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We discuss the influence of different initial conditions for the stress tensor and the effect of bulk viscosity
on the expansion and cooling of the fireball created in relativistic heavy ion collisions. In particular, we explore
the evolution of longitudinal and transverse components of the pressure and the extent of dissipative entropy
production in the one-dimensional, boost-invariant hydrodynamic model. We find that a bulk viscosity consistent
with recent estimates from lattice QCD further slows the equilibration of the system; however, it does not
significantly increase the entropy produced.
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I. INTRODUCTION

The formation of strongly interacting matter at supranuclear
energy densities has recently been studied in great detail
in nuclear reactions at the Relativistic Heavy Ion Collider
(RHIC). The analysis of the data collected in these experiments
[1–4] has shown that the matter flows very rapidly at the
moment of its breakup into free-streaming hadrons. The
collective flow also exhibits a large anisotropy in noncentral
collisions, characterized by the “elliptic” flow parameter v2.
These observations are commonly understood to imply that (i)
the quark and gluon matter undergoes rapid equilibration with
thermalization times smaller than 1 fm/c [5], and (ii) the quark-
gluon plasma (QGP) maintains a low shear viscosity η not
much larger than the Kovtun-Son-Starinets (KSS) conjectured
lower bound 4πηKSS = s, where s is the entropy density [6].
This has led to the claim that the quark-gluon plasma formed
at RHIC is the most perfect liquid known in nature [7].

The emerging picture still has some uncertainties. The pre-
dictions of hydrodynamic simulations, especially for the flow
anisotropy in off-central collisions, depend on the assumed
transverse density profile [8]. Moreover, the possible role of
contributions to transverse flow from the preequilibrium phase
of the reaction is not settled. Most hydrodynamic calculations
assume that no transverse flow is present at the time of
initialization, usually chosen in the range τ = 0.5–1.0 fm/c
after the onset of the reaction, although there are good reasons
to believe that transverse pressure gradients existing at earlier
times will contribute to the generation of collective flow even
if the parton momentum distribution is still anisotropic [9].

Recently, it was pointed out that further complications could
come from the bulk viscosity ζ of quark and gluon matter
near the QCD phase transition [10,11]. Bulk viscosity can
be neglected compared to shear viscosity in many systems
in nature. This was also shown to be true in quantum chro-
modynamics (QCD) at high temperature and weak coupling
where ζ ∼ α2

s T
3/ ln α−1

s [12], while η ∼ T 3/(α2
s ln α−1

s ) [13].
The difference can be traced back to the near conformal
invariance of QCD at high temperature. Near the pseudocritical
temperature Tc, however, QCD is far from being conformal,

as can be inferred from the large peak of the “interaction
measure” (ε − 3P )/T 4 at Tc found in lattice QCD simulations
[14]. Indeed, the ratio of the bulk viscosity over the entropy
density, ζ/s, on the lattice (in the quenched approximation)
was recently found [15] to exhibit a narrow peak around Tc

of order unity with ζ/s � η/s. The bulk viscosity can also be
related directly to the trace anomaly of the energy momentum
tensor, and an estimate can thereby be obtained from lattice
results for the interaction measure [11].

The large spike of the bulk viscosity near Tc immediately
raises several questions [11] which we want to address here.
However, we also want to take a look at the larger picture.
Ideal hydrodynamics requires complete thermalization of the
matter. Isotropization of the pressure P and consistency
with the equation of state P (ε) are necessary conditions for
equilibrium. Viscous hydrodynamics permits certain kinds of
small deviations from equilibrium. In the local rest frame,
shear stress πij describes deviations from isotropy of the
stress tensor, whereas bulk stress �δij measures deviations
from the equilibrium equation of state. In the second-order
formulation of viscous hydrodynamics [16,17], the deviations
of the stress tensor from its equilibrium form are not prescribed
by external strains, such as flow shear or flow divergence, but
can be independently given and only relax to the externally
forced values over time. The fireball produced in a relativistic
nuclear collision starts out with highly anisotropic particle
distributions and therefore a large pressure anisotropy, which
may not be related to the imprinted flow field. It is thus useful to
explore how the hydrodynamic evolution responds to different
initial deviations from local equilibrium.

It is not always obvious how large the deviations can be
before the hydrodynamic approximation fails. In principle,
viscous corrections extend the reach of hydrodynamics in
relativistic heavy ion collisions to earlier times, but the gradient
expansion of the stress tensor may break down [18]. Similarly,
a large bulk viscosity ζ around Tc could mean that the matter
is driven far from equilibrium around the phase transition and
may even develop dynamical instabilities [19]. It has also been
claimed [11] that bulk stress could contribute significantly to
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entropy production, with possibly profound consequences for
the hadronization mechanism at Tc. Furthermore, one expects
the viscous bulk pressure � to be negative for an expanding
system (� = −ζ∂µuµ to first order in gradients), implying
that the effect of bulk viscosity is to slow down the expansion
of the system. This should be most relevant in the longitudinal
direction, where the pressure is also reduced by the viscous
shear stress. Hence, one expects the system to spend more time
around Tc than predicted by ideal hydrodynamics. This leads
to yet another interesting prospect: perhaps the evolution of the
system is more sensitive to the equation of state near Tc and
the order of the phase transition than one would expect from
ideal hydrodynamics where the relation of the phase transition
to observables has been found to be rather obscure [20].

Here, we want to explore these questions in a hydrodynamic
model with a simple space-time structure, but realistic equation
of state, and bulk and shear viscosities motivated by lattice
QCD. Our framework is a one-dimensional boost-invariant
fireball with translational and rotational symmetries in the
transverse plane as first described by Bjorken [21]. We discuss
the time evolution of the components of the pressure using
second-order hydrodynamics. Our treatment is comparable to
that of Baym [22] and Heiselberg and Wang [23,24], who
explored deviations from, and the approach to, equilibrium in
a boost-invariant expansion in the framework of the relaxation
time approximation to the Boltzmann equation. We will also
explore the consequences of several different assumptions
about the initial longitudinal and transverse pressure.

Let us rephrase our catalog of questions in the context of
our hydrodynamic model: (i) How far from the equilibrium
pressure P is the longitudinal pressure Pz throughout the
evolution and in particular at the phase transition? (ii) How
close to isotropy is the pressure tensor, i.e., how large is
|P⊥ − Pz|/P ? (iii) What is the amount of entropy S� produced
by the bulk viscosity compared with contributions from shear
viscosity S
 during the lifetime of the fireball?

We are aware that the simplified treatment with one-
dimensional expansion has several limitations. This approx-
imation does not permit us to explore effects related to the
transverse expansion and the more rapid cooling coming from
it. We also cannot treat the flow anisotropy in the transverse
plane seen in off-central collisions. Since boost-invariant
hydrodynamics tends to overestimate the time required for the
matter to cool below Tc, it makes our study conservative in the
sense that the effects of the bulk viscosity are underestimated,
compared with those expected in a full three-dimensional
treatment.

II. VISCOUS HYDRODYNAMICS

In the center of the fireball in a nuclear collision, the viscous
stress-energy tensor in the local comoving frame has the form
[25–27]

T µν =




ε 0 0 0

0 P⊥ 0 0

0 0 P⊥ 0

0 0 0 Pz


 , (1)

with the transverse and longitudinal pressure

P⊥ = P + � + 1
2
,

(2)
Pz = P + � − 
.

Here P denotes the (isotropic) pressure in thermal equilibrium,

 and � denote the nonequilibrium contributions to the
pressure coming from shear and bulk stress. In particular,
the traceless shear tensor in that frame takes the form πij =
diag(
/2,
/2,−
) consistent with the symmetries in the
transverse directions. We refer the reader to Refs. [26–28] for
more details.

At early times, 
 and � will be given by the initial
conditions for the stress tensor established by the mechanisms
of energy and momentum deposition in the nuclear collision.
Reflecting the dilution effect of the expansion on the local
longitudinal momentum distribution of partons, the pressure
components are expected to satisfy the ordering

Pz ≡ T zz < T xx = T yy ≡ P⊥. (3)

One can argue that the largest physically meaningful value
of 
 at a time τ is 
 = 4(P + �), which corresponds
to Pz = −P⊥. Such a negative value of the longitudinal
pressure arises, for example, when the matter is completely
in the form of coherent longitudinal fields at very early
times [9,29]. However, such a configuration is very far from
equilibrium, and the hydrodynamic approximation is surely
invalid. Once decoherence of the field is reached at a time τdec,

the components of the physical pressure should be positive:
Pz, P⊥ � 0. We want to explore various scenarios for the
time evolution of 
 and �, assuming initial values satisfying

 � P + � at the start time of the hydrodynamic evolution
τ0 � τdec.

In first-order (Navier-Stokes) dissipative hydrodynamics,
the bulk and shear stresses are related to gradients in the system
via the bulk and shear viscosities through

� = −ζ∂µuµ, πµν = 2η∇〈µuν〉, (4)

where uµ = (cosh η, 0, 0 sinh η) in our case is the expansion
velocity, η is the space-time rapidity, ∇µ = ∂µ − uµ(uν∂

ν),
and 〈. . .〉 indicates a projection orthogonal to uµ, symmetriza-
tion of indices, and removal of the trace.

We follow the spirit of the (Israel-Stewart) theory of second-
order dissipative hydrodynamics [17] by assuming that the
actual bulk and shear stress have the freedom to relax to their
first-order values at rates governed by relaxation times τ� and
τπ . The equations governing the longitudinal expansion of the
medium in our case are then given by [28,30–32]

∂ε

∂τ
= − 1

τ
(ε + P + � − 
), (5)

τπ

∂


∂τ
= 4η

3τ
− 
(τ ) −

[
4τπ

3τ

 + λ1

2η2

2

]
, (6)

τ�

∂�

∂τ
= −ζ

τ
− �(τ ). (7)

It was recently pointed out by Baier et al. [32] that the terms
in the square bracket in Eq. (6) are required in a theory with
conformal symmetry. Conformal symmetry is approximately
realized in QCD at high temperatures. Since these terms have

034913-2



STRESS TENSOR AND BULK VISCOSITY IN . . . PHYSICAL REVIEW C 78, 034913 (2008)

not been studied quantitatively, we will examine their influence
on the evolution below.

The entropy density s obeys the equation [33]

∂(τs)

∂τ
= τ

T

(
3
2

4η
+ �2

ζ

)
. (8)

τs = dS/(dy dA) is the entropy per unit rapidity y and
transverse area A. τs is constant for ideal hydrodynamics. Bulk
and shear stresses relax toward their Navier-Stokes values.
The late time behavior of these values for the one-dimensional
boost-invariant expansion is then directly given by Eq. (4) as


 = 4η

3τ
, � = −ζ

τ
. (9)

The larger the shear viscosity, the more anisotropic the pressure
remains at late times.

Relaxation times and viscosities are related by coefficients
β0 and β2 which are determined by the underlying theory:

τ� = ζβ0, τπ = 2ηβ2. (10)

Kinetic theory of massless partons predicts a value, β2 =
3/(4P ) [30,31]. This leads to a relaxation time which is
roughly given by

τ (kin)
π = 3

2πT
. (11)

In conformal hydrodynamics, a different behavior is ob-
tained by matching the asymptotic form of a boost-invariant,
longitudinally expanding thermal medium in the N = 4
supersymmetric Yang-Mills (SYM) theory to a hydrodynamic
evolution [32,34]

τ (SYM)
π = 2 − ln 2

2πT
. (12)

Obviously, the value of the relaxation time from kinetic theory
is about twice as long as the latter. We will test both values
below. In absence of further reliable predictions, we will
always assume the same relaxation time for the bulk stress
as a function of temperature, τ�(T ) = τπ (T ). The coefficient
λ1 in Eq. (6) was determined for supersymmetric Yang-Mills
theory to be [32]

λ1 = η

2πT
. (13)

III. VISCOSITIES AND INITIAL CONDITIONS

We have already specified the equations of motion and our
choice for the parameters τπ , τ� in the previous section. We
further assume that the matter is characterized by a minimal
shear viscosity, i.e., we set η = ηKSS = s/(4π ). This is not
in contradiction to lattice QCD results [35], which lie close
to the KSS bound. The pressure anisotropies found in our
calculation can therefore be considered as a lower bound. For
the equilibrium equation of state, we use recent lattice QCD
results for one heavy and two light quark flavors [14]. We
have parametrized the reduced equilibrium pressure P/T 4 and
interaction measure (ε − 3P )/T 4 for Nτ = 6 lattices from this
reference. The critical temperature is Tc = 196 MeV.

For the bulk viscosity, we explore several options. Our
starting point is a recent calculation by Meyer in quenched
QCD [15]. This calculation is not directly compatible with
our equation of state from unquenched QCD. To deal with
this problem, we have here chosen to parametrize the dimen-
sionless ratio ζ/s as a function of the dimensionless ratio
ω = (ε − 3P )/(ε + P ). This choice corrects for the shift in
the critical temperature, and it softens the very steeply peaked
behavior of ζ/s found by Meyer in quenched QCD. We call the
bulk viscosity resulting from this fit ζ0. We note that several
mechanisms can contribute to the bulk viscosity [36]. In QCD,
ζ/s is not only a function of the interaction measure but
also of the speed of sound, the quark condensates, and the
relaxation time scale of the compression mode [11,37]. We
also note that the statistical and systematic uncertainties of
the existing lattice results for quenched QCD are quite large.
We account for these combined uncertainties by running the
hydrodynamic evolution for several values of ζ which have
been obtained from ζ0 by multiplying with a scaling factor cζ ,
that is, ζ = cζ ζ0, and by changing the width of the peak near
Tc by a scale factor 1/aζ .

We show the results of our fits in Fig. 1. The kinematic
bulk viscosity fitted from the lattice results as a function of
temperature [shown by the solid (blue) curve] is compared with
the kinematic shear viscosity from the KSS relation η/s =
1/(4π ) [dash-dotted (black) line]. The dashed (blue) curve
shows a modified parametrization for ζ/s with double the
peak height and half the peak width (cζ = aζ = 2). The bulk
viscosity exceeds the shear viscosity for temperatures below
220 MeV. The insert shows the interaction measure fitted from
the results of Cheng et al. [14].

For all simulations, we choose a starting time τ0 =
0.3 fm/c which is smaller than the equilibration times estimated
from ideal hydrodynamics and is compatible with the expected
decoherence time [38,39] of the initial gluon field. The initial
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FIG. 1. (Color online) (a) Kinematic bulk viscosity ζ/s and
kinematic shear viscosity η/s as functions of temperature T . η/s is
determined by the KSS bound η/s = 1/(4π ); and ζ/s is derived by a
fit to the results reported in Ref. [15], using the conformal measure ω

as scaling variable. This fit is denoted as cζ = aζ = 1. The blue dashed
curve shows a modified parametrization for ζ/s with double the peak
height (cζ = 2) and half the peak width (aζ = 2). (b) Parametrization
of the reduced interaction measure (ε − 3P )/T 4 from Ref. [14] as a
function of T .
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FRIES, MÜLLER, AND SCHÄFER PHYSICAL REVIEW C 78, 034913 (2008)

energy density is fixed to be ε(τ0) = 50 GeV/fm3 which
corresponds to an initial equilibrium temperature of roughly
400 MeV. We discuss three different initial conditions:

(i) Equilibration sets �(τ0) = 
(τ0) = 0.
(ii) First order uses the values given by first-order vis-

cous hydrodynamics, �(τ0) = −ζ (T0)/τ0 and 
(τ0) =
4η(T0)/(3τ0), where T0 is the initial temperature at τ0.

(iii) Anisotropic uses �(τ0) = −ζ (T0)/τ0 as in condition
(ii), but fixes 
(τ0) = P (τ0) + �(τ0) to set the initial
longitudinal pressure to zero.

We also remind the reader that we will run the hydrody-
namic evolution both with the conformal terms in Eq. (6) (we
will denote this scenario by the label “C”) and in a standard
version without them (denoted by “S”). We also explore both
the short (“SYM”) and long (“kin”) relaxation time. Each run
below will be denoted by a four-component label indicating the
set of initial conditions, relaxation times, absence or presence
of the conformal terms, and the scaling variable cζ = ζ/ζ0.

IV. RESULTS

In this section, we present the results of numerical solutions
of the viscous hydrodynamic Eqs. (5)–(7). We start by
checking the influence of different values of the bulk viscosity
by varying cζ with aζ fixed. We compare the vanishing bulk
viscosity (cζ = 0) with the lattice inspired value (cζ = 1). For
these runs, we fix the set of initial conditions to anisotropic
(iii), use evolution without the conformal terms (S), and
choose the short relaxation time (SYM). Figure 2 shows
the development of different components of the pressure
relative to the equilibrium pressure P as a function of time.
Figure 2(a) shows the dissipative stress components −�/P

and 
/P due to bulk and shear viscosity, respectively, for
cζ = 1. As expected, the effects of shear viscosity are dominant
at early times, while bulk stress peaks later, when ζ/s starts to
rise around Tc. The peak in −�/P is reached already slightly
before the critical temperature Tc; the time τc ≈ 8.4 fm/c when
the system reaches Tc (for cζ = 1) is indicated by the solid
triangles on the abscissae.

Figure 2(b) displays the relative longitudinal and transverse
pressure P⊥/P and Pz/P , respectively, for cζ = 1 (solid
lines) and cζ = 0 (dashed lines). Both quantities develop
a pronounced minimum just above Tc if bulk viscosity is
present, which corresponds to the maximum in −�/P . The
minima above Tc are absent for vanishing bulk viscosity. We
observe that the system is still very anisotropic even at Tc;
and with cζ = 1, both pressure components are well below
the equilibrium value.

As mentioned earlier, the stability of boost invariant
relativistic hydrodynamics in the presence of a bulk viscosity
was recently studied by Torrieri and Mishustin [19]. Their
treatment differs from ours in two important details: they study
the first-order (Navier-Stokes) formulation of viscous hydro-
dynamics, and they use a parametrization of the temperature
dependence of the bulk viscosity which is much more strongly
peaked near Tc and attains a much higher peak value. Even
for their most conservative choice (z0 = 0.1 in the notation of
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FIG. 2. (Color online) (a) Relative bulk and shear stresses, −�/P

and 
/P , as functions of time τ for the scenario (iii, S, SYM, cζ = 1).
The time when Tc is reached is indicated by the triangle. (b) Relative
transverse and longitudinal pressures, P⊥/P and Pz/P , as functions
of time τ for (iii, S, SYM, cζ = 1) (solid lines) and for the same
scenario but with cζ set to zero (dashed lines). (c) Relative entropy
production from bulk and shear stress, S�/Sf and S
/Sf , as functions
of time τ for the same scenarios with cζ = 1. All results are for aζ = 1.

Ref. [19]), the peak in ζ/s is about 20 times higher than our
peak value and 5 times as high as the largest value obtained
by Meyer [35]. We have solved our set of equations with their
parameters and used a very small relaxation time τ� = τπ

to emulate the Navier-Stokes limit. We find that Pz becomes
strongly negative in the range where ζ/s peaks, indicating that
the matter is not only hydrodynamically unstable, as found in
Ref. [19], but also thermodynamically unstable. This behavior
is obviously a result of the highly peaked parametrization
adopted in Ref. [19].

We now return to our own study. Figure 2(c) shows the
entropy per unit rapidity and transverse area produced by
shear and bulk viscous effects, S
 = τs
 and Sπ = τs�,
respectively. They correspond to the first and second terms
in Eq. (8) and are shown relative to the total final value Sf =
τf s(τf ), where the final time τf is fixed at 50 fm/c. We note
that despite its dramatic effects on the longitudinal pressure,
the contribution of the bulk stress to entropy production is
rather moderate. The entropy produced by shear stress is
much larger because of the large velocity gradient in the initial
state which generates large dissipative effects. However, the
majority of the entropy production is confined to the earliest
time period τ0 < τ < 1 fm/c, suggesting that a hydrodynamic
description of the matter rapidly loses reliability before 1 fm/c.

034913-4



STRESS TENSOR AND BULK VISCOSITY IN . . . PHYSICAL REVIEW C 78, 034913 (2008)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

.P
re

ss
u

re

5 1 2 5 10 2 5

(fm/c)

(a) Pz/P

0.0

0.05

0.1

0.15

0.2

0.25

0.3
R

el
.E

n
tr

o
p

y
c = 0
c = 1, a = 1
c = 2, a = 1

(b) S /Sf

c = 1, a = 2
c = 2, a = 2

FIG. 3. (Color online) (a) Relative longitudinal pressure Pz/P as
function of time τ for scenario (i, S, SYM) and various choices for
the bulk viscosity (cζ = 0, 1, 2 and aζ = 1, 2). The solid line shows
our “standard” parametrization (cζ = aζ = 1). (b) Relative entropy
production from bulk stress, S�/Sf , as function of time τ for the
same scenarios as in part (a).

We also remind the reader that our results are obtained for the
minimal value of the shear viscosity, η = s/(4π ). Had we
chosen a larger shear viscosity, the produced entropy would
be respectively larger.

In Fig. 3 we have varied the parameters cζ and aζ ,
influencing the height and width of the peak in the bulk
viscosity near Tc, respectively, for the scenario (i, S, SYM).
The short-dashed (blue) curve in Fig. 3(a) shows the relative
longitudinal pressure in the absence of any bulk viscosity for
comparison. The solid and dash-dotted (red) lines are obtained
for our parametrization of ζ (T ) as shown by the solid (blue)
line in Fig. 1, with its height scaled by the factor cζ = 1, 2.
Obviously, the relative longitudinal pressure drops to almost
zero above Tc for cζ = 2, indicating that the local equilibrium
assumption begins to break down in this case. The dotted and
long-dashed (black) curves correspond to the parametrization
(aζ = 2) for a narrower peak in ζ (T ), as shown by the dashed
(blue) line in Fig. 1. In this case, the onset of the strong
reduction in Pz/P is delayed compared with the case aζ = 1,
but the effect in the immediate vicinity of Tc [the location is
indicated by the triangle on the abscissa] is found to be mainly
sensitive to the height of the peak, parametrized by cζ , not its
width. It is important to note, however, that the hydrodynamic
evolution becomes increasingly sensitive to the precise value
of the equilibration time for the bulk viscosity, τ�, as the
width of the peak in ζ (T ) becomes narrower. The small value
chosen here (τ� = τπ ) may be inappropriate for a very narrow
peak. Insofar as a narrow, high peak in ζ (T ) is indicative of a
near-critical behavior of the medium near Tc, one would expect
any mode that participates in this behavior to exhibit critical
slowing down and its relaxation time to increase.
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FIG. 4. (Color online) (a) Relative transverse and longitudinal
pressure, P⊥/P and Pz/P , as functions of time τ for (S, SYM,
cζ = 1) and initial conditions (i) (black), (ii) (blue), and (iii) (red).
(b) Relative entropy production from bulk and shear stress, S�/Sf

and S
/Sf , as functions of time τ for the same set of scenarios. Note
that the different curves for S�/Sf lie almost on top of each other. The
triangle indicates the time of critical temperature for initial condition
(iii). For conditions (i) and (ii), Tc is reached slightly earlier. All
curves are for aζ = 1.

We now compare the impact of different initial conditions
on the standard evolution (S) for a bulk viscosity given by
the scaling factors cζ = aζ = 1 and short relaxation time
(SYM). Figure 4(a) shows the relative pressure components
Pz/P and P⊥/P . The most noticeable feature here is that
even for equilibrium initial conditions (i), the strong gradients
in longitudinal direction drive the system immediately off
equilibrium. The first-order initial conditions (ii) are very close
to the maximal anisotropic initial conditions (iii), which were
loosely extrapolated from classical gluon fields. Interestingly,
the effect of the different initial conditions is wiped out after
a very short time �τ ≈ 0.5 fm/c, and the system evolves in a
universal way from that time forward. However, the different
initial conditions for 
 leave a trace in the entropy produced
during this stage of the evolution, as can be seen in Fig. 4(b).
On the other hand, the entropy production from bulk stress
picks up most contributions around Tc and is independent of
the initial conditions.

Last, we study the influence of the relaxation times and
the conformal terms in the evolution. Figure 5(a) shows Pz/P

and P⊥/P , using the standard equation of motion (S) for 


and cζ = aζ = 1 using both the estimate for relaxation times
τπ and τ� from kinetic theory (kin), and the lower estimate
(SYM). We also show the lower τπ (kin) with the additional
conformal terms (C) switched on and cζ = 1, and the same
with cζ = 0. Figure 5(b) shows the relative contributions to
entropy production in these four scenarios as before.

Obviously, larger relaxation times lead to increased entropy
production and larger deviations from equilibrium. This is very
clear for the shear contributions at early times. The effect of
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FIG. 5. (Color online) (a) Relative transverse and longitudinal
pressure, P⊥/P and Pz/P . (b) Relative entropy production from bulk
and shear stress, S�/Sf and S
/Sf . The different scenarios shown
for initial conditions (iii) are τπ = τ� = τ (kin)

π from kinetic theory,
see Eq. (11), no conformal terms in Eq. (6), cζ = 1 [red]; τπ = τ� =
τ (SYM)
π from conformal symmetry, see Eq. (12), no conformal terms in

Eq. (6), cζ = 1 [blue]; τπ = τ� = τ (SYM)
π , conformal terms in Eq. (6)

switched on, cζ = 1 [black]; τπ = τ� = τ (SYM)
π , conformal terms in

Eq. (6) switched on, cζ = 0 [gray]. The triangles indicate the largest
and smallest times of critical temperature corresponding to the last
and the first scenarios, respectively.

different relaxation times seems to be very much suppressed
for the bulk stress. In fact, after τ ≈ 2 fm/c, we again see
a universal evolution of the system for fixed bulk viscosity.
As expected, the additional conformal terms in Eq. (6) lead
to a suppression of the shear stress which manifests itself
in a rapid relaxation away from the maximum anisotropic
initial condition. Enforcing conformal symmetry leads to
smaller anisotropies between the transverse and longitudinal
directions, and the system is generally closer to equilibrium.
This agrees with the recent observation of Song and Heinz [40]
made in the context of a study of two-dimensional boost
invariant hydrodynamics including transverse expansion.

V. DISCUSSION AND SUMMARY

We can now answer some of the questions posed at
the beginning of the paper. First, independent of the initial
conditions, we find that the longitudinal pressure reaches at
most half of the equilibrium pressure throughout the entire
lifetime of the quark-gluon plasma phase if the bulk viscosity
is close to the values suggested by lattice QCD (cζ ≈ 1), even
if the shear viscosity takes its minimum value ηKSS. This
keeps the system away from equilibrium and reduces the work
done in the longitudinal expansion. Bulk stress is the main
contribution to this effect after about 2 fm/c, and we find
that the evolution of the system after this time, for a given
equation of state at equilibrium, is solely determined by the
value of the bulk viscosity and largely independent of the initial
conditions and relaxation times. Scaling our lattice inspired

bulk viscosity with factors cζ > 1 leads to unacceptably small
or even negative longitudinal pressure, which would indicate
a breakdown of the hydrodynamic picture. These results
remain qualitatively unchanged if the width of the peak in
the kinematic bulk viscosity is varied by a factor of 2.

We also found that isotropization of the stress tensor
proceeds rather slowly with |PT − Pz|/P as large as 20%
around Tc. It was recently pointed out by Martinez and
Strickland [41] that the anisotropy of the stress tensor of
the quark-gluon plasma may be observable via changes in
the dilepton yield. On the other hand, the strong reduction
in the relative longitudinal pressure, which may even lead to
negative values of Pz near Tc, is reminiscent of a first-order
phase transition, where the negative pressure is avoided by
the formation of a mixed phase. Under favorable conditions,
the delay of the expansion caused by mixed phase formation
can be observed as a directional dependence of the identical-
particle correlation function in density interferometry [42–44].
The scenario found here may show similar effects, but it differs
from the traditional one by the anisotropy of the stress tensor
caused by the continued presence of the shear viscosity. A
realistic exploration of the influence of the bulk viscosity on
identical particle correlations will require the hydrodynamic
treatment of the transverse expansion including both bulk and
shear viscosities.

On the other hand, we find that bulk stress has a rather
modest impact on entropy production, contrary to some pre-
vious expectations. For the parametrization ζ (T ) considered
here (see Fig. 1, cζ = 1), the entropy increase due to the bulk
viscosity is at most 10% of the final entropy. The reason is that
the velocity gradients due to the longitudinal expansion have
decreased significantly when the fireball approaches Tc. This
can also be easily seen by noting that we have only shown bulk
and shear stresses relative to the equilibrium pressure. While
those are comparable, by the time the maximum in −�/P

around Tc is reached, the pressure P has dropped significantly
and the absolute values of � are much smaller than the values
of 
 reached at times smaller than 1 fm/c. A bulk viscosity
much larger than that indicated by our extrapolation of the
existing lattice QCD results (represented here by scale factors
cζ � 1) would be necessary to dominate entropy production
after decoherence. This statement is independent of the initial
condition for the bulk stress.

Nonlinear terms in the evolution of the shear stress, dictated
by conformal symmetry, suppress the shear stress and lead to
reduced anisotropies and entropy production. However, these
effects are not large enough to affect the conclusions drawn
above qualitatively.

To summarize, large bulk viscosities around Tc lead to
prolonged deviations from equilibrium that could be sizable
throughout the entire lifetime of the quark-gluon plasma. Bulk
viscosities just slightly larger than currently favored could
easily lead to a breakdown of the hydrodynamic approximation
around Tc. The decreased pressure should slow down the
expansion of the system and increase the time spent in the
vicinity of the phase transition. However, the amount of
entropy produced through bulk stress around Tc is smaller than
that produced by shear stress at earlier stages of the evolution
and thus does not result in a large increase of the final particle
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multiplicity, unless the bulk viscosity is much larger than that
considered here.
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