〉 are then given by

dN

dy
≡ 2π

∫
dpT pT v0(pT , b),

(26)

〈pT 〉 ≡
∫

dpT p2
T v0(pT , b)∫

dpT pT v0(pT , b)
.

The pT integrated elliptic flow coefficient is defined as

vint
2 (b) =

∫
dpT pT v2(pT , b)v0(pT , b)∫

dpT pT v0(pT , b)
, (27)

and the minimum bias elliptic flow coefficient as [7]

vmb
2 (pT ) =

∫
db b v2(pT , b)v0(pT , b)∫

db b v0(pT , b)
. (28)

H. Code tests

It is imperative to subject the numerical implementation of
the relativistic viscous hydrodynamic model to several tests.
The minimal requirement is that the code be stable for a
range of simulated volumes and grid spacings a, such that
an extrapolation to the continuum may be attempted (keeping
the simulated volume fixed but sending a → 0). Our code
fulfills this property.

Furthermore, one has to test whether this continuum
extrapolation corresponds to the correct physical result in
simple test cases. One such test case is provided by the
0+1-dimensional model discussed in Sec. II B. Using initial
conditions of uniform energy density in the 2+1-dimensional
numerical code, the temperature evolution should match that of
Eq. (8), for which it is straightforward to write an independent
numerical solver. Our 2+1-dimensional code passes this test,
for small and large η/s and different values for τ�, λ1.

The above test is nontrivial in the sense that it allows
one to check the implementation of nonlinearities in the
hydrodynamic model. However, it does not probe the dynamics
of the model, since, e.g., all velocities are vanishing. There-
fore, another test that one can (and should!) conduct is to
study the dynamics of the model against that of linearized
hydrodynamics (this test was first outlined in Ref. [49]; see
Ref. [69] for similar considerations). More specifically, let
us consider a viscous background “solution” with ui = 0 but
nonvanishing ε(τ ),�ξ

ξ (τ ) obeying Eq. (8). To first order in
small fluctuations δε, δuµ, δ�µν around this background, the
set of equations (14) becomes

[
c2
s ∂τ ε + 1

2
∂τ�

ξ
ξ + 3

2τ
�

ξ
ξ +

(
ε + p + 1

2
�

ξ
ξ

)
∂τ

]
δux + c2

s ∂xδε + ∂iδ�
xi = 0,

[
c2
s ∂τ ε + 1

2
∂τ�

ξ
ξ + 3

2τ
�

ξ
ξ +

(
ε + p + 1

2
�

ξ
ξ

)
∂τ

]
δuy + c2

s ∂yδε + ∂iδ�
yi = 0,

[
∂τ + 1 + c2

s

τ

]
δε +

[
(ε + p) + 1

2
�

ξ
ξ

]
∂iδu

i − 1

τ
δ�

ξ
ξ = 0,

(29)[
4

3τ
+ 1

τ�

+ ∂τ

]
δ�

ξ
ξ −

[
4η

3ττ�

+ 1

4τ�

�
ξ
ξ

]
δε

ε
+

[
2η

3τ�

+ 4

3
�

ξ
ξ

]
∂iδu

i = 0,

[
4

3τ
+ 1

τ�

+ ∂τ

]
δ�xx −

[
2η

3τ�τ
+ 1

4τ�

�xx

]
δε

ε
+ 2η

τ�

∂xδu
x +

[
− 2η

3τ�

+ 4

3
�xx

]
∂iδu

i = 0,

[
4

3τ
+ 1

τ�

+ ∂τ

]
δ�xy + η

τ�

(∂xδu
y + ∂yδu

x) = 0,
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where we have put λ1 = 0 and assumed a constant c2
s for

simplicity. Noting that δ�yy = δ�
ξ
ξ − δ�xx from δ�µ

µ = 0,
Eq. (29) is a closed set of linear but coupled differential
equations for the fluctuations δε, δux, δuy, δ�

ξ
ξ , δ�

xx, δ�xy .
Doing a Fourier transform,

δε(τ, x, y) =
∫

d2k
(2π )2

eixkx+iyky

δε(τ, kx, ky) (30)

(and likewise for the other fluctuations), Eq. (29) comprises
coupled ordinary differential equations for each mode doublet
k = (kx, ky), which again are straightforward to solve with
standard numerical methods [51] (and analytically for ideal
hydrodynamics).

A useful test observable is the correlation function

f (τ, x1, x2) = 〈δε(τ, x1)δε(τ, x2)〉
ε(τ )2

, (31)

where 〈 〉 denotes an ensemble average over initial conditions
δε|τ=τ0

. In particular, let us study initial conditions where δε

is given by Gaussian random noise with the standard deviation
�,

f (τ0, x1, x2) = �2δ2(x1 − x2), (32)

and all other fluctuations vanish initially. These initial con-
ditions are readily implemented both for the full 2+1-
dimensional hydrodynamic code and for the linearized system
Eq. (29). As the system evolves to finite time τ , both
approaches have to give the same correlation function f

as long as the linearized treatment is applicable, and hence
Eq. (29) can be used to test the dynamics of the full numerical
code.

In practice, note that for the above construction f can only
depend on the difference of coordinates,

〈δε(τ, x1)δε(τ, x2)〉
ε(τ )2

= f (τ, x1 − x2)

=
∫

d2k
(2π )2

eik·(x1−x2)f (τ, k), (33)

and therefore in Fourier space,

f (τ, k)δ2(k′) = 〈δε(τ, k)δε(τ, k′ − k)〉
(2π )2ε(τ )2

. (34)

In the full 2+1-dimensional numerical code, which is dis-
cretized on a space-time lattice, δ2(k′) is regular for any finite a,
and one can maximize the signal for f (τ, k) by calculating the
right-hand side of Eq. (34) for k′ = 0. Similarly, one solution
δε(τ, k) per k mode is sufficient to calculate f (τ, k) for the
linearized system in Eq. (29).

The above initial conditions imply f (τ = τ0, k) = �2, but
for finite times characteristic peaks develop as a function of |k|,
whose position, height, and width are sensitive to the values
of c2

s , τ�, and η/s and of course the correct implementation
of the hydrodynamic equations. The comparison between full
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1
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FIG. 3. (Color online) Correlation function f (τ, k) as a function
of momentum k = |k| for a lattice with a = 1 GeV−1, 642 sites, and
averaged over 30 initial configurations (symbols), compared with the
result from the linearized hydrodynamic equations (lines).

numerics and linearized treatment shown in Fig. 3 suggests
that our code also passes this test.5

Finally, for the case of ideal hydrodynamics, analytic
solutions to the hydrodynamic equations are known [70–72].
Specifically, the code for central collisions [49] has been
found to agree with the results from Ref. [70] for ideal
hydrodynamics. Since our code agrees with Ref. [49] for
central collisions and when dropping the appropriate terms
in the Eq. (6), this provides yet another test of our numerics.

To summarize, after conducting the above tests, we are
reasonably confident that our numerical 2+1-dimensional
code correctly solves the relativistic viscous hydrodynamic
equations (14). This completes the setup of a viscous hy-
drodynamic description of relativistic heavy-ion collisions.
In the following sections, we will review comparisons of
viscous hydrodynamic simulations to experimental data, for
both Glauber and CGC initial conditions.

III. INITIAL CONDITIONS: GLAUBER MODEL VS CGC

A. The Glauber model

In the Glauber model [7], the starting point is the Woods-
Saxon density distribution for nuclei,

ρA(x) = ρ0

1 + exp [(|x| − R0)/χ ]
, (35)

where for a gold nucleus with weight A = 197 we use R0 =
6.4 fm and χ = 0.54 fm. The parameter ρ0 is chosen such that∫

d3xρA(x) = A. One can then define the nuclear thickness
function

TA(xi) =
∫ ∞

−∞
dzρA(x), (36)

and subsequently the number density of nucleons participating
in the collision (nPart) and the number density of binary

5Note that a small numerical error occurred in the linearized
hydrodynamic solver and the corresponding figure in Ref. [22]. This
error has been corrected in Fig. 3.
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collisions (nColl). For a collision of two nuclei with weight
A at an impact parameter b, one has

nPart(x, y, b) = TA

(
x + b

2
, y

)

×

1 −

(
1 − σTA

(
x − b

2 , y
)

A

)A



+ TA

(
x − b

2
, y

)

×

1 −

(
1 − σTA

(
x + b

2 , y
)

A

)A

 ,

nColl(x, y, b) = σTA

(
x + b

2
, y

)
TA

(
x − b

2
, y

)
, (37)

where σ is the nucleon-nucleon cross section. We assume σ �
40 mb for Au+Au collisions at

√
s = 200 GeV per nucleon

pair.
While the total number of participating nucleons NPart(b) =∫

dxdynPart(x, y, b) will be used to characterize the centrality
class of the collision, as an initial condition for the energy
density we will only use the parametrization

ε(τ = τ0, x, y, b) = const × nColl(x, y, b), (38)

since it gives a sensible description of the multiplicity
distribution of experimental data, as will be discussed later.
In the following, “Glauber-model initial condition” is used
synonymously with Eq. (38).

The constant in Eq. (38) is chosen such that the central
energy density for zero impact parameter, ε(τ = τ0, 0, 0, 0),
corresponds to a predefined temperature Ti via the equation of
state. This temperature will be treated as a free parameter and
is eventually fixed by matching to experimental data on the
multiplicity.

B. The CGC model

The other model commonly used to obtain initial conditions
for hydrodynamics is the so-called color-glass-condensate
approach based on ideas of gluon saturation at high energies. In
particular, we use a modified version of the Kharzeev-Levin-
Nardi (KLN) kT -factorization approach [73] introduced by
Drescher et al. [74]. We follow exactly the procedure described
in Ref. [53], and in fact we use the same numerical code,
provided to us by the authors and only slightly modified to
output initial conditions suitable for input into our viscous
hydrodynamics program. In this model, the number density
of gluons produced in a collision of two nuclei with atomic
weight A is given by

dNg

d2xT dY
= N

∫
d2pT

p2
T

∫ pT

d2kT αs(kT )

×φA

(
x1,

(pT + kT )2

4
; xT

)

×φA

(
x2,

(pT − kT )2

4
; xT

)
, (39)

where pT and Y are the transverse momentum and rapidity of
the produced gluons, respectively. x1,2 = pT × exp(±Y )/

√
s

is the momentum fraction of the colliding gluon ladders with√
s the center-of-mass collision energy, and αs(kT ) is the strong

coupling constant at momentum scale kT ≡ |kT |.
The value of the normalization constant N is unimportant

here, since as for Glauber initial conditions, we treat the overall
normalization of the initial energy density distribution as a free
parameter. The unintegrated gluon distribution functions are
taken as

φ(x, k2
T ; xT ) = 1

αs

(
Q2

s

) Q2
s

max
(
Q2

s , k
2
T

) P (xT )(1 − x)4, (40)

where P (xT ) is the probability of finding at least one nucleon
at transverse position xT , taken from the definition for nPart,
that is,

P (xT ) = 1 −
(

1 − σTA

A

)A

, (41)

where TA and σ are as defined in the previous section.
The saturation scale at a given momentum fraction x and

transverse coordinate xT is given by

Q2
s (x, xT ) = 2 GeV2

(
TA(xT )/P (xT )

1.53/fm2

) (
0.01

x

)λ

. (42)

The growth speed is taken to be λ = 0.288.
The initial conditions for hydrodynamic evolution require

that we specify the energy density in the transverse plane
at some initial proper time τ0 at which the medium has
thermalized. Equation (39), on the other hand, is in principle
valid at a time τs = 1/Qs at which the medium is likely not yet
in thermal equilibrium. To obtain the desired initial conditions,
we again follow Ref. [53] and assume that the number of gluons
is effectively conserved during the evolution from τs to τ0, and
so the number density profile is the same at both times, scaled
by the one-dimensional Bjorken expansion n(τ0) = τs

τ0
n(τs).

The energy density can then be obtained from the number
density through thermodynamic relations—it is proportional
to the number density to the 4/3 power. Again, we take the
overall normalization as a free parameter, so the initial energy
density is finally given as

ε(τ = τ0, xT , b) = const ×
[

dNg

d2xT dY
(xT , b)

]4/3

, (43)

where the number density is given by Eq. (39) evaluated at
central rapidity Y = 0.

As a final comment, it should be pointed out that the original
version of the CGC, the McLerran-Venugopalan model [75,
76], differs from the KLN ansatz we used here, as will be
discussed in the next section.

C. Spatial and momentum anisotropy

One of the key parameters discussed in the following is the
eccentricity (or spatial anisotropy) of the collision geometry.
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FIG. 4. (Color online) (a) Initial spatial anisotropy for the Glauber and CGC model. (b) Time evolution of the spatial and momentum
anisotropy for a collision with b = 7 fm in ideal hydrodynamics.

Following Ref. [7], we define it as

ex ≡ 〈y2 − x2〉ε
〈y2 + x2〉ε , (44)

where 〈 〉ε denotes an averaging procedure over space with the
energy density ε as a weighting factor. Shown in Fig. 4(a), a
plot of ex for different centralities highlights the quantitative
difference between the initial energy density from the Glauber
and CGC models, Eq. (38) and Eq. (43), respectively. As can
be seen from this figure, the CGC model generally gives a
higher spatial anisotropy than the Glauber model. Note that
the results for the CGC model shown here are extreme in
the sense that the McLerran-Venugopalan model gives spatial
eccentricities that essentially match the ones from the Glauber
model [77]. This allows us to use the difference between the
CGC and Glauber models as an indication of the systematic
theoretical error stemming from our ignorance of the correct
physical initial condition.

Hydrodynamics converts pressure gradients into fluid
velocities, and hence one expects the spatial anisotropy to
decrease at the expense of a momentum anisotropy (which
is related to the magnitude of the elliptic flow). We follow
Ref. [78] in defining a momentum anisotropy according to

ep ≡ 〈T xx − T yy〉
〈T xx + T yy〉 , (45)

where we stress that here 〈 〉 denotes spatial averaging with
weight factor unity. Figure 4(b) shows the time evolution
in ideal hydrodynamics (η/s � 1) of both the spatial and
momentum anisotropies for a heavy-ion collision at b =
7 fm modeled through Glauber and CGC initial conditions. As
one can see, for the same impact parameter, the higher initial
spatial anisotropy for the CGC model eventually leads to a
higher momentum anisotropy than the Glauber model. Using
a quasiparticle interpretation in which the energy momentum
tensor is given by

T µν ∝
∫

d3p
(2π )3

pµpν

E
f (xµ, pµ) , (46)

the momentum anisotropy ep can be approximately related to
the integrated elliptic flow vint

2 (b), with a proportionality factor
of ∼2 [78,79]. We find this proportionality to be maintained
even for nonvanishing shear viscosity, as can be seen later in
Fig. 8.

IV. RESULTS

A. Which parameters matter?

In the following, we will attempt to obtain limits on the
mean value (throughout the hydrodynamic evolution) of the
ratio η/s from experimental data. While, e.g., temperature
variations of η/s are to be expected in the real physical
systems, probing for such variations would invariably force
us to introduce more unknown parameters. We prefer to leave
this program for future studies once robust results for the mean
value of η/s exist. Having fixed the equation of state and the
freeze-out procedure as explained in the previous sections, the
remaining choices that have to be made in the hydrodynamic
model are the

(i) Initial energy density profile: Glauber or CGC
(ii) Initial value of shear tensor: vanishing or Navier-Stokes

value
(iii) Hydrodynamic starting time τ0

(iv) Second-order coefficients: relaxation time τ� and λ1

(v) Ansatz for nonequilibrium particle distribution Eq. (19).

It is to be understood that we fix the initial energy
density normalization Ti and the freeze-out temperature Tf

such that the model provides a reasonable description of the
experimental data on multiplicity and 〈pT 〉. Historically, a
strong emphasis has been placed on requiring a small value of
τ0 for ideal hydrodynamics [80,81]. For this reason, we will
discuss the dependence on τ0 separately in Sec. IV D.

A good indicator of which parameters matter is the
momentum anisotropy, since it is very sensitive to the value
of η/s. From Fig. 4, one therefore immediately concludes that
the choice of Glauber or CGC initial conditions is important
since it has a large effect on ep. Fortunately, most of the
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FIG. 5. (Color online) Spatial and momentum anisotropy for the Glauber model at b = 7 fm with Ti = 0.353 GeV, τ0 = 1 fm/c, and
various values for the viscosity (grid spacing a = 2 GeV−1). (a) Dependence on the initialization value of the shear tensor: shown are results
for vanishing initial value (�µν

init = 0) and Navier-Stokes initial value (�µν
init �= 0), given in Eq. (9). (b) Dependence on the choice of value for

τ�, λ1: shown are results for τ� = 6
T

η

s
, λ1 = 0 (labeled IS), and τ� = 2(2−ln 2)

T

η

s
, λ1 = η

2πT
(labeled AdS). For τ� = 2(2−ln 2)

T

η

s
, the results for

λ1 = 0 (not shown) would be visually indistinguishable from those for λ1 = η

2πT
.

other choices turn out to not have a strong influence on
the resulting v2 coefficient, and hence the extracted η/s. In
the following we test for this sensitivity by studying ep for
a “generic” heavy-ion collision of two gold nuclei, modeled
by Glauber initial conditions at an initial starting temperature
of Ti = 0.353, an impact parameter of b = 7 fm, and various
choices of the above parameters.

Figure 5 shows the time evolution of ex, ep for various
values of η/s. These plots indicate that ep (and hence v2)
clearly is sensitive to the value of η/s, suggesting that it
can be a useful observable for determining the viscosity of
the fluid from experiment. However, to be a useful probe
of the fluid viscosity, the dependence of the final value of
ep on other parameters should be much weaker than the
dependence on η/s. In Fig. 5(a), we show ep calculated for
�µν(τ0) = 0 and �µν(τ0) equal to the Navier-Stokes value,
Eq. (9). As can be seen from this figure, the result-
ing anisotropies are essentially independent of this choice,
corroborating the finding in Refs. [29,31]. Similarly, in
Fig. 5(b) we show ep calculated in simulations where the
values of the second-order transport coefficients were either
those of a weakly coupled Müller-Israel-Stewart theory (τ� =
6 η

sT
, λ1 = 0) or those inspired by a strongly coupled N =

4 SYM plasma [τ� = 2(2 − ln 2) η

sT
, λ1 = η

2πT
]. Again, the

dependence of ep on the choice of the values of τ�, λ1 can
be seen to be very weak for the values of η/s shown here.
This result is in stark contrast to the findings of Ref. [29],
which indicated a large sensitivity to the value of τ�. However,
recall that Ref. [29] used evolution equations that differ from
Eq. (6) and in particular do not respect conformal invariance.
As argued in Sec. II B, it is therefore expected that an
anomalously large sensitivity to the value of the second-order
transport coefficients is to be encountered.

To study the dependence of results on the ansatz of
the nonequilibrium particle distribution function (19), one
would want to quantify the effect of neglecting terms of
higher order in momenta in Eq. (19). To estimate this, let us

rewrite Ed3N/d3p = E d3N (0)/d3p + E d3N (1)/d3p, where
N (0) contains only the equilibrium part, where f (xµ, pµ) =
f0

(
pµuµ

T

)
, and perform a Padé-type resummation,

E
d3NPade

d3p
≡ E

d3N (0)

d3p
1

1 − d3N (1)

d3p
d3p

d3N (0)

. (47)

Since Eq. (47) contains powers of momenta to all orders
when reexpanded, the difference between the ansatz (19) and
the Padé resummed particle spectra can give insight into the
systematic error of the truncation used in Eq. (19). Shown
in Fig. 6, this difference suggests that this systematic error is
small for momenta pT <∼ 2.5 GeV. Therefore, we do not expect
our results to have a large systematic uncertainty coming from
the particular ansatz (19) for these momenta.

To summarize, for values of η/s <∼ 0.2, the results for
the momentum anisotropy are essentially insensitive to the
choices for the second-order transport coefficients τ�, λ1 and

0 1 2 3 4 5
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T 
[GeV]
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v 2
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η/s=0.16 standard
η/s=0.16 Pade

FIG. 6. (Color online) Charged hadron elliptic flow for the
Glauber model at b = 7 fm with Ti = 0.353 GeV, τ0 = 1 fm/c, and
various viscosities.
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FIG. 7. (Color online) Centrality dependence of total multiplicity dN/dY and 〈pT 〉 for π+, π−, K+, K−, and p, p̄ from PHENIX [83] for
Au+Au collisions at

√
s = 200 GeV, compared with the viscous hydrodynamic model and various η/s, for Glauber initial conditions (from

Ref. [22]) and CGC initial conditions. The model parameters used here are τ0 = 1 fm/c, τ� = 6η/s, λ1 = 0, Tf = 150 MeV, and adjusted Ti

(see text for details).

the initialization of the shear tensor �µν(τ = τ0). Conversely,
ep is sensitive to the value of viscosity and the choice of initial
energy density profile (initial eccentricity). Since the physical
initial condition is currently unknown, this dependence will
turn out to be the dominant systematic uncertainty in deter-
mining η/s from experimental data.

B. Multiplicity and radial flow

As outlined in the Introduction, we want to match the
hydrodynamic model to experimental data for the multiplicity,
thereby fixing the constant in Eqs. (38) and (43). This translates
to fixing an initial central temperature Ti for b = 0, which we
will quote in the following discussion.

For a constant speed of sound, the evolution for ideal hy-
drodynamics is isentropic, while for viscous hydrodynamics,
additional entropy is produced. Since the multiplicity is a
measure of the entropy of the system, one expects an increase
of multiplicity for viscous compared to ideal hydrodynamic
evolution. This increase in final multiplicity has been measured
as a function of η/s for the semirealistic speed of sound
(Fig. 1) in central heavy-ion collisions in Ref. [21], and found

to be approximately6 a factor of 0.75η/s. (See Refs. [53,82]
for related calculations in simplified models.) Reducing Ti

accordingly therefore ensures that for viscous hydrodynamics,
the multiplicity in central collisions will stay close to that of
ideal hydrodynamics.

Hydrodynamics gradually converts pressure gradients into
flow velocities, which in turn relate to the mean particle
momenta. Starting at a predefined time τ0 and requiring the
hydrodynamic model spectra to match the experimental data
on particle 〈pT 〉 then fixes the freeze-out temperature Tf .

For both Glauber-type and CGC-type model initial con-
ditions, the experimental impact parameter dependence of
the multiplicity and 〈pT 〉 is reasonably well parametrized
for both ideal and viscous hydrodynamics provided Ti is
adjusted accordingly (see Fig. 7). The values for Ti used in
the simulations are compiled in Table I. We recall that no
chemical potential is included in our equation of state, pro-
hibiting a distinction between particles and anti-particles; and
chemical and kinetic freeze-out of particles occurs at the same

6The quoted fraction is for a hydrodynamic starting time of τ0 =
1 fm/c. Reducing τ0 leads to considerably larger entropy production.

034915-12



CONFORMAL RELATIVISTIC VISCOUS HYDRODYNAMICS: . . . PHYSICAL REVIEW C 78, 034915 (2008)

TABLE I. Summary of parameters used for the viscous hydro-
dynamics simulations.

Initial
condition

η/s Ti (GeV) Tf (GeV) τ0 (fm/c) a (GeV−1)

Glauber 10−4 0.36 0.15 1 1
Glauber 0.08 0.353 0.15 1 1
Glauber 0.16 0.346 0.15 1 2
CGC 10−4 0.34 0.15 1 2
CGC 0.08 0.335 0.15 1 2
CGC 0.16 0.33 0.15 1 2
CGC 0.24 0.325 0.15 1 2

temperature. Furthermore, approximating the equilibrium
particle distributions for bosons by a Boltzmann distribution
[Eq. (19)] leads to small, but consistent underestimation of the
multiplicity of light particles, such as pions. For these reasons,
it does not make sense to attempt a precision fit to experimental
data, especially for pions and protons. Rather, we have aimed
for a sensible description of the overall centrality dependence
of multiplicity and 〈pT 〉 of kaons.

Note that in particular for the CGC model, one could
achieve a better fit to the data on mean 〈pT 〉 by increasing the
freeze-out temperature by ∼10 MeV. This would also lead to a
decrease in elliptic flow for this model. However, to facilitate
comparison between the CGC and Glauber initial conditions,
we have kept Tf the same for both models.

C. Elliptic flow

Having fixed the parameters τ0, Ti, Tf for a given η/s to
provide a reasonable description of the experimental data,
a sensible comparison between the model and experimental
results for the elliptic flow coefficient can be attempted.
For charged hadrons, the integrated and minimum-bias v2

coefficients are shown in Fig. 8 for Glauber and CGC initial
conditions. As noted in Sec. III C, charged hadron vint

2 turns out
to be very well reproduced by the momentum eccentricity 1

2ep,
evaluated when the last fluid cell has cooled below Tf . This
agreement is independent of impact parameter or viscosity
and hence may serve as a more direct method for obtaining an
estimate for vint

2 if one cannot (or does not want to) make

FIG. 8. (Color online) Comparison of hydrodynamic models and experimental data on charged hadron integrated (left) and minimum bias
(right) elliptic flow by PHOBOS [84] and STAR [86], respectively. STAR event-plane data have been reduced by 20% to estimate the removal
of nonflow contributions [86,87]. The line thickness for the hydrodynamic model curves is an estimate of the accumulated numerical error (due
to, e.g., finite grid spacing). The integrated v2 coefficient from the hydrodynamic models (full lines) is well reproduced by 1

2 ep (dots); indeed,
the difference between the full lines and dots gives an estimate of the systematic uncertainty of the freeze-out prescription.
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FIG. 9. (Color online) Momentum anisotropy (a) and elliptic flow for charged hadrons (b) for b = 7 fm, η/s = 0.08, and different
hydrodynamic initialization times τ0. Horizontal light gray lines in (a) are visual aids to compare the final value of ep . As can be seen
from these plots, neither the final ep nor the charged hadron v2 depend sensitively on the value of τ0 if the same energy distribution is
used as initial condition at the respective initialization times. Simulation parameters were Ti = 0.29 GeV, Tf = 0.14 GeV for τ0 = 2 fm/c;
Ti = 0.36 GeV, Tf = 0.15 GeV for τ0 = 1 fm/c; and Ti = 0.43 GeV, Tf = 0.16 GeV for τ0 = 0.5 fm/c.

use of the Cooper-Frye freeze-out procedure described in
Sec. II G.

The comparison of the hydrodynamic model to experi-
mental data with 90% confidence level systematic error bars
from PHOBOS [84] for the integrated elliptic flow in Fig. 8
suggests a maximum value of η/s ∼ 0.16 for Glauber-type
and η/s ∼ 0.24 for CGC-type initial conditions. Whereas
for Glauber initial conditions, ideal hydrodynamics (η/s ∼ 0)
gives results consistent with PHOBOS data; for CGC initial
conditions, zero viscosity does not give a good fit to the data,
which is consistent with previous findings [67].

For minimum-bias v2, to date only experimental data using
the event-plane method are available, where the statistical, but
not the systematic, error of that measurement is directly acces-
sible. The dominant source of systematic error is associated
with the presence of so-called nonflow effects [85]. Recent
results from STAR suggest that removal of these nonflow
effects imply a reduction of the event-plane minimum bias v2

by 20% [86,87]. For charged hadrons, a comparison of both the
event-plane and the estimated nonflow corrected experimental
data from STAR with the hydrodynamic model is shown in
Fig. 8.

For Glauber-type initial conditions, the data on minimum-
bias v2 for charged hadrons is consistent with the hydrody-
namic model for viscosities in the range η/s ∈ [0, 0.1], while
for the CGC case, the respective range is η/s ∈ [0.08, 0.2]. It
is interesting to note that for Glauber-type initial conditions,
experimental data for both the integrated and the minimum-
bias elliptic flow coefficient (corrected for nonflow effects)
seem to be reproduced best7 by a hydrodynamic model

7In Ref. [22], a lower value of η/s for the Glauber model was
reported. The results for viscous hydrodynamics shown in Fig. 8 are
identical to those in Ref. [22], but the new STAR data with nonflow
corrections became available only after Ref. [22] had been published.

with η/s = 0.08 � 1
4π

. This number first appeared in the
gauge/string duality context [10] and has been conjectured
to be the universal lower bound on η/s for any quantum field
theory at finite temperature and zero chemical potential [88].
For CGC-type initial conditions, the charged hadron v2 data
seem to favor a hydrodynamic model with η/s ∼ 0.16, well
above this bound.

D. Early vs late thermalization

Currently, there seems to be a common misunderstanding
in the heavy-ion community that hydrodynamic models can
universally only reproduce experimental data if they are
initialized at early times τ0 < 1 fm/c. This notion has been
labeled “early thermalization” and continues to create a lot
of confusion. In this section, we argue that the matching of
hydrodynamics to data itself does not require τ0 < 1 fm/c. It
is the additional assumptions about preequilibrium dynamics
that lead to this conclusion for the Glauber initial conditions.

Performing hydrodynamic simulations in the way we
described earlier, the energy density distribution is specified
by either the Glauber or CGC model at an initial time τ0. In
Fig. 9, we show the result for the elliptic flow coefficient (or
the momentum anisotropy) for three different values of τ0,
namely, 0.5, 1, and 2 fm/c, where also Ti and Tf have been
changed to obtain roughly the same multiplicity and mean
pT for each τ0. As can be seen from this figure, the resulting
final elliptic flow coefficient is essentially independent of the
choice of τ0. In particular, this implies that experimental data
for bulk quantities can be reproduced by hydrodynamic models
also for large initialization times, so no early thermalization
assumption is needed.

However, it is true that the above procedure assumes that
the energy density distribution remains unchanged up to the
starting time of hydrodynamics, which arguably becomes
increasingly inaccurate for larger τ0. It has therefore been
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FIG. 10. (Color online) Spatial eccentricity for the Glauber and
CGC models compared with evolving the CGC model according to
Eq. (48) for τ = 1.5 fm/c. This implies that starting with Glauber-type
initial conditions at τ0 > 1 fm/c may not be unreasonable.

suggested [80] that the prehydrodynamic time evolution of
the energy density distribution be mimicked by assuming
free-streaming of partons. Assuming free-streaming gives the
maximal contrast to assuming hydrodynamic evolution, since
the latter corresponds to very strong interactions, while the
former corresponds to no parton interactions at all. Indeed,
one can calculate the effect of the free-streaming evolution on
the spatial anisotropy, finding [80]

ex(τ ) = ex(0)

1 + τ 2

3〈R2〉
, 〈R2〉 =

∫
d2xε(τ = 0)∫

d2x (x2+y2)
2 ε(τ = 0)

. (48)

This implies that the spatial anisotropy decreases with time,
whereas one can show that free-streaming does not lead to
a buildup of ep. In other words, the eccentricity gets diluted
without producing elliptic flow, such that once hydrodynamic
evolution starts, it will not lead to as much v2 as it would have
without the dilution effect.8 It is tempting to conclude from
this that by comparing to experimental data on elliptic flow one
could place an upper bound on the maximally allowed dilution
time, and interpret this as the thermalization time of the system.
One should be aware, however, that this bound will depend on
the assumption made about the prehydrodynamic evolution.
Furthermore, one should take into account the fact that the
initial state of the system remains unknown. For instance,
the system could start with an energy density distribution
similar to the CGC model, which has a fairly large eccentricity.
Figure 10 shows that when allowing the eccentricity to get
diluted according to Eq. (48), it takes a time of τ ∼ 1.5 fm/c
until the eccentricity has shrunk to that of the Glauber model.
This implies that even when assuming no particle interactions

8It seems that if one forces the energy-momentum tensor at the
end of the free-streaming period to match that of ideal hydrody-
namics (instantaneous thermalization), the resulting fluid velocities
are anisotropic, i.e., they correspond to a nonvanishing elliptic
flow coefficient [89,90]. It is possible that this effect stems from
neglecting velocity gradients (viscous hydrodynamic corrections) in
the matching process. We ignore the complications of the detailed
matching from free-streaming to hydrodynamics in the following.

(no elliptic flow buildup) for the first stage of the system
evolution, one can get eccentricities that are Glauber-like
after waiting for a significant fraction of the system lifetime.
Allowing at least some particle interactions (which is probably
more realistic), one expects some buildup of elliptic flow
already in the dilution (or preequilibrium) phase, and therefore
dilution (or “thermalization”) times of τ ∼ 2 fm/c seem to
be compatible with the observed final elliptic flow even for
nonvanishing viscosity.

V. SUMMARY AND CONCLUSIONS

In this article, we applied conformal relativistic viscous
hydrodynamics to simulate Au+Au collisions at RHIC at
energies of

√
s = 200 GeV per nucleon pair. Besides one

first-order transport coefficient (the shear viscosity), in general
there are five second-order transport coefficients in this
theory, for which one would have to supply values. We
provided arguments that physical observables in the parameter
range accessible to hydrodynamics (low momenta, central to
semicentral collisions) do not seem to be strongly dependent
on specific (reasonable) choices for any of these second-order
coefficients. On the other hand, we do find a pronounced
dependence of the elliptic flow coefficient on the ratio of
shear viscosity over entropy density, which suggests that by
combining viscous hydrodynamics and experimental data, a
measurement of the quark-gluon plasma viscosity may not be
futile. However, we have shown that our ignorance about the
precise distribution of energy density at the earliest stages of a
heavy-ion collision introduces a large systematic uncertainty
in the final elliptic flow of the hydrodynamic model. Adding
to this is the considerable experimental uncertainty pertaining
to the removal of nonflow contributions to the elliptic flow.
For these reasons, we are unable to make precise statements
about the value of the shear viscosity of the quark-gluon
plasma and in particular cannot place a firm lower bound on
η/s. Indeed, our hydrodynamic models seem to be able to
consistently describe experimental data for multiplicity, radial
flow, and elliptic flow of bulk charged hadrons for a wide range
of viscosity over entropy ratios,

η

s
= 0.1 ± 0.1(theory) ± 0.08(experiment), (49)

where we estimated the systematic uncertainties for both
theory and experiment from the results shown in Fig. 8.
We stress that Eq. (49) does not account for physics not
included in our model, such as finite chemical potential, bulk
viscosity, heat flow, hadron cascades, three-dimensional fluid
dynamic effects, and possibly many more. Consistent inclusion
of all these may result in changes of the central value and
theory uncertainty in Eq. (49). Nevertheless, none of the
mentioned refinements is currently expected to dramatically
increase the elliptic flow coefficient (though some increase
may be expected when, e.g., implementing partial chemical
equilibrium [91]). Therefore, we seem to be able to exclude
viscosities of η/s >∼ 0.5 with high confidence, which indicates
that the quark-gluon plasma displays less friction than any
other known laboratory fluid [88,92]. Other groups have come
to similar conclusions [93–95].
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To better quantify the shear viscosity of the quark-gluon
plasma at RHIC calls for more work, both in theory and
experiment. On the theory side, a promising route seems to
be the study of fluctuations and comparison with existing
experimental data [84,93,96–101]. For instance, it might be
interesting to investigate the critical value of η/s for the onset
of turbulence in heavy-ion collisions and explore possible
consequences of fully developed turbulence [102]. However,
maybe most importantly, a more thorough understanding of
the earliest stages of a heavy-ion collision, in particular ther-
malization, could fix the initial conditions for hydrodynamics
and hence dramatically reduce the theoretical uncertainty in
final observables.

Leaving these ideas for future work, we stress that with
the advent of conformal relativistic viscous hydrodynamics,
at least the uncertainties of the hydrodynamic evolution itself
now seem to be under control. We hope that this serves as

another step toward a better understanding of the dynamics of
relativistic heavy-ion collisions.
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