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Dilepton production in heavy-ion collisions with in-medium spectral functions of vector mesons
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The in-medium spectral functions of ρ and ω mesons and the broadening of nucleon resonances at finite
baryon density are calculated self-consistently by combining a resonance dominance model for the vector meson
production with an extended vector meson dominance model. The influence of the in-medium modifications
of the vector meson properties on the dilepton spectrum in heavy-ion collisions is investigated. The dilepton
spectrum is generated for the C + C reaction at 2.0A GeV and compared with recent HADES Collaboration data.
The collision dynamics is then described by the Tübingen relativistic quantum molecular dynamics transport
model. We find that an iterative calculation of the vector meson spectral functions that takes into account the
broadening of the nucleon resonances due to their increased in-medium decay branchings is convergent and
provides a reasonable description of the experimental data in the mass region 0.45 � M � 0.75 GeV. On the
other side, the theoretical calculations slightly underestimate the region mπ � M � 0.4 GeV. Popular in-medium
scenarios such as a schematic collisional broadening and dropping vector mesons masses are discussed as well.
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I. INTRODUCTION

It is a well-established fact that hadrons change their prop-
erties in a dense and excited nuclear medium. Such changes
are reflected in mass shifts and/or in the development of
complex spectral properties. A typical example is the nucleon
that suffers a substantial mass shift at finite density, see,
e.g., Ref. [1], but maintains its good quasiparticle properties.
Besides a shift of the pole mass, resonances, both nucleonic
and mesonic, have the tendency to be broadened and to develop
spectral distributions that may even lead to a loss of good
quasiparticle properties. For example, total photoabsorption
cross sections on heavy nuclei [2,3] provide evidence for
a substantial collisional broadening or melting of nucleon
resonances inside the medium [4].

To study the medium modifications of hadrons is of particu-
lar interest, since it not only provides insight into the properties
of the strongly interacting hadronic many-body systems but
also allows conclusions to be drawn on QCD “observables”
that characterize the medium. A prominent example is the
scalar quark condensate 〈q̄q〉 which determines the chiral
symmetry breaking scale of QCD in the nonperturbative sector.

Heavy-ion reactions present therefore a unique oppor-
tunity for the study of nuclear or hadronic matter under
extreme conditions, i.e., at supranormal densities and high
temperatures. Photo- or hadron-induced reactions on the
nucleus provide complementary information on cold matter
at moderate densities.

The light vector mesons ρ and ω are both of particular
interest, because their decay into dileptons allows one to probe
the electromagnetic response of the medium. For this purpose,
electromagnetic probes such as dilepton pairs have proven
to be most efficient, since they leave the medium essentially
undistorted by final-state interactions. In heavy-ion reactions,
they provide a clear view of the effective degrees of freedom
at high baryon density and temperature.

Theoretically, an abundance of models can predict the
changes of vector meson masses and widths in high density,
high temperature nuclear matter, and they can be roughly
divided into four different classes: Brown-Rho scaling [5],
models based on QCD sum rules [6–10], dispersion relations
[10–13], and effective hadronic models [10,14–23]. The
first approaches to the description of the in-medium vector
mesons were based on effective field theories (EFTs) [24]
and the Nambu–Jona-Lasinio (NJL) model [25]. In some
aspects, the various approaches come to qualitatively similar
conclusions; however, the overall situation is still unclear.
While Brown-Rho scaling, at least in its naive form, predicts a
common downward mass shift of the vector mesons where the
quasiparticle properties are essentially maintained, the
hadronic models come to different conclusions. Concerning
the ρ meson, these sets of models predict in general a sig-
nificant broadening of the ρ and the development of complex
structures in the spectral functions, e.g., the appearance of
additional peaks caused by the coupling to nucleon resonances.
In some cases, this occurs in line with a slight shift of the
quasiparticle peak which corresponds to an additional mass
shift [10]. Concerning the ω meson, the situation is even
less clear. Early QCD sum rules calculations predicted even
a repulsive mass shift [6], while in Refs. [8,9] the strong
dependence of the ω properties on the higher order unknown
quark condensates has been pointed out, which leaves room
for mass shifts in both directions. The hadronic approaches
predict in common an essential broadening of the ω, although
they range from a strong downward mass shift [10] to a
slight upward mass shift [20,23] to an essential repulsive mass
shift [19].

However, recent progress from the experimental side allows
one, at least partially, to constrain the various theoretical
models. While the CERES [26,27] and HELIOS [28] dilepton
experiments at the CERN Super Proton Synchrotron (SPS)
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revealed clear evidence for in-medium effects in heavy-ion
reactions (Pb + Au) through the observed enhancement of
the dilepton spectra below the the ρ and ω peaks rela-
tive to standard hadronic cocktail sources, such a behavior
could be explained either within a scenario of a drop-
ping ρ vector meson mass [29] or by the inclusion of
in-medium spectral functions for the vector mesons [17].
Thanks to unprecedented resolution, the recent NA60 dimuon
experiment [30] was able to “measure” the in-medium ρ

spectral function under the conditions of ultrarelativistic
heavy-ion collisions. NA60 seems to rule out a naive drop-
ping mass scenario but supports the picture of modified
ρ-ω spectral functions predicted by hadronic many-body
theory [31].

A second set of heavy-ion experiments have been per-
formed at laboratory energies of 1.0A GeV (Ca + Ca and
C + C) by the DLS Collaboration at the LBNL Bevalac
[32,33]. Also in this case, the low mass region of the dilepton
spectra is underestimated by present transport calculations, in
contrast to similar measurements (1.04–4.88 GeV/nucleon) for
the p + p and p + d systems. As opposed to the ultrarelativis-
tic case, the situation does not improve when the in-medium
spectral functions or the dropping mass scenarios are taken
into account [34,35] (the DLS puzzle). Other scenarios such
as possible contributions from the quark-gluon plasma or
in-medium modifications of the η mass have been excluded
as a possible resolution of this puzzle. Decoherence effects
[36] have proven to be partially successful in explaining
the difference between the DLS data and the theoretical
predictions. However, in this energy regime, which probes
the high density, low temperature phase, the situation is going
to be improved significantly with the already existing and
forthcoming measurements of the HADES Collaboration at
GSI [37–39]. Complemented are the heavy-ion experiments
by γ -nucleus reactions. The CB-TAPS experiment [40], which
focused exclusively on the ω meson and reported an enhanced
strength below the ω peak, reports a broadening of the ω

observed in γ -nucleus reactions. Also, the dilepton mass
spectrum measured at Japan’s National Laboratory for High
Energy Physics (KEK) in p + A reactions at a beam energy
of 12 GeV [41,42] revealed an excess of dileptons below
the ρ-meson peak over known sources. However, these data
could not be explained within the standard dropping mass
scenario and/or assuming a significant collision broadening
of the vector mesons [43]. An enhanced bremsstrahlung
contribution, which is presently under debate at low energies
[44,45], will most likely not help explain the high energy KEK
data.

A major difficulty in the interpretation of heavy-ion
collision experimental data lies in the fact that the gap between
observables and theoretically predicted in-medium properties
of hadrons has to be filled by transport models. Transport
models account for complicated reaction dynamics and pro-
vide the link between theory and experiment. A drawback
of such a procedure is dependence on the phenomenology
and an extended set of input parameters entering the models.
Usually, a significant fraction of such parameters can be neither
constrained by data nor based on well-established theoretical

approaches. This certainly diminishes the possibility of testing
experimentally theory and drawing physical conclusions from
the experimental data.

In the present work, we remove some model uncertainties
by applying a unified description of vector meson production,
vacuum decays, and in-medium properties of vector mesons.
For this purpose, we use a resonance dominance model for
nucleon-nucleon scattering in combination with an extended
vector meson dominance (eVMD) model. Nucleon resonance
dominance (NRD) is an effective principle which assumes that
vector meson production runs over the excitation of nucleon
resonances [20,46–48]. On the other hand, eVMD introduces
radially excited ρ and ω mesons [49] in the RNγ transition
form factors [46] in order to fulfill the quark counting
rules as a strict consequence of QCD [50]. This allows the
kinematically complete, gauge invariant, fully relativistic,
and unified description of the nucleon resonance transition
amplitudes R → NV (V = ω, ρ), R → Nγ, γ ∗N → R

(electro-production), and R → Ne+e− with arbitrary spin
and parity in terms of the magnetic, electric, and Coulomb
transition form factors. The eVMD model solves a long-
standing problem of VMD which underestimates the ρ-meson
branchings of nucleon resonances when the normalization to
the photon branchings is performed. The parameters of eVMD
are fixed by fitting to photoproduction and electroproduction
experimental data, by using results of the πN multichannel
partial-wave analysis, and, when the experimental data are
not available, by using predictions of the quark models [46].

Once the model parameters are fixed, one obtains a unified
(and parameter free) description of quite a broad range of
physical processes including vector meson decays, nucleon
resonance decays to vector mesons and dileptons, and vector
meson and dilepton production in elementary and heavy-ion
reactions. The NRD+eVMD model has successfully been
applied earlier to vector meson (ω and φ) production in
elementary (p + p) reactions [51,52] and dilepton production
in elementary p + p and p + d reactions [47]. In Ref. [53] it
has been further demonstrated that this model is qualitatively
able to explain the ω and φ angular distributions in p + p

reactions [54,55].
Embedded within the framework of the Tübingen relativis-

tic quantum molecular dynamics (RQMD) transport model
[56,57], the NRD+eVMD model has been applied to heavy-
ion reactions without introducing new parameters [36,58].
The comparison with the dilepton data from DLS [32,33]
and HADES [38] collaborations revealed clear evidence for
the in-medium effects required, in particular, to suppress
excessive dilepton production from the ω-meson decays. In
Refs. [36,58] the collisional broadening and dropping the
vector meson masses have been analyzed phenomenologically.
In the present work, we go beyond the phenomenological
analysis by calculating the in-medium spectral functions
of the ρ and ω mesons and nucleon resonances using
the NRD+eVMD approach. This allows the first self-
consistent theoretical description to be made of dilepton
spectra based on a unified model for nucleon resonances,
vector mesons, and dilepton production, and their in-medium
modifications.
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II. IN-MEDIUM SPECTRAL FUNCTIONS

A. Resonance model

The in-medium properties of hadrons are generally ex-
pressed in terms of the self-energy �V . The self-energy
determines the spectral function of the quasiparticle in the
medium. As long as the self-energy shows only a moderate
energy dependence, the real part of �V can be interpreted in
terms of a mass shift, while the imaginary part generates the
in-medium width. To leading order in density, the self-energy is
determined by the forward scattering length of the hadron with
the surrounding particles. Since the ρ-nucleon and ω-nucleon
scattering lengths are unknown from the experimental side,
these quantities have to be determined theoretically.

In the present work, we apply the resonance model to
calculate the forward scattering of vector mesons on nucleons.
The resonance model is not a field theory in the strict sense
where corresponding Feynman diagrams are evaluated but
rather an effective model that has some similarity to a field
theory based on Feynman diagrams with the intermediate
resonances in the s channel of vector meson and nucleon
scattering. Such an approach was applied in many previous
investigations of vector mesons properties in the nuclear
medium [13,20,21,59,60]. The present approach differs with
respect to previous investigations by the fact that in the
NRD+eVMD model the corresponding couplings of reso-
nances to the nucleon and vector meson are of relativistic
form and kinematically complete.

The self-energy �V of a vector meson V in an isotopically
symmetric nuclear medium is determined by the invariant N

forward scattering amplitude AV N

�V = −
∫

AV N2 × 2
d3pN

2EN (2π )3
. (1)

Here V refers either to a ρ0 or a ω meson. Due to isosymmetry
of the medium, the self-energy �V for ρ± mesons is the same
as for ρ0 meson. The forward scattering amplitude AV N is
the same for proton (N = p) and neutron (N = n) scattering.
The integral in Eq. (1) runs over the nucleon momenta within
the Fermi sphere with Fermi momentum determined by nuclear
matter density ρB

ρB = 2

3π2
p3

F . (2)

The amplitude AV N is of Breit-Wigner form for resonance
scattering

AV N = −
∑
R

(2JR + 1)

2 × 3

8πs

k

�RNV (s)

s − M2
R + i

√
s�tot

R (s)
. (3)

In Eq. (3) the scattered vector meson has running mass
squared M2 and momentum p, s = (pN + p)2 is the running
mass squared of the baryon resonance R, and k is the c.m.
momentum. The width �RNV (s) refers to the decay of the
baryon resonance R to nucleon N and vector meson V with
fixed mass squared M2.

The width �tot
R (s) refers to the decays of resonance R

not modified by the medium, in particular, with the vacuum
spectral functions for the decay products. This represents
the first approximation in the calculation of the medium

contribution �V to the total self-energy �tot
V = �V + �

(0)
V

of the vector meson V . The vacuum self-energy �
(0)
V is

determined by the corresponding vacuum width

��
(0)
V = −mV �tot

V (M), ��
(0)
V = 0. (4)

Here �tot
ρ (M), �tot

ω (M) are essentially given by the decay
widths of the ρ meson into two pions and of the ω meson
into three pions, respectively. The two-pion decay width of the
ρ meson is given by

�tot
ρ (M) = �tot

ρ (mρ)
mρ

M

(
kπ (M,mπ,mπ )

kπ (mρ,mπ,mπ )

)3

×	
(
M2 − 4m2

π

)
, (5)

where kπ (M,mπ,mπ ) is the momentum of the pions in the
rest frame of the decaying ρ meson having mass M; mρ is the
physical ρ meson mass, and �tot

ρ (mρ)=150 MeV the on-shell
decay width. The three-pion decay width of the ω meson can
be calculated according to the two-step process ω → ρπ →
3π as proposed by Gell-Mann, Sharp, and Wagner [61]. The
corresponding result can be parametrized in the simple form

�tot
ω (M) = �tot

ω (mω)
mω

M

(
M2 − 9m2

π

m2
ω − 9m2

π

)3

	
(
M2 − 9m2

π

)
,

(6)

with mω the physical ω-meson mass, and �tot
ω (mω) = 8.4 MeV

the on-shell decay width.
In the next order, the medium modification of the res-

onance spectral function including the modification of the
resonance width due to the modifications of products of the
resonance decay should be taken into account.

The width �RNV (s) can be expressed by the helicity am-
plitudes A 3

2
= 〈1 − 1

2 |S| 3
2 〉, A 1

2
= 〈1 1

2 |S| 1
2 〉, and S 1

2
= 〈0 −

1
2 |S| 1

2 〉 of the R → NV decay [46]

�RNV (s) = k

8πs

2
(
A2

3
2
+ A2

1
2
+ S2

1
2

)
(2JR + 1)

. (7)

The calculation of these amplitudes uses the coupling
constants of vector mesons to the RN transition current. They
were obtained in Ref. [46] by fitting photoproduction and
electroproduction amplitudes of baryonic resonances in the
eVMD model. The transverse and longitudinal self-energies
�T

V and �L
V can be obtained by the following substitutions in

Eq. (7):

2

3

(
A2

3
2
+ A2

1
2
+ S2

1
2

) → (
A2

3
2
+ A2

1
2

)1 + cos2 θ

2
+ 2S2

1
2

sin2 θ

2
,

(8)
2

3

(
A2

3
2
+ A2

1
2
+ S2

1
2

) → 2S2
1
2

cos2 θ + (
A2

3
2
+ A2

1
2

)
sin2 θ,

(9)

where θ is the polar angle of vector meson momentum in the
c.m. system. The polarization averaged self-energy �V reads
then

�V = 2�T
V + �L

V

3
. (10)
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The vector meson spectral function AV is defined by the off-
shell self-energy �tot

V (M, |p|) as follows

AV (M, |p|) = 1

π

−��tot
V(

M2 − m2
V − ��tot

V

)2 + (��tot
V

)2 . (11)

The helicity amplitudes entering into Eq. (7) have
been calculated within the same relativistic approach [46]
and with the same set of baryonic resonances R that has
successfully been applied to dilepton and vector meson
production in p + p collisions [47,51,52]. This includes
the following set of resonances for ρN and ωN scattering:
N∗(1535) 1

2
−
, N∗(1650) 1

2
−
, N∗(1520) 3

2
−
, N∗(1440) 1

2
+
,

N∗(1720) 3
2

+
, N∗(1680) 5

2

+
,�(1620) 1

2
−
,�(1700) 3

2
−
,�(1232)

3
2

+
,�(1905) 5

2

+
,�(1950) 7

2
+

.
A straightforward extension of the approach to finite tem-

perature and baryon chemical potential would be to integrate
the present amplitudes, Eq. (7), over hot Fermi distributions.
This can easily be done and will be a first step toward an
application, e.g., at SPS conditions. However, for a meaningful
determination of spectral functions at SPS conditions, one
would have to take into account the coupling to not only
baryonic but also mesonic excitations (π,K, . . .) [31].

So far, analyticity has not been used in the data analyses to
determine the multichannel πN scattering amplitudes [62–64].
The current phenomenological schemes provide resonance
masses and widths, based on multichannel unitarity and other,
less fundamental constraints. The background phases entering
the dispersion relations are not provided.

We did not attempt to embed analyticity and restricted our
approach to energies s < 4 GeV2, where the sum over Breit-
Wigner poles gives typically a good approximation for the
amplitudes [65]. The background is described by t-channel
σ -meson exchange and the u-channel part of the Compton
ρN scattering diagram evaluated in the Born approximation.

B. Nonresonant contributions

Up to now we have not discussed possible nonresonant
contributions to the forward vector meson-nucleon scattering.
The reason is twofold. First, we cannot fix the nonresonant
amplitudes with the same accuracy as the resonant ones.
Second, if we fix them with the available accuracy we would
find that nonresonant amplitudes approximately cancel in the
sum. For example, in the case of the ρ meson, there exist
the Compton scattering amplitude which gives a positive
contribution to the real part of the ρ-meson self-energy and
the amplitude due to σ -meson exchange which gives a negative
contribution to it (the latter is of the same origin as the
attractive part of the N interaction [66]). The unknown ρρσ

coupling constant can be extracted from the width of the
ρ0 → π+π−π+π− decay if one assumes that this decay goes
over an intermediate ρ0σ state.

The two contributions from Compton scattering (�Compt)
and σ exchange (�σ−exch) are shown in Fig. 1. For the estimate
shown in Fig. 1 the corresponding NNρ tensor coupling
and NNσ coupling strength were taken from the Bonn one-
boson-exchange model [66] for nucleon-nucleon scattering

FIG. 1. (Color online) Nonresonant contributions to ρ-meson
self-energy from Compton scattering amplitude (solid line) and
from the amplitude due to exchange by σ meson (shaded region).
The shaded region corresponds to the error in the branching ratio
Br(ρ0 → π+π−π+π−) = (1.8 ± 0.9) × 10−5.

[fNNρ = 19.8 (tensor coupling) and gNNσ = 10]. The error
band for �σ−exch is due to the relatively large uncertainty in
the four-π decay of the ρ meson

Br (ρ0 → π+π−π+π−) = (1.8 ± 0.9) × 10−5.

Nevertheless, from Fig. 1, one sees that the contributions from
Compton scattering and σ -exchange are of different sign and
comparable magnitude. For the mean value of the Br(ρ0 →
π+π−π+π−) branching, they almost cancel completely, and
changes of the ρ-meson spectral function shown below are
insignificant.

To account for nonresonant contributions to the ω spectral
function within the present scheme, we assume an ωωσ

coupling three times larger than that for ρρσ which is
motivated by the comparison with the two-pion coupling. The
NNω vector coupling (gNNω = 15.9) is again taken from the
Bonn potential [66]. As can be seen in Fig. 4, the influence of
the nonresonant contributions is now more pronounced than
in the case of the ρ meson; however, the qualitative features
of the spectral distributions are not changed.

The Breit-Wigner amplitudes decrease as 1/s with in-
creasing s. Such a parametrization ensures the change of the
resonance phases by π from low to high energies. The σ -meson
exchange generates the scalar mean field, which is known to
be important in the modification of the nucleon masses [1].
It plays an important role in our scheme too. The component
of the amplitude connected to the σ -meson exchange remains
constant for s → ∞.

C. ρ-meson spectral function

In the following, we discuss first the ρ meson. Figure 2
shows the ρ spectral function in nuclear matter at nuclear
saturation density ρ0 = 0.16 fm−3. Longitudinal (AL) and
transverse (AT ) spectral functions are found to be rather
similar. This means that unpolarized spectral functions can
be used in the calculations of dilepton spectra.

We observe a slight upward mass shift of the ρ and
a substantial broadening. At low momenta, the spectral
functions show a clear two-peak structure which vanishes
with increasing vector meson momentum. The results shown
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FIG. 2. (Color online) Longitudinal (L) and transverse (T )
ρ spectral functions in nuclear matter at saturation density for
various momenta p (in GeV). Dashed lines stand for the resonance
approximation, solid lines represent calculations that also included
the nonresonant contributions. The shaded area shows the vacuum
spectral function.

in Fig. 2 are in qualitative and even quantitative agreement
with previous calculations based on the resonance model
assumption [21]. Although the various approaches are based
on different ways to describe the corresponding transition form
factors, eVMD in the present case, and parameters are partially
fixed in a different way, this fact demonstrates the stability of
the essential features predicted by these types of models.

The emerging two-peak structure can be understood as
follows. The value and sign of the self-energy ��V depend
on the pole positions of the particular resonances. If the
vector meson mass squared is small, the invariant mass of
vector meson plus nucleon is below the pole masses of
the relevant nucleon resonances. Therefore the real part of the
vector meson self-energy is negative. This is a typical example
for level repulsion (vector meson plus nucleon and nucleon
resonance). Consequently, the factor (m2 − m2

V − ��V )2 in
the denominator of the vector meson spectral function,
Eq. (11), is small or even equal to zero. Thus the first peak in
the spectral function emerges at a vector meson mass around
0.5 GeV. The major contribution, which generates the first
peak, comes from the N∗(1520), which is in agreement with
the findings reported in Ref. [21].

If the vector meson mass squared lies in the vicinity of its
vacuum value m2

V , the invariant mass of vector meson plus
nucleon lies above the pole masses of the relevant nucleon
resonances, and the real part of the vector meson self-energy
is positive. Thus we obtain the second peak in the spectral
function at a vector meson mass slightly above mV .

At high vector meson momenta, the invariant mass of the
vector meson plus nucleon is always above the pole masses
of the relevant nucleon resonances. As a result, the spectral
function has only one single peak slightly above mV .

Figure 3 displays finally the dependence of the ρ-meson
spectral function on nuclear density. It shows the unpolarized
ρ-meson spectral function at rest at ρ0 and at 2ρ0 nuclear
density. With increasing density, we observe a further shift
of strength away from the original pole mass; i.e., the first
branch in spectral distribution is slightly enhanced and even
shifted to lower masses, while the second peak is slightly

FIG. 3. (Color online) Unpolarized ρ meson spectral function
at rest in nuclear matter at saturation density and twice saturation
density. The shaded area displays the vacuum spectral function.

shifted upward at 2ρ0 compared to ρ0 and also additionally
broadened.

In this context, it should be noted that the resonance model
predictions stand in contrast to the EFT coupled-channel
calculations of Ref. [19], which predict no significant medium
dependence of the ρ, concerning neither a mass shift nor a
broadening. The reason that in the approach of Ref. [19] much
less strength is shifted to lower masses lies mainly in the
much weaker coupling to the N∗(1520) found in Ref. [19].
For this resonance, the value of �Nρ ∼ 2 MeV [19] has to
be compared with �Nρ ∼ 25 MeV from Refs. [21,46]. The
latter value, however, agrees with that of the PDG [67] and the
Manley and Saleski analysis [62].

D. ω-meson spectral function

For the ω meson, we observe a behavior that is principally
similar to that of the ρ meson (see Fig. 4). Transverse and
longitudinal spectral functions are similar. In both cases, the ω

pole mass is slightly shifted upward, and the ω is substantially
broadened around its quasiparticle pole. At ρ0 we obtain an
in-medium ω width of 300 MeV.

As in the case of the ρ, the coupling to low lying resonances
leads to the appearance of a first peak in the spectral function
which lies around 0.5–0.55 GeV. With increasing momentum,
this peak is washed out and disappears finally. However, in
the case of the ω, the influence of nonresonant contributions
is found to be much stronger than for the ρ. The nonresonant
contributions tend to increase the repulsive mass shift of the

FIG. 4. (Color online) Same as Fig. 2, but for ω spectral functions.
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ω pole, and they strongly suppress the first peak in the spectral
function.

This first branch in the spectral distribution is mainly
generated by the N∗(1535) resonance. As discussed in detail
in Refs. [46,51], within the NRD+eVMD model a strong
N∗(1535)Nω coupling is implied by the available electropro-
duction and photoproduction data. However, the Nω decay of
this resonance has not been measured directly, and therefore
input from quark model predictions had to be used to fix the
entire set of eVMD model parameters. Nevertheless, within
such a procedure, a strong N∗(1535)Nω coupling seems
practically unavoidable. In pp → ppω production, the large
N∗(1535)Nω decay mode leads to substantial contributions in
a kinematic regime where the ω is far off-shell, i.e., at small
invariant masses. This is reflected in an enhancement in the
cross section around threshold [51]. Existing data [55,68,69],
however, do not rule out such a behavior. A closer inspection
of the experimentally observed background contributions may
provide important experimental information concerning this
question.

The nuclear matter density dependence of the ω-meson
spectral function is shown in Fig. 5. Again, the figure shows
the unpolarized spectral function at rest at ρ0 and at 2ρ0 nuclear
density. As for the ρ meson, we observe a shift of the second
peak which belongs to the original ω pole toward higher masses
with an increase in density, while the first peak is slightly
shifted to lower masses. Moreover, the height of the second
peak is suppressed by about a factor of 2.

Comparing this with other works, we should mention that
in the pure resonance model approach of Ref. [20], no such
additional peak was observed. The ω-meson spectral functions
obtained within the coupled-channel approach of Ref. [19]
and within the coupled-channel K matrix of Ref. [23] have
qualitative similarity with those from the present approach.
All approaches come practically to the same conclusions: an
upward mass shift, a broadening of the ω, and the appearance
of an additional branch in the ω spectral function. This branch
appears at the same position and is in both cases generated
by the N∗(1535). However, in all approaches, the ω survives
as a quasiparticle, at least at moderate densities up to ρ0;
i.e., there the spectral function is still dominated by the main
branch corresponding to the original ω pole. The predictions
for the density dependence of the spectral function are similar
on a qualitative level; i.e., when going from one to two times

FIG. 5. (Color online) Same as Fig. 3, but for the unpolarized
ω-meson spectral function.

nuclear density, the suppression of the branch corresponding
to the ω pole is of similar size.

However, on a quantitative level, the models come to
different conclusions. While the broadening of the ω is similar
in Refs. [19] and [23], the mass shift is much larger in Ref. [19]
(�mω ∼ 46 MeV at ρ0) than in Ref. [23] (�mω ∼ 10 MeV at
ρ0). In the present case, the in-medium modifications of the ω

meson are even more pronounced than in Refs. [19,23]; i.e.,
the broadening and the upward mass shifts are larger (�mω ∼
75 MeV at ρ0).

A comparison with predictions from QCD sum rules [8,9]
turns out to be difficult because the ω properties depend
strongly on higher order condensates. Sum rules leave space
for upward and downward mass shifts, and the parameters
related to the higher order terms in the operator product
expansion have to finally be fixed from experiments [9].
Moreover, these approaches assume that the ω maintains its
quasiparticle properties. However, due to the distinct two-peak
structure of the present spectral distributions, it is not possible
to assign a common mass shift to an ω quasiparticle pole.

E. In-medium resonances: Role of self-consistency

As the next step, we took into account the changes
induced by the in-medium vector mesons on the total width
of the nucleon resonances. This leads to a self-consistent
determination of the self-energies of the vector mesons in
nuclear matter.

The results shown in the previous section correspond to the
first iteration, if considered in the context of a self-consistent
calculation. In the second iteration, the in-medium widths
of the nucleon resonances �∗

R are determined by insertion
of the in-medium spectral functions of the vector mesons
resulting from the first iteration. Because the latter depend
on the momentum of vector meson with respect to nuclear
medium p, the in-medium widths of the nucleon resonances
�∗

R will depend on the resonance momentum |pR|, that is,

�∗
R(s, |pR|)
= �tot

R (s) +
∑
V

∫
�RNV (s,M)�AV (M, |p|)dM2 d

4π
,

(12)

where �AV refers to the modification of vector meson
spectral functions with respect to the vacuum ones. |p|, among
other things, depends on |pR| and on the orientation of the
decay products momenta with respect to the direction of the
resonance momentum.

Doing so, nucleon-resonance scattering terms leading to the
broadening of the resonances are produced [21]. The vector
meson self-energies are then calculated from Eqs. (1)–(3) using
�∗

R(s, |pR|) instead of �tot
R (s). The procedure is repeated until

convergence. We find that the convergence is obtained after
the third iteration.

As a side result of our self-consistent calculation, we
find that the widths of the nucleon resonances are enhanced
in-medium because the vector meson spectral functions show
a significative spectral strength at small invariant masses.
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FIG. 6. (Color online) Unpolarized spectral functions of the ρ

meson in nuclear matter at saturation density for various momenta p

(in GeV). The broadening of the nucleon resonance widths induced by
the in-medium spectral properties of the vector mesons is taken into
account and a self-consistent calculation is performed. The shaded
area shows the vacuum spectral function.

A similar outcome emerged from the analysis performed in
Ref. [70].

The resulting unpolarized vector meson spectral functions
are shown in Figs. 6 and 7 for the ρ and ω mesons,
respectively.They refer to saturation density. We observe
that the self-consistent calculation leads predominantly to a
reduction of the lower mass peak. This result qualitatively
agrees with the findings of Ref. [21], which investigated the
role of a self-consistent iteration scheme on the ρ-meson
spectral function.

F. Experimental situation

Experimental constraints on the in-medium ω spectral
function can presently be derived from the CB-TAPS (γ + A)
experiments [40], the p + A measurements at KEK [41,42],
and the heavy-ion dilepton experiments. The dilepton mea-
surements of the DLS Collaboration in C + C and Ca + Ca
at 1A GeV [32] suffer from too low mass resolution in the
vicinity of the ω peak in order to make precise statements on
the ω in-medium width. However, there is no doubt that the
explanation of the DLS data requires a substantial broadening
of the ω spectral function. The analysis of Ref. [36] showed
that the DLS data are compatible with a rather large ω width;
i.e., �tot

ω ∼ 150–300 MeV. The first data from HADES [38]
will be analyzed in the next section.

As discussed in Ref. [43], the interpretation of the p + C
and p + Cu KEK dilepton data [41,42] suffers from the high

FIG. 7. (Color online) Same as Fig. 6, but for the ω meson.

initial proton kinetic energy of 12 GeV. This means that vector
mesons are produced with high momenta (p > 1 GeV) and in
particular the ω decays at low nuclear densities or even outside
the target nucleus. Nevertheless, the KEK study observed a
substantial difference of the dilepton spectrum with respect
to the standard sources below the ρ/ω peak. On a qualitative
level, these data support a picture as predicted by the resonance
model, i.e., a substantial shift of spectral strength to smaller
masses.

However, the resonance model and coupled-channel predic-
tions for the ω spectral function contradict, at least partially,
the results of a recent photoproduction experiment carried out
by the CBELSA/TAPS Collaboration [40]. The experiment
indicates a downward mass shift of about �mω ∼ −80 MeV
at ρ0, whereas the coupled-channel [19,23] and resonance
model calculations predict a more or less pronounced repulsive
shift ranging from +10 to +80 MeV. The collisional broad-
ening extracted by CBELSA/TAPS is moderate; i.e., ��ω ∼
50 MeV. Since this experiment has been carried out at beam
energies of 0.64–2.53 GeV, a similar argument as for the KEK
experiment applies, at least for the high energies, namely, that
one has to carefully account for the energy dependence of the
ω spectral function and to follow the paths of the ω decays.

Recent γ + A measurements from the CLAS Collaboration
[71] at the Thomas Jefferson National Accelerator Facility,
carried out at photon energies Eγ = 0.6–3.8 GeV on light (C)
and heavier (Fe) targets, find no signatures for a vector meson
mass shift for the ρ and ω mesons but indicate a collisional
broadening of the ρ by 50–70 MeV.

In terms of a simple BR scaling interpretation m∗
V =

mV (1 − αρB/ρ0) which should hold in common for both the ρ

and the ω meson, the best fits to the various experiments yield
at present a divergent picture: |α| ∼ 0.13 (CBELSA/TAPS
[40]), |α| ∼ 0.092 ± 0.002 (KEK-PS E325 [42]), and |α| ∼
0.02 ± 0.02 (CLAS [71]).

This apparent contradiction implies already that the mass
shift scenario á la Brown-Rho is too simple, and, consistent
with the NA60 heavy-ion data [30], the vector mesons develop
more complex spectral properties.

G. Realization within the transport approach

A first attempt to introduce in-medium spectral functions of
the vector mesons in a transport description for intermediate
energy heavy-ion collisions was performed in Ref. [34]. The
in-medium dilepton rate was thereby expressed in terms of
the ρ meson in-medium spectral function. The proportionality
was achieved by including the medium effects at the level of
production channels. However, to avoid double counting, this
required switching off the explicit ρ meson production chan-
nels included in the self-energy calculations, which have been
implicitly accounted for in terms of the in-medium spectral
function. In particular, the decays of the ρ mesons produced in
baryon-baryon collisions and meson-baryon interactions were
not included explicitly.

In the language of a resonance model, this would mean,
e.g., that since V + N → R is a (dominant!) contribution to
the self-energy, the R → NV → Ne+e− decay should not
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be included explicitly, if one would operate as in Ref. [34].
However, nucleon resonances are important dynamical degrees
of freedom of a transport approach. In particular, in heavy-ion
collisions at intermediate energies, the medium is dominated
by nucleons and nucleon resonances, and to neglect an explicit
(dynamical) treatment of the latter in the determination of
vector meson production to obtain a direct proportionality to
the vector meson spectral function is a questionable procedure.
Moreover, it was already pointed out in Ref. [18] that such a
treatment [34] might not be realistic.

Here we adopt an alternative approach to extract informa-
tion on the in-medium vector meson spectral functions from
dilepton emission in heavy-ion collisions. The idea is to restrict
propagation and mutual interactions to the dynamical degrees
of freedom within the transport approach. Vector mesons
and their interactions are treated as perturbative degrees of
freedom within the transport description. This gives us the
possibility of including the corresponding vector meson in-
medium modifications on a microscopic level. The philosophy
behind this approach is similar to that of the approach pursued
in Ref. [18,31], which derived local dilepton emission rates
from the decay rates of the corresponding sources within the
framework of an expanding fireball model.

To be more precise, within the NRD model the vector
meson production channels are nucleon resonances which are
treated as explicit, i.e., as dynamical degrees of freedom in the
transport code up their decay. Dilepton emission takes place
via resonance Dalitz decays (eVMD) where the vector mesons
enter as virtual particles the RNγ ∗ vertices. In the medium,
the vector mesons entering into the vertex form factors are
modified by the vector meson self-energy, determined for the
conditions, i.e., at the density where the resonance decay
takes place. Thus the presence of the medium changes the
branching ratios for the nucleon resonance Dalitz decays.
This modification, however, is not directly proportional to the
vector meson spectral function but rather to the in-medium
form factors. In this approach, e.g., vector meson absorption
processes are taken into account microscopically, although not
dynamically, in terms of the imaginary part of the vector meson
self-energy, which determines the corresponding collisional
broadening.

By this procedure, one avoids the complicated and yet not
fully resolved problem of a consistent off-shell propagation
of the vector mesons within semiclassical transport models
[34,72]. A drawback is certainly that one loses in this
picture information on the dynamical propagation of the
vector mesons. Consequently, their in-medium properties are
determined by the conditions at the decay points of the
nucleon resonances. Since the vector mesons appear only
as intermediate states in the resonance decay rates, it is, on
the other hand, much easier to include spectral functions
and to keep quantum effects which are lost in semiclassical
approaches, even when off-shell effects are taken into account
[73,74].

The in-medium spectral properties discussed in the next
subsection are determined in a local density approximation
(LDA). In RQMD, the local baryon density ρB is determined
by the summation over Gaussian wave packets of all nucleons
and resonances (it should not be mixed up with the interaction

density used in RQMD for the determination of the intranu-
clear forces [75]). Thus the determination of the baryon density
does not require local equilibrium as in hydrodynamics, but
dependences on particular nonequilibrium effects such as
phase-space anisotropies [76] or memory effects [77] are
neglected. As usually done at intermediate energies, an explicit
temperature dependence of spectral properties is neglected as
well. It is, however, possible to extract local temperatures from
transport simulations, either by fitting hot Fermi distributions
to local momentum space configurations [78] or by performing
thermal model fits to local hadron abundances and spectra [79].
Although both procedures are connected with an extremely
high numerical effort, it is thus possible to include density-
and temperature-dependent spectral functions into transport
simulations. Since temperature effects have been found to
dominate at SPS energies [31], such an extension will be
necessary for an application of the present model to, e.g.,
NA60 data.

H. In-medium dilepton emission rates

Because of the P invariance of the electromagnetic in-
teraction, resonances with arbitrary spin have only three
independent helicity amplitudes in the γ ∗N → R transitions.
This means that there are three independent scalar functions
to fix the vertices. The three scalar functions arising from
the decomposition of the γ ∗N → R vertex over the Lorentz
vectors and the Dirac matrices are functions of the mass
squared M2 of the virtual photon and are called covariant
form factors. In the eVMD model, each of these covariant
form factors is expressed in a gauge invariant way (see
Appendix) as a linear superposition of the contributions from
the intermediate vector mesons of the ρ and ω family. In
contrast to the naive VMD, in which only the ρ and ω ground
states are taken into account, eVMD includes radial excitations
ρ(1450), ρ(1700), etc., which interfere with the ground-state
ρ mesons in radiative processes. The corresponding transition
form factors are given by [46]

F
(±)
k (M2) =

∑
i

M(±)
ki , (13)

where k = 1, . . . , 3 stands for each of the form factors, (±)
denotes states of normal and abnormal parity, respectively,
and the sum is over the intermediate mesons. The � resonance
form factors have contributions from only the ρ-meson family,
whereas the nucleon resonances receive contributions from the
ρ and ω mesons. For a resonance of spin J = l + 1/2, the total
number of vector mesons is l + 3. The amplitude

M(±)
k,i = h

(±)
ki

m2
i

m2
i − imi�i − M2

(14)

represents the contribution of the ith vector meson to the
form factor of type k. The residues h

(±)
ki contain the free

parameters of the model. They are constrained by the require-
ment that the asymptotic expression of the form factors is
consistent with the quark counting rules [80]. For each form
factor, the quark counting rules reduce the number of free
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parameters from l + 3 to 2 for k = 1 and to 1 for k = 2, 3.
The remaining parameters are fixed by fitting the available
photoproduction and electroproduction data and using results
of the multichannel partial-wave analysis of the πN scattering.
Where experimental data are not available, predictions of the
nonrelativistic quark models are used as an input.

The �(R → Nγ ∗) decay width can be written in terms of
three transition form factors (magnetic, electric, and Coulomb)
for a resonance with spin J > 1/2 and two for J = 1/2. The
matrix elements connecting the former with the covariant form
factors are explicitly listed in Ref. [46].

In this representation, the insertion of the in-medium
properties of the ω and ρ vector mesons is straightforward.
In the medium, the transition amplitudes M(±)

k,i (i = ρ, ω, . . .)
are directly modified by the in-medium self-energy and read

M(±)
k,i=V = h

(±)
kV

m2
V + ��tot

V

m2
V + ��tot

V + i��tot
V − M2

. (15)

We include the self-energy contributions for the ground-state
ρ and ω mesons in the transition. For the excited states
ρ ′, ρ ′′, . . . , the self-energies are unknown, and thus we keep
for these states their vacuum properties.

As in Ref. [58], we also consider scenarios in which the
self-energy is based on different model assumptions, namely,
a simple Brown-Rho (BR) or Hatsuda-Lee scaling of the vector
meson masses [5,6] and a collisional broadening of the vector
meson widths. In the latter case, the self-energies are given by

��tot
V = −mV

(
�

(0)
V (M) + �coll

V (ρB,M)
)
,

(16)��tot
V = 0.

In this context, we want to stress that in Eqs. (15), the energy
dependence due to the two- or three-pion decay of the vector
meson is kept in the vacuum contribution to the total width,
while the collisional broadening due to the interaction with the
surrounding nucleons is absorbed into a density- and energy-
dependent part. The issue of the energy dependence of the
collisional width will be discussed in detail in the next section.
The BR scaling is introduced through the replacement mV →
m∗

V = mV (1 − α
ρB

ρ0
), as done, e.g., in Ref. [81]. In particular,

in this case, one has

��tot
V =

(
mV − α

ρB

ρ0

)2

− m2
V . (17)

As usual, the mass shift entering into the real part can
be adjusted by the parameter α. As in the case of full
spectral functions, the self-energy components enter into the
amplitudes (15). In this context, it is important to note that
the modification of the amplitudes (15) leads to a coherent
summation of the ρ and ω spectral functions in the transition
form factors (13). Doing so, this approach goes beyond the
standard—even off-shell—transport approach where spectral
properties are treated at the level of cross sections [34,72,73].
The latter always leads to an incoherent summation of the
contributions from different hadrons.

The self-energy appearing in Eq. (15) is a function
�tot

V (M, |p|, ρB ) of the vector meson running mass, the
modulus of its three-momentum in the nuclear matter rest
frame, and the local density of the surrounding matter. In the

rest frame L∗ of a resonance R with mass µ, decaying into a
nucleon and a vector meson of mass M , the modulus |p∗| of
the momentum of the meson is fixed by energy conservation.
If pR is the momentum of the resonance R in the c.m. frame L

of the colliding nuclei and vR = pR/

√
p2

R + µ2 is its velocity,
the vector meson momentum in L is given by the Lorentz
transformation

|p|2 = (γR|vR|E∗ + γRp∗
L)2 + p∗2

T , (18)

where

p∗
L = |p∗| cos θ, (19)

p∗
T = |p∗| sin θ, (20)

with θ being the polar angle of the meson in L∗ if one chooses
the z axis of this frame pointing in the direction of vR . Since
|p∗| is fixed, in terms of the L frame variables, one has �tot

V =
�tot

V (M, cos θ, ρB ), and the decay amplitude averaged over the
angles reads

�(R → Nγ ∗)(µ,M, ρB )

=
∫ +1

−1

d cos(θ )

2
�(R → Nγ ∗)(µ,M, cos θ, ρB ). (21)

Equation (21) is implementable in the framework of the
Tübingen RQMD transport code. The RQMD code [36,56,57]
has been extended to include all nuclear resonances with
masses below 2 GeV, in total 11 N∗ and 10 � resonances.
A full list with the corresponding masses and decay widths
to various channels can be found in Tables III and IV of
Ref. [36]. For each resonance, RQMD provides the values
of the three-momentum components (necessary to perform
the Lorentz boost), the mass (distributed over a Breit-Wigner),
and the local density of the surrounding matter at the decay
point.

Since vector mesons play in the eVMD model the role of
intermediate virtual particles, their off-shellness is fully taken
into account in a consistent manner.

The model can be applied to dilepton production in heavy-
ion reactions. In the energy range of a few A GeV, one can
identify three main classes of processes that lead to dilepton
emission: nucleon-nucleon bremsstrahlung, decay of light
unflavored mesons,and decay of nucleon and � resonances.
Dilepton production through the bremsstrahlung mechanism
has been studied in detail in Ref. [82]. For the energy
range of interest in this work, bremsstrahlung contributes
in a significant way only at small invariant masses to the
dilepton spectrum. By far, the dominant contributions result
from diagrams that involve the excitation of an intermediate
� resonance. Within the present framework, the inclusion of
such contributions would, however, lead to a double counting,
and therefore we omit explicit bremsstrahlung contributions.
Recently, the quantitative importance of bremsstrahlung con-
tributions has again been discussed in Ref. [44], however, with
results contradictory to those in Ref. [82].

At incident energies of a few A GeV, the cross sections
for meson M = η, η′, ρ, ω, φ production are small, and these
mesons do not play an important role in the dynamics of
heavy-ion collisions. Their production can thus be treated
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perturbatively, in contrast to the case of the pion. The decay
to a dilepton pair takes place through the emission of a virtual
photon. The differential branching ratios for the decay of a
meson to a final state Xe+e− can be written

dB(µ,M)M,π→e+e−X = d�(µ,M)M,π→e+e−X

�
M,π
tot (µ)

, (22)

with µ the meson mass and M the dilepton mass. Three types
of such decays have been considered: direct decays M →
e+e−, Dalitz decays M → γ e+e− and M → π (η)e+e−, and
four-body decays M → ππe+e−. A comprehensive study of
the decay of light mesons to a dilepton pair has been performed
in Ref. [49]. Assuming a NRD model for the production of ρ

and ω mesons, the remaining decay channels that are most
important quantitatively for heavy-ion collisions at 1A and
2A GeV are π0 → γ e+e− and η → γ e+e−.

In terms of the branching ratios for the Dalitz decays of
the baryon resonances, the cross section for e+e− production
from the initial state X′ together with the final state NX can
be written as

dσ (s,M)X
′→NXe+e−

dM2
=

∑
R

∫ (
√

s−mX)2

(mN+M)2
dµ2 dσ (s, µ)X

′→RX

dµ2

×
∑
V

dB(µ,M, ρB )R→V N→Ne+e−

dM2
.

(23)

Here, µ is the running mass of the baryon resonance R with
the cross section dσ (s, µ)X

′→XR, dB(µ,M, ρB )R→V N→Ne+e−

is the differential branching ratio for the Dalitz decay R →
Ne+e− through the vector meson V . Thus Eq. (23) describes
baryon- and pion-induced dilepton production; i.e., the initial
state can be given by two baryons X′ = NN,NR,R′R or
it runs through pion absorption X′ = πN . In the resonance
model, both processes are treated on the same footing by the
decay of intermediate resonances. Medium modifications enter
the branching ratio dB(µ,M, ρB )R→V N→Ne+e−

by affecting
the Dalitz decay width d�(µ,M, ρB )R→V N→Ne+e−

/dM2.
Once the �(R → Nγ ∗) is calculated within the eVMD, the
factorization prescription [46] can be used to find the dilepton
decay rate

d�(R → Ne+e−)

= �(R → Nγ ∗)M�(γ ∗ → e+e−)
dM2

πM4
, (24)

where

M�(γ ∗ → e+e−) = α

3

(
M2 + 2m2

e

)√
1 − 4m2

e

M2
(25)

is the decay width of a virtual photon γ ∗ into the dilepton pair
with the invariant mass M .

As discussed in Ref. [21], the excitation of particle-hole
pairs in the meson spectral function generates resonance-
nucleon scattering terms in the resonance self-energy and
thus the in-medium broadening of the resonance. We have
mentioned that nucleon resonances are dynamically treated
in the RQMD model, and resonance-nucleon scattering is
explicitly performed. Thus, the in-medium broadening of

nucleon resonances is taken into account in the transport
approach dynamically. No in-medium spectral functions of
the vector mesons are therefore included in the total width
�R

tot(µ) entering in the branching ratio in Eq. (23).
The real part of the resonance self-energy ��R

tot is included
in a phenomenological way through a mean field in which
the resonances are propagated. It is therefore assumed that the
nucleon resonances feel the same potential as nucleons, which
is a standard approximation in present transport models and
should be improved in the future. For example, the V vertex
gives rise to additional Fock contributions which could be
included in future work.

An observable tightly connected to a correct treatment
of the resonance dynamics in heavy-ion collision transport
calculations is provided by the pion multiplicity. For the mass
system under consideration, pion multiplicities are reasonably
well reproduced by the present description. For example,
inclusive π+ cross sections in C + C reactions measured by
the KaoS Collaboration [83] can be reproduced by the present
description within error bars. This gives, at least on a global
level, manifest credit to our treatment.

For the η, we include η absorption from the dominating
channel η + N → N∗(1535) explicitly. Since chiral pertur-
bation theory predicts practically no modifications of the
in-medium η mass [84], we do not include a possible η mass
shift.

To give an impression of the density range relevant for
dilepton production in the C + C system, Fig. 8 shows the
density distribution dN/dρB where the nucleon resonance
decays into dilepton channels take place. Note that Fig. 8
refers to minimal bias conditions. Triggering on central
reactions and/or increasing the system size will help one to
better explore the high density range. To have a separate
look at ρ and ω production, we distinguish between N∗,
�∗, and �(1232) resonances. It can be seen that the highest
mass resonances, i.e., N∗ and �∗, decay at supranormal
densities, while a large fraction of the �(1232) decays take
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FIG. 8. (Color online) Impact parameter weighted density distri-
bution of the nucleon resonances taken into account in the calculations
at their decay point. The distribution of the N∗, �∗, and �(1232)
resonances are separately shown.
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place at lower densities, between 0.5ρ0 and 1ρ0. In all cases,
however, maximal densities up to 3ρ0–4ρ0 are reached. Thus,
already the small C + C system probes the spectral properties
of intermediate vector mesons from N∗ and �∗ decays at
supranormal densities.

III. DILEPTON PRODUCTION

In this section, we provide theoretical calculations of the
dilepton emission in heavy-ion collisions at intermediate
energy. In particular, we address the reaction C + C at
2A GeV, for which experimental data have been already
released by the HADES Collaboration. The main purpose is
to compare calculations that include in-medium effects in a
more traditional way, i.e., via Brown-Rho scaling of the vector
masses and empirical collisional broadening of the decay
width, with results obtained using ρ and ω mesons described
by the in-medium spectral functions of the previous section.
New HADES data [85] will be analyzed elsewhere.

In the transport calculation, the reaction has been treated
as minimal bias collisions with respective maximal impact
parameter bmax = 6.0 fm. For the nuclear mean field, a
soft momentum-dependent Skyrme force (K = 200 MeV)
is used [75] which provides also a good description of
the subthreshold K+ production in the considered energy
range [86]. To perform the comparison with the HADES
data, dilepton events originated from the different considered
sources were generated in the phase space. After smearing
over the experimental momentum resolution, the acceptance
filter function provided by the HADES Collaboration was
applied. Events with opening angle θe−e− � 9◦ were rejected,
in accordance with the treatment of the experimental data.
The spectrum was then normalized to the corresponding π0

multiplicity.

A. Vacuum

We start by addressing the results obtained without any
additional medium effects concerning the dilepton production.
In Fig. 9, the dilepton spectrum obtained within the vacuum
formulation of the NRD+eVMD model is compared with
the HADES data [38]. The experimental data are slightly
underestimated in the mass region mπ � M � 0.4 GeV and
overestimated in the region of the vector meson peak. Indeed,
the comparison with DLS data had already shown that
the eVMD model in its pure vacuum formulation fails in
describing dilepton production in heavy-ion collisions [36].
However, the vacuum calculation is a good reference point
for isolating, where possible, those sources that dominantly
contribute to the spectrum in a certain invariant mass region.
Once the dominant sources have been individuated, it is
interesting to look separately at their modifications due to
in-medium effects. For this purpose, we also show separately
in Fig. 9 the contributions to the spectrum of the decays of
the pseudoscalar η and π0 mesons and all the N∗ as well
as the � resonances. In addition, the �(1232) → Ne+e−
decay channel is explicitly shown. In what follows, we will
investigate the modification of the Dalitz decays of the baryon
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FIG. 9. (Color online) Dilepton spectrum in C + C reaction at
2.0A GeV as predicted by the vacuum NRD+eVMD model and
compared with HADES data [38]. The contribution of the different
types of sources taken into account in the calculation is explicitly
shown.

resonances due to the introduction of the in-medium properties
of the ρ and ω mesons. Since we introduce no in-medium
modifications of the π0 → γ e+e− and η0 → γ e+e− channels,
the contribution to the dilepton spectrum from the π0 and
η Dalitz decay will remain unchanged in the course of our
analysis.

The η multiplicity Mη(4π )[10−4] = 330 for the considered
reaction C + C at 2A GeV is in agreement with experimental
data from TAPS [87]: Mη(4π )[10−4] = 294 ± 46.

Before coming to the discussion of medium effects, the
vacuum results should be examined more closely. As compared
to that reported in Ref. [45], we find a higher yield around the
ρ/ω peak region. This enhancement arises in the present model
first because of a strong coupling of the ω to the N∗(1535)
resonance as discussed in detail in Refs. [36,58]. Second,
additional enhancement results from the implementation of
the quark counting rules to the nucleon resonance transition
form factors. The quark counting rules are known to be
a well-founded consequence of QCD and, furthermore, are
required experimentally to match the photon and ρ-meson
branchings of the nucleon resonances also [47].

A precise estimate of the ω contribution is particularly
important for extracting the ω meson in-medium width:
the underestimation of the dilepton yield gives rise to the
underestimation of the width. As we shall see, the in-medium
ω peak is strongly suppressed because of the ω meson
broadening.

The low-mass region is critical for understanding the DLS
puzzle. In the present vacuum calculation, we obtain a low-
mass dilepton yield that is about a factor of 2 smaller than
that in Ref. [45]. Bremsstrahlung cannot explain this deviation,
since at 2A GeV it is marginal whatever maximal cross sections
under debate [44] would have been used. At small M , the
variances in predictions of the present transport models arise
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FIG. 10. (Color online) Dilepton spectrum in C + C collisions at 2.0A GeV for different values of the in-medium ρ and ω widths. (a)
�tot

ρ (ρ0) = 200 MeV and �tot
ω (ρ0) = 60 MeV. (b) �tot

ρ (ρ0) = 250 MeV and �tot
ω (ρ0) = 125 MeV.

from two additional sources, namely, the η contribution and
the � Dalitz decay: For the η decay which dominates the low-
mass dilepton yield [36,45,58,88,89], we obtain quite standard
values. The main difference lies therefore in the � Dalitz
decay. The present calculation is close to that in Ref. [88] and
about a factor of 5 lower than the calculation of Ref. [45]. This
point is crucial, since the whole interpretation of the low-mass
dilepton spectra depends on this fact.

The problems on the �(1232) Dalitz decay have occurred
already at a kinematic level where theoretical calculations of
several groups surprisingly disagree with each other pairwise
(for a detailed discussion, see Ref. [90]). The dilepton decays
can be determined from the radiative decays by factorization,
which means that the Nγ ∗ �→ � amplitudes have to be
determined first. In this context, it should be noted that
from all nucleon resonances, the Nγ ∗ �→ �(1232) transition
amplitudes are the best constrained from the experimental
point of view (see, e.g., Fig. 20 in Ref. [46]). The �(1232)
Dalitz decay is dominated at M ≈ 0 by the magnetic form
factor. The normalization at M = 0, assuming the dominance
of the magnetic transition, is sufficiently precise around
M = 0. With increasing M , the Coulomb form factor comes
into play. In principle, parametrizations of the �(1232) Dalitz
decay should be checked against the available photoproduction
data. The quark counting rules constrain the extrapolation to
the M �= 0 region.

In the present work, we apply the parametrizations of
Ref. [46], which are covariant and kinematically complete,
i.e., formulated in terms of magnetic, electric, and Coulomb
transition form factors. The M dependence is based on the
extended VMD (eVMD) model and constrained by photopro-
duction and electroproduction data for the form factors, by the
transition helicity amplitudes of the nucleon resonances, and
when available by the ρ- and ω-meson decay branchings.

The authors of Ref. [45] applied the parametrizations of
Ernst et al. [35]. The same parametrization has also been
used for the PLUTO event generator of the HADES group
[38]. However, the work of Ernst et al. [35] considered the

magnetic form factor with no M dependence, which is a crude
estimation. Furthermore, the kinematic factors of the �(1232)
Dalitz decay in Refs. [35,38,45] are incorrect, as discussed in
Ref. [90].

Therefore, the interpretation of heavy-ion data still suffers
from uncertainties unrelated to the complexity of heavy-ion
dynamics; i.e., the various parametrizations of the resonance
decays used as input in the transport models do not agree with
each other.

1. Collisional broadening

Let us now turn to the introduction of in-medium ef-
fects according to the standard treatments and address first
Fig. 10, in which the HADES data are compared with
calculations where the possible broadening of the vector
meson spectral function in medium is effectively taken into
account through the introduction of a collisional width �coll

V .
We present calculations that use a linear parametrization of the
type �tot

V (ρB) = �vac
V + ρB/ρ0 �coll

V (ρ0) to estimate the vector
meson in-medium width �tot

V (ρB).
In a first approximation, we make no additional assumption

concerning the energy dependence of the in-medium width;
i.e., the same energy dependence is assigned to the collisional
width as to the vacuum width [36,58]. In particular, the
vector meson thresholds are kept the same as the vacuum
ones, namely, 2mπ and 3mπ for the ρ and ω meson,
respectively. The approximation will be investigated below.
Figure 10(a) refers to the assumption �tot

ρ (ρ0) = 200 and
�tot

ω (ρ0) = 60 MeV, which reflects the estimates of the CLAS
and TAPS experiment for the collisional broadening of the
ρ and ω meson, respectively. Figure 10(b) refers to the
assumption �tot

ρ (ρ0) = 250, �tot
ω (ρ0) = 125 MeV. The latter

reflects the lower limit estimates emerged from the analysis
performed in Ref. [36], where the values of 300 MeV and
200–300 MeV, respectively, for the ρ and ω meson widths at
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an average density of 1.5ρ0 were extracted from fits to the DLS
data.

We observe a suppression of the peak with respect to
the vacuum case, more pronounced in Fig. 10(b) than in
Fig. 10(a). However, in both cases, the experimental data
are still overestimated around M ∼ 0.7 GeV, mainly due to
the still significant contribution of the N∗(1535) resonance.
The Dalitz decay of this resonance plays a dominant role
in the determination of the dilepton spectrum in the region
around the vector meson peak, due to its strong coupling to
the ω meson. On the one hand, the HADES data seem to
favor a smaller contribution of the N∗(1535) resonance in the
peak region; on the other hand, however, dilepton production
data in p + p collision have been well described under the
same assumptions for the coupling to the N∗(1535). This
shows that the contribution of the N∗(1535) Dalitz decay,
significant in elementary reactions and thus in vacuum, is
partially reduced in heavy-ion collisions thanks to in-medium
effects. We conclude that the HADES data suggest a stronger
in-medium modification of the ω properties than the one taken
into account in Fig. 10.

Let us now investigate the effect of different choices for the
energy dependence of the collisional width. In this context,
we would like to point out that the mere fact of having, and
facing, a certain freedom in the choice of energy dependence
of the collisional width shows exemplarily the limits that such
schematic models carry. Such choices can be based on more
or less educated guesses. However, if microscopic calculations
of in-medium effects are performed, energy dependences are

fixed from theory, which should be fulfilled as a minimal
requirement for a consistent investigation of vector meson
in-medium properties. Obviously a microscopic calculation of
the exact energy dependence of the collisional broadening is
equivalent to a full model calculation of the in-medium spectral
function. This well be done later on in this work.

For the moment, we investigate the consequences of
various approximations on a schematic level. For this purpose,
we extract possible energy dependences of the collisional
widths on the basis of qualitative considerations and consider
the influence on the shape of the final dilepton spectrum.
Schematically, the collisional broadening that a vector meson
acquires is attributed to an absorption process of the type
V + N → R → π + N . To simplify, we approximate the
corresponding phase space by the phase space for the process
M + mN → mπ + mN and assume that the resonance decay
proceeds through a p wave. This latter freedom demonstrates
again the limits of such schematic procedures. However, since
this estimate is only qualitative, let us neglect for the moment
these refinements.

One obtains

�coll
V (M,ρ)

= �coll
V (mV , ρ)

mV + mN

M + mN

(
q(M + mN,mN,mπ )

q(mV + mN,mN,mπ )

)3

,

(26)

with

q(M + mN,mN,mπ ) =
√

[(M + mN )2 − (mN + mπ )2][(M + mN )2 − (mN − mπ )2]

2 (M + mN )
. (27)

As one can see, in this approximation, the vector meson
threshold is shifted from 2mπ to mπ for the ρ meson and
from 3mπ to mπ for the ω meson. The choice affects the
shape of the ω width much more than the shape of the ρ

width. The influence of the choice for the energy dependence
of the collisional width is illustrated in Fig. 11 for the
case ρB = 2ρ0 and for �tot

ρ (ρ0,mρ) = 250 and �tot
ω (ρ0,mω) =

125 MeV. In particular, for the ω meson, the shift of the
threshold leads to a large enhancement of the ω width at lower
invariant masses.

However, one has to keep in mind that the in-medium ρ

and ω widths enter into the expressions for the the covariant
form factors, see Eqs. (13)–(15). Their modulus squared
determines the width �(R → Nγ ∗) [Eq. (24)]. Thus, only
when appreciable differences arise in the covariant form
factors will the difference in the energy dependence of the
in-medium vector meson width be visible in the final dilepton
spectrum. Now let �∗[1]

ρ (M) be the ρ meson in-medium
width with an energy dependence analogous to the vacuum
width and �∗[2]

ρ (M) the ρ meson in-medium width with an
energy dependence according to Eq. (26). Correspondingly,

we set

F [1/2]
ρ = m2

ρ

m2
ρ − imρ�

∗[1/2]
ρ (M) − M2

, (28)

F [1/2]
ω = m2

ω

m2
ω − imω�

∗[1/2]
ω (M) − M2

. (29)

We refer now to the ω meson, but the same considerations are
valid for the ρ meson. It can be easily realized that |F [2]

ω |2 ≈
|F [1]

ω |2 ≈ 1 when (m2
ω − M2)2 � (mω�∗[i]

ω )2 (i = 1, 2). Thus,
the mass region where sensible differences between the two
cases can be found is typically restricted to the mass region
around the vector meson peak. Concerning the ρ meson, �∗[2]

ρ

and �∗[1]
ρ are practically identical in the region of the vector

meson peak, as can be seen from Fig.11.
Therefore, we do not expect differences between |F [2]

ρ |2
and |F [1]

ρ |2. Concerning the ω meson, �∗[2]
ω and �∗[1]

ω differ
substantially in the peak region, although the main differences
arise at lower masses, i.e., from slightly above mπ up to slightly
above 3mπ , because of the different thresholds. In addition, one
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FIG. 11. (a) Imaginary part of the in-medium self energy −��tot
ρ (ρ, M) = mρ�

tot
ρ (ρ, M) of the ρ meson in vacuum (full line) and at ρ = 2 ρ0

for �tot
ρ (ρ0, mρ) = 250 MeV (dashed and dashed-dotted lines). (b) Imaginary part of the in-medium self-energy −��tot

ω (ρ,M) = mω�tot
ω (ρ, M)

of the ω meson in vacuum (full line) and at ρ = 2 ρ0 for �tot
ω (ρ0, mω) = 125 MeV (dashed and dashed-dotted lines). For both panels, the dashed

line corresponds to the assumption that the collisional width has the same energy dependence as the vacuum width. The dashed-dotted line
corresponds to the assumption that the collisional width has the energy dependence in Eq. (26).

should also consider interference terms of the form F [i]
ρ F [i]

ω .
These terms can, however, drive either a constructive or
destructive interference, and therefore it is not possible to
comment on their effect in general within a simple scheme.

The resulting dilepton spectra obtained for the two choices
discussed above are shown in Fig. 12. Here one finds that
the contributions from the � resonances, which couple only
to the ρ meson, are practically identical in the two cases.
Slight differences are visible for the N∗ resonances around
the vector meson peak. The differences are more evident in
the case of larger values of the widths, Fig. 12(b). However,

even in this case, the total spectra differ at most by a factor
of 1.3.1

For a consistent evaluation of the energy dependence
resulting from V + N → R → π + N processes, one should
sum up over all important resonances that couple to the
N + V system, each taken with a different weight according
to their relative coupling strength, and determine for each
mode the corresponding angular momentum of the πN

1Here we refer to the maximum value of the ratio of the two spectra.
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FIG. 12. Dilepton spectrum in C + C collisions at 2.0A GeV for different values of the in-medium ρ and ω widths and different choices
for the energy dependence of the collision width. The thick lines refer to an energy dependence estimated from the V + N → R → π + N as
discussed in the text. The thin lines correspond to the same calculations shown in Fig. 10 and are shown for comparison. (a) �tot

ρ (ρ0) = 200
and �tot

ω (ρ0) = 60 MeV. (b) �tot
ρ (ρ0) = 250 and �tot

ω (ρ0) = 125 MeV.
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FIG. 13. (Color online) Dilepton spectrum in C + C collisions at 2.0A GeV for different values of the in-medium ρ and ω widths when
an in-medium vector meson mass m∗

V = mV (1 − αρB/ρ0) is introduced. (a) �tot
ρ (ρ0) = 200 and �tot

ω (ρ0) = 60 MeV. (b) �tot
ρ (ρ0) = 250 and

�tot
ω (ρ0) = 125 MeV.

scattering amplitude. Moreover, the invariant mass squared
of the intermediate resonance would be s = (pN + p)2 which
leads to a dependence on the three-momentum p of the
vector meson. It is then clear that such a procedure would
finally be analogous to the evaluation of the full spectral
functions. In fact, the V + N → R → π + N channel is one
of the processes consistently included in our calculation of the
spectral functions, since the Nπ channel is one of the channels
entering in the expression of the total width of the resonance.

To conclude, already these first estimates based on the
collisional broadening scenario demonstrate that the HADES
data show clear evidence for a strong in-medium modification
of the vector meson properties. Figure 12 demonstrates, on
the other hand, that though the two different choices under
discussion lead to significant deviations of the vector meson
widths, particularly concerning their threshold behavior, such
effects are washed out to a large extent in the final spectra.
However, the same argument demands a theoretical description
that is as precise as possible; i.e., realistic spectral functions
should be applied rather than pushing schematic models too
far.

2. Dropping mass scenario

However, before adopting realistic spectral functions, we
want to investigate the dropping mass scenario à la Brown-
Rho, which has been widely used in the literature. Thus,
we performed calculations for an in-medium scenario that
differs from the previous one by the additional assumption
that the vector meson mass scales with density according
to a m∗

V = mV (1 − αρB/ρ0) law, with α = 0.2. The results
are shown in Fig. 13, where Fig. 13(a) refers to the choice
�tot

ρ (ρ0) = 200 MeV and �tot
ω (ρ0) = 60 MeV, and Fig. 13(b) to

the choice �tot
ρ (ρ0) = 250 , �tot

ω (ρ0) = 125 MeV. The inclusion
of a dropping in-medium vector meson mass results in a global
shift of the vector meson spectral strength to lower masses.
Thus, the corresponding theoretical spectrum is enhanced at
lower invariant masses resulting in a sizable overestimation of
the experimental data in the 0.4 � M � 0.7 GeV mass region.

At the same time, the experimental data are underestimated in
the region around and above the vector meson peak because
of the lack of spectral strength around the (vacuum) vector
meson peak. Note that the same underestimation of the vector
meson peak was observed when adopting the dropping mass
scenario to the recent high resolution CERES data [91]. The
CERES analysis focused, however, only on the in-medium ρ

meson.
Concerning the low mass region, mπ � M � 0.4 GeV,

the presence of additional strength moves the spectrum closer
to the experimental data in the mass region M ∼ 0.3–0.4
GeV. However, this region remains slightly but systematically
underestimated. In summary, one can conclude that a naive
Brown-Rho scaling is too schematic in order to explain
the spectrum. This finding is consistent with the previous
theoretical analysis of the DLS data at 1A GeV [34,35].

3. In-medium spectral functions

Let us now pass to the investigation of in-medium properties
based on the in-medium self-energies of the vector mesons
calculated within NRD+eVMD. First, we present in Fig. 14(a)
the dilepton spectrum obtained with “first iteration” ρ and ω

spectral functions, i.e., neglecting the in-medium modification
of the nucleon resonance widths.

The spectral functions induce a depletion of the theoretical
spectrum in the mass region 0.45 � M � 0.75 GeV which is
not supported by the data. The result can be better understood
with the help of Fig. 15, which shows the corresponding ρ and
ω contributions which enter into the nucleon resonance form
factors and determine thus the dilepton production rates. The
form factors are determined at saturation density and twice
saturation density, ρB = ρ0 and ρB = 2ρ0, in both cases for a
vector meson at rest relative to the nuclear medium (dashed
lines).

The complex structure of the mesonic self-energies is
clearly reflected in the form factors, which no longer preserve
the simple Lorentzian-like shape typical for the vacuum. In
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FIG. 14. (Color online) Dilepton spectrum in C + C collisions at 2.0A GeV resulting from the inclusion of ρ- and ω-meson spectral
functions calculated within the NRD+eVMD model. The spectral functions affect the branching ratios for the Dalitz decays of the baryon
resonances, as explained in the text. (a) Inclusion of vector meson self-energies determined from vacuum nucleon resonance properties. (b)
Inclusion of vector meson self-energies calculated in a self-consistent iteration scheme that takes into account the in-medium modifications of
the nucleon resonance widths induced by the in-medium spectral functions of the vector mesons.

particular, for the ρ as well as for the ω we observe a strong
minimum around 0.5 <∼ M <∼ 0.6 GeV between two maxima
at 0.4 <∼ M <∼ 0.5 GeV and M ∼ 0.8 GeV.

The particular shape of the form factor is determined by the
interplay of both the real and imaginary part of the self-energy.
However, switching off the real part of the self-energy, we
observe that the depletion of the form factor between M ∼ 0.5
and 0.8 GeV is mainly caused by large values of the imaginary
part of the self-energy in this region. The latter is shown

in Fig. 16. This increase is due to the strong coupling to
specific resonances, i.e., the N∗(1520) for the ρ meson and the
N∗(1535) for the ω meson. The corresponding bump structure
is a typical feature for this class of models which couple vector
mesons to resonance-hole states.

The inclusion of the in-medium resonance properties
caused by the vector meson spectral functions, i.e., self-
consistency, reduces the imaginary part of the self-energy in
this region (see Fig. 16). In the case of the ω meson, for

FIG. 15. (Color online) (a) Modulus squared of the ρ meson contribution to the covariant form factor |Fρ |2 at ρB = ρ0 (thin lines) and
ρB = 2 ρ0 (thick lines). (b) Modulus squared of the ω meson contribution to the covariant form factor |Fω|2 at ρB = ρ0 (thin lines) and
ρB = 2 ρ0 (thick lines). For both panels the dashed lines correspond to vector meson self-energies calculated from vacuum nucleon resonance
properties. The full lines correspond to vector meson self-energies calculated in a self-consistent iteration scheme that takes into account the
in-medium modifications of the nucleon resonance widths induced by the in-medium spectral functions of the vector mesons. Shaded areas
indicate the vacuum form factors.
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FIG. 16. (Color online) Imaginary part of the in-medium self-energy of the (a) ρ meson and (b) ω meson, in vacuum (dashed-double-dotted
lines) at ρB = ρ0 (thin lines) and ρB = 2ρ0 (thick lines). Dashed lines correspond to vector meson self-energies calculated from vacuum
nucleon resonance properties. Full lines correspond to vector meson self-energies calculated in a self-consistent iteration scheme that takes into
account the in-medium modifications of the nucleon resonance widths induced by the in-medium spectral functions of the vector mesons.

example, the reduction at M = 0.57 GeV is about a factor of
2.5. As a consequence, the form factors, shown in Fig. 15, are
enhanced.

This has an effect on the dilepton spectrum. The spectrum
obtained with self-consistent spectral functions is shown in
Fig. 14(b). The inclusion of the in-medium properties of the
nucleon resonances moves the theoretical spectrum closer to
the experimental data in the mass region 0.45 � M � 0.75 GeV.
This demonstrates the importance of higher order effects, i.e.,
taking in-medium modifications for the nucleon resonances
into account when the vector meson properties are described
by the coupling to nucleon-resonance hole states.

For the mass region M > 0.4, we conclude that the
parameter-free determination of the in-medium dilepton spec-
trum, performed within an approach that attempts to describe
simultaneously and with the same model parameters2 the
phenomena of dilepton and vector meson production as well as
their in-medium modifications, gives a reasonable description
of the experimental data.

However, some data points remain still underestimated.
This suggests that the NRD+eVMD model predicts a too
strong absorption of vector mesons. One possible reason for
the present underestimation of the experimental data is the
use of some poorly constrained eVMD model parameters, in
particular the RNω couplings. Probably the most relevant case
is the N∗(1535) resonance, with its strong coupling to the ω

meson predicted by the eVMD model though a decay of this
resonance to Nω has not been measured yet. Another reason
might be that the ω-meson spectral function in particular is not
normalized in the mass region of our interest. The violation

2This statement refers to the resonance+eVMD model parameters.
The additional parameters of the RQMD transport model (cross
sections, potentials, etc.) have not been changed.

of normalization ranges from about 30% at ρ = ρ0 to about
45% at ρ = 2ρ0.3 In principle, this represents no inconsistency,
since spectral functions must satisfy the sum rule in the entire
invariant mass range (up to M = ∞) and not necessarily
already in the finite mass interval in which we work. This
effect should, however, be investigated in future work.

Regarding the low mass region, mπ � M � 0.4 GeV, the
introduction of in-medium spectral functions does not provide
a solution for the underestimation of the experimental data. On
the contrary, because of the finite value of the imaginary part of
the self-energy at M ∼ 0 for high vector meson three-momenta
p [��tot

V (M = 0) �= 0 for p �= 0], at high momenta we have
|FV (M = 0)|2 < 1 with a consequent reduction of strength.
We can therefore conclude that for the explanation of the low
mass region, one has to take into account additional effects
and/or sources.

IV. CONCLUSIONS

We determined the modification of the ρ and ω me-
son properties in nuclear matter within a resonance model
and investigated the nonresonant contributions to the vector
meson self-energy. For both vector mesons, we found a
substantial broadening of the width and a significant shift
of spectral strength down to smaller invariant masses. In
particular at small momenta, the coupling of the ρ meson
to the N∗(1520)N−1 state and that of the ω meson to the
N∗(1535)N−1 state lead to pronounced double-peak structures
in the spectral functions. In a first approximation, the spectral
functions were determined from vacuum nucleon resonance
properties. Going beyond this approximation, the in-medium

3Integral evaluated in the mass region up to 1.5 GeV.
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modification of the nucleon resonance widths induced by the
modified ρ and ω mesons has been included. This leads
to a self-consistent calculation of the vector meson spectral
functions, which mainly reduces the peaks due to the coupling
to N∗(1520)N−1 and N∗(1535)N−1 states.

In a next step, we investigated the influence of different
in-medium scenarios for the vector mesons on the dilepton
production rate in heavy-ion collisions. The dilepton spectrum
has been calculated exemplarily for the reaction C + C at 2.0A

GeV for which experimental data have been recently released
by the HADES Collaboration.

Already the estimates based on a schematic collisional
broadening scenario, i.e., the comparison with data, support
strong in-medium modification of the vector meson properties.
In the dropping mass scenario, we found, even when taking
additionally into account the collisional broadening of the
vector meson widths, that the dilepton spectrum overestimates
the experimental data at invariant masses below the vector
meson peak and underestimates them in the region around and
above the peak.

Finally, we went beyond the schematic inclusion of in-
medium effects and included the vector meson properties
consistently, i.e., in terms of the in-medium self-energies
microscopically calculated within our model. We found that
self-energies determined from vacuum nucleon resonance
properties give a poor description of the experimental data
in the invariant mass region 0.45 � M � 0.75 GeV. On the
contrary, the self-consistent iteration scheme provides a
reasonable description of the data in the same mass region.
This demonstrates the importance of consistent inclusion of
in-medium properties.

However, for the low mass region (mπ � M � 0.4 GeV) we
found that the inclusion of ρ and ω spectral functions does not
improve the theoretical description of the dilepton spectrum
and experimental data remain slightly underestimated.

In summary, the investigation represents a first step toward
a unified understanding of dilepton spectra and vector meson
properties in heavy-ion collisions at intermediate energies.
The same model and the same set of parameters were used
to describe the interconnected phenomena of dilepton and
vector meson production and their in-medium modifications.
Forthcoming data, from elementary reactions as well as from
heavy-ion collisions of heavy systems, will certainly help to
further reduce still existing model uncertainties. An extension
of the present approach to finite baryon chemical potential
and temperature would further allow one to test the spectral
properties beyond HADES conditions, e.g., by a comparison
with the NA60 data.
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APPENDIX: GAUGE INVARIANCE IN eVMD

The VMD model and its modifications introduce the mixing
of a photon with vector mesons ρ0, ω, φ, etc. Such a mixing
can, in principle, generate finite photon masses and destroy
gauge invariance. This problem has been solved for the VMD
model by Kroll, Lee, and Zumomino [92] constructing an
effective Lagrangian for photons and vector mesons which
reproduces the VMD predictions. We present first a distinct
consistency proof and then show how the method [92] can be
generalized to the eVMD model.

A. Final-state interaction (FSI) method

We start from an effective Lagrangian involving pions
interacting with photons. An example of such a Lagrangian
is the nonlinear σ model and, more generally, the chiral
perturbation theory (ChPT) to a fixed order of the loop
expansion. The vector mesons appear as resonances in the
two-pion scattering channel (ρ mesons) and the three-meson
scattering channel (ω mesons).

Let us consider an absorption of a photon in an isovector
channel, as shown in Fig. 17. Applying two-body unitarity
and taking into account analyticity (see, e.g., Ref. [93], Chap.
18), we replace the point-like vertex e by ePl(t)/DJ (t), where
t = q2 is the photon momentum squared, Pl(t) is a polynomial
of the degree l, and DJ (t) is the Jost function defined in terms
of the p-wave isovector two-pion scattering phase shift δ(t):

DJ (t) = exp

[
− t

π

∫ ∞

t0

δ(t ′)dt ′

t ′(t − t ′)

]
, (A1)

where t0 is the two-pion threshold.
In the no-width approximation, the phase shift accounting

for the existence of n resonances is given by

δ(t) =
n∑

k=1

πθ
(
t − m2

k

)
, (A2)

where mk is the mass of the kth radial excitation of
the ρ0 meson. Substituting this expression into Eq. (A1),
we obtain

F (t) = Pl(t)
n∏

k=1

m2
k

t − m2
k

. (A3)

The requirement F (t) → 0 at t → ∞ gives l < n.
Analytical functions are fixed by their singularities. The

representation (A3) can be rewritten in an equivalent additive

FIG. 17. (Color online) Diagrammatic representation of the FSI
of pions (dashed lines) contributing to the form factor in the ρ-meson
channel. The photon line is shown as a wavy line.
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form

F (t) =
n∑

k=1

ck m2
k

m2
k − t

, (A4)

where ck are some coefficients. The normalization condition
F (0) = 1 and the quark counting rules impose constraints for
ck .

The effective pion Lagrangian is well defined, since
pions are stable particles which exist as asymptotic states.
In the approach presented above, the problem of gauge
invariance does not appear, since gauge invariance of the
effective Lagrangian ensures a transverse polarization tensor
of photons and the vanishing photon mass. The vector
mesons are resonances accounted for by the the final-state
interactions.

B. Effective Lagrangian method

The vector mesons are unstable particles and do not exist
as asymptotic states. Nevertheless, the effective Lagrangian
method is useful in formulating vector meson effective
interactions. Kroll, Lee, and Zumomino [92] proposed an
effective Lagrangian for the VMD model to illustrate its gauge
invariance. We extend their arguments for a family of n ρ0

mesons interacting with photons. An effective Lagrangian can
be written as

Leff = −1

4
FµνFµν

+
n∑

k=1

(
−1

4
Gk

µνG
k
µν + 1

2
m2

kB
k
µBk

µ + e

2gk
Gk

µνFµν

)

−
(

eAµ +
n∑

k=1

hkBk
µ

)
Jµ, (A5)

where Aµ is the electromagnetic vector potential, Bk
µ is

the kth ρ0-meson vector potential, Jµ is a hadron con-
served current, and Fµν = ∂νAµ − ∂µAν and Gk

µν = ∂νB
k
µ −

∂µBk
ν .

Lagrangian (A5) is gauge invariant with respect to gauge
transformations of the electromagnetic vector potential, so the
photon interactions with the vector mesons do not violate
gauge invariance and, in particular, do not generate a photon
mass.

It remains to be shown that the coupling constants gk and hk

can be chosen such that they reproduce the eVMD predictions.

FIG. 18. (Color online) Diagrammatic representation of the pho-
ton interaction with the electromagnetic current using the effective
Lagrangian couplings. The first diagram shows the direct photon
coupling and the second one shows the coupling through the family
of n ρ mesons (double solid line). The photon line is shown as a wavy
line.

For each vector meson, we consider the two diagrams shown
in Fig. 18. Their sum gives

F (t) = 1 +
n∑

k=1

1

gk

t

m2
k − t

hk. (A6)

The spectral functions of the form factors and their asymptotic
behavior depend on the type of transition. The usual VMD
appears for n = 1. It corresponds to asymptotics F (t) ∼ 1/t

at t → ∞. If we set h1 = g1, the monopole form factor is
reproduced:

F (t) = m2
1

m2
1 − t

. (A7)

For m1 = mρ it describes well the pion form factor in the
space-like region. The model [94,95] of the pion form factor,
which represents an improvement of the VMD to account for
the analyticity and two-body unitarity of the pion form factor,
and the ρ-meson width, works well in both the space- and
time-like regions.

In the case of eVMD, we set hk = ckgk, where ck are some
coefficients. The form factor F (t) should decay at infinity, so
we obtain

n∑
k=1

ck = 1. (A8)

Then the usual representation (A4) of the eVMD form factors
follows.

The quark counting rules can be satisfied selecting the
coefficients ck . F (t) ∼ 1/t2 gives

n∑
k=1

ckm2
k = 0. (A9)

Equations (A8) and (A9) have a unique solution for n = 2.
F (t) ∼ 1/t3 requires the existence of at least n = 3 vector
mesons and so on.
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