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Hydro-kinetic approach to relativistic heavy ion collisions
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We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the
systems formed in A + A collisions and their dynamical decoupling described by escape probabilities. The
method corresponds to a generalized relaxation time (7.;) approximation for the Boltzmann equation applied
to inhomogeneous expanding systems; at small 7, it also allows one to catch the viscous effects in hadronic
component—hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained
within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-
out limit, are momentum dependent. The pion mr spectra are computed in the developed hydro-kinetic model,
and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our
results indicate that there does not exist a universal freeze-out temperature for pions with different momenta,
and support an earlier decoupling of higher pr particles. By performing numerical simulations for various initial
conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution

preferred in view of the current analysis of heavy ion collisions at RHIC energies.
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I. INTRODUCTION

Hydrodynamic models successfully describe basic features
of high energy nuclear collisions at CERN SPS and especially
at BNL RHIC (for reviews see, e.g., Refs. [1-3]), where
the utilization of ideal hydrodynamics was supported by
theoretical results: it was advocated [4] that deconfined matter
behaves like a perfect liquid. The hydrodynamic approach
to A+ A collisions implies a very hot and dense strongly
interacting matter as the initial state. Such a state is assumed
to be formed soon after the collision, then expands hydrody-
namically until the stage when the picture of the continuous
medium is destroyed. Roughly, it happens when the mean
free path of particles becomes comparable with the smallest
characteristic dimension of the system: its geometrical size or
hydrodynamic length. This approach allows one to account for
the complicated evolution of the system at a preconfined stage
and in the vicinity of the possible phase transitions by means
of a corresponding equation of state (EoS). By studying the
spectra of different particle species versus the initial conditions
and EoS, one could get information on the thermal partonic
stage of the “Little Bang” and further system evolution, which
could be also conclusive in the context of discriminating the
possible phase transitions.

The problem is, however, whether the predicted momentum
spectra, obtained in hydrodynamic models for given initial
conditions and EoS, are unambiguous. These spectra depend
not only on the initial conditions but also on the final
conditions of hydrodynamic expansion since one cannot use
hydrodynamic equations for infinitely large times because the
resulting very small densities destroy the picture of continuous
medium of real particles. Evidently, the simplest receipt of the
spectrum calculation is the Cooper-Frye prescription (CFp) [5]
which ignores the post-hydrodynamic (kinetic) stage of matter
evolution and assumes that perfect fluid hydrodynamics is
valid till some 3D hypersurface, e.g., as was supposed by
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Landau [6], till the isotherm T >~ m,, where sudden transition
from local thermal equilibrium to free streaming is assumed.

It has been known for a long time that CFp leads to
inconsistencies [7,8], if the freeze-out hypersurface contains
the non-space-like sectors, and should be modified to exclude
formally negative contributions to the particle number at
the corresponding momenta. The simplest prescription is to
present the distribution function as a product of a local thermal
distribution and the step function like 8(p, n*(x)) [8], n"n, =
41, where n* is a time-like or space-like outward normal to a
freeze-out hypersurface o. Thereby freeze-out is restricted to
those particles for which p,n*(x) is positive. This receipt was
used in Ref. [9] to describe particle emission from enclosed
freeze-out hypersurface with non-space-like sectors and it
was found that a satisfactory description of central Au+Au
collisions at RHIC was reached for a physically reasonable set
of parameters. The main features of the experimental data were
reproduced: in particular, the obtained ratio of the outward to
sideward interferometry radii is less than unity and decreases
with increasing transverse momenta of pion pairs. Thereby, the
results of Ref. [9] clearly indicate that early particle emission
off the surface of the hydrodynamically expanding fireball
could be essential for a proper description of matter evolution
in A + A collisions.

However, sharp freeze-out at some 3D hypersurfaces is
a rather rough approximation of the spectrum formation,
because the particle emission process of fireballs created in
high energy heavy ion collisions is gradual in time. Results
of many studies based on cascade models contradict the idea
of sudden freeze-out and demonstrate that in fact particles
are emitted from the 4D volume during the whole period
of the system evolution, and deviations from local equilib-
rium conditioned by continuous emission should take place
(see, e.g., [10]). Moreover, freeze-out hypersurfaces typically
contain non-space-like parts that lead to a problem with
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energy-momentum conservation law in realistic dynamical
models [8]. This concerns also hybrid models [11] where the
transport model matches hydrodynamics on such a kind of
isothermal hypersurface of hadronization [12].!

An attempt to introduce 4D continuous emission in hy-
drodynamic framework has been done in Ref. [13] within a
simple ideal hydrodynamics, and also supported by numerical
transport codes calculations, e.g., Ref. [14]. It was found in
these papers that the transport freeze-out process is similar
to evaporation: high-pr particles freeze-out early from the
surface, while low-p7 ones decouple later from the system’s
center.

The idea of continuous decoupling was further developed
based on Boltzmann equations in Ref. [15] where, in particular,
an approximate method that accounts for the back reaction
of the emission on the fluid dynamics was proposed. It
is worth noting that the back reaction is not reduced just
to energy-momentum recoiling of emitted particles on the
expanding thermal medium, but also leads to a rearrangement
of the medium, producing a deviation of its state from the
local equilibrium, accompanied by changing of the local
temperature, densities, and collective velocity field. This
complex effect is mainly a consequence of the fact that the
evolution of the single finite system of hadrons cannot be split
into the two components: expansion of the interacting locally
equilibrated medium and a free stream of emitted particles,
which the system consists of. Such a splitting, accounting
only for the momentum-energy conservation law, contradicts
the underlying dynamical equations such as a Boltzmann
one [15]. In view of this, the ideas proposed and results
obtained in the quasiclassical approach should be a clue for
a quantum treatment of the problem which recently begins to
be developed [16].> Note, however, that the estimates of the
influence of the quantum effects, such as the distortion of the
wave function, on the spectra and Bose-Einstein correlations
testify to be relatively small corrections to the quasiclassical
approximation [18].

The aim of the present work is twofold. First, we develop
the formalism of the hydro-kinetic approach and propose
approximations for practical calculations. The problem of self-
consistency of the method accounting simultaneously for both
the particle emission and fluid (in general, viscous) dynamics is
studied in detail. Special attention is also paid to the discussion
of the applicability conditions of the Cooper-Frye prescription
for sharp freeze-out.

Second, we develop a simple hydro-kinetic model of
hadronic emission that describes the evolution and emission
of particles from a hydrodynamically expanding system
undergoing a phase transition. For the sake of simplicity we

'Note that in this hybrid picture the initial conditions for hadronic
cascade calculations could be formulated also on some (arbitrary)
space-like hypersurface where, however, hadronic distributions are
deviated from the local equilibrium, in particular, because of an
opacity effect for hadrons which are created during a “mixed” stage
of phase transition. These nonequilibrium effects could seriously
influence the results of hybrid models in its modern form [11].

2See also the very recent contribution to this field in Ref. [17].
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consider here one type of escaping particle (pions) only and
do not take into account in numerical calculations the back
reaction of the emission on fluid dynamics. We study within
such an approach what type of initial conditions, equation of
state, etc., are preferred in view of current analysis of heavy
ion collisions at RHIC energies.

II. HYDRO-KINETIC FORMALISM FOR HEAVY
ION COLLISIONS

It was proposed in Ref. [15] to describe the hadronic
momentum spectra in A + A collisions based on the escape
function of particles which are gradually liberated from
hydrodynamically expanding systems. The escape function,
introduced in [13], is calculated within the Boltzmann equa-
tions in a specific approximation based on a hydrodynamic
approach. It was shown that such a picture corresponds
to a relativistic kinetic equation with the relaxation time
approximation for the collision term, where the relaxation
time tends to infinity, 7,y — 00, when t — o0, indicating a
transition to the free streaming regime. For one component
system the equation has the form:

PUOFGLp) _ fGp) = FUr p)
po OxH Trel(X, P) .

ey

Here f(x,p) is the phase-space distribution function,
f'%(x, p) is the local equilibrium distribution with local
velocities, temperatures, and chemical potentials that should
be found from Eq. (1) and the initial fy(x, p), and ti(x, p) is
the relaxation time (inverse rate of collisions in gases),

PoT(x, p)

pruy

@

Trel(X, p) =

Here 7}, (x, p) is related to the local fluid rest frame (local rest
frame of the energy flow) where the collective four-velocity is
u, = (1, 0). The relaxation time depends on the cross section
and is a functional of f!®(x, p).

As it is well known [19,20], such kinds of equations at
Trel K Texp (inverse of expansion rate) describe in the first
approximation the viscosity effects in gases with a coefficient
of shear viscosity 1 o tn T . Therefore the method explained
below catches in the first approximation also the viscosity
effects in an expanding hadronic gas, characterized by fields of
temperatures 7" and particle densities n. The viscosity effects in
the quark-gluon plasma (QGP) evolution cannot be described
in this way because strongly interacting QGP is not a gas, but
almost an ideal liquid [4].

The formal solution of Eq. (1) can be presented in the
following form:

f@.rx, p)
= f <t09 r— L(l‘ - t0)9 p)
Po

! 1
X exp —/ ds
{ to Trel(sa r— pL(t - S), p) ]

0
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leq( 4/ _ Py
+/tf (t’r Po(t t),p)
fo trel(t/y r— %(f — 1), P)

t

1

X exp —/ dstdt’, (3)
{ t frel(sa r— %(f - S), p)

where f(t,r, p) is the initial distribution at t = #,. The
relaxation time 7%, as well as the local equilibrium distribution
function f'®4 are functionals of hydrodynamic variables:
temperature 7, chemical potential u, and collective four-
velocity u,,. The space-time dependence of the corresponding
variables are determined by demanding the local conservation
of the energy-momentum with tensor 7#"(x) and, if necessary,
net particle number, with current n**(x) (assuming no particle

production)

0, T""(x) =0, 4)
d,n"(x) =0, 5)

where (see, e.g., Ref. [20])

3

T (x) = / TR e i, 1), ©)
ko
3

n'(x) = / ﬁk"f(x,ky 7
ko

These conservation laws lead to rather complicated equations
for hydrodynamic variables. It is worth noting that for an
expanding system the relaxation time 77, (x, p) increases with
time and, therefore, the deviations from local equilibrium
increase too, thereby preventing a use of the widely applied ap-
proximate methods based on the expansion of the distribution
function in the vicinity of the local equilibrium.

Then to solve the kinetic equation (1), in accordance with
the conservation laws (4) and (5), we need an approximate
method that could be applied even for strong deviations
from local equilibrium. It is not our aim here to suggest an
exclusive solution of the problem. Rather some arguments
are presented below by the example of the relativistic one
component Boltzmann gas with particle number conservation,

®)

£, p) = 2m) 3 exp (—M) ,

T

to show that such a method could be developed based on the
following procedure.

To take into account nonequilibrium effects accompanying
the particle emission in inhomogeneous violently expanding
systems, we utilize the integral representation (3) of kinetic
equation (1). Then, performing a partial integration of the
second term in Eq. (3) and, assuming that f(#,r, p) =
f ed(ty, r, p), one can decompose the distribution function to
alocal equilibrium part, £'°9, and a part describing a deviation
from the local equilibrium behavior, g:

f= %, p) + g(x, p), )
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where

rdfta(t,r— 2@ - 1), p)
g('xa p) = _/ 2

f dt’

t
1
X €eXp —/ ds ¢ dr'.
{ v Trel(ssr_%(t_s)v P)

10)

Note that both functions, fleq and g, are functionals of
hydrodynamic variables, g depends also on the relaxation time
Trel that defines the mean time interval between collisions,
and 1, depends in its turn on the distribution function
!4 and the cross section. The evolution of the distribution
function f(x, p) should satisfy the energy-momentum conser-
vation and, because THV[ f] = TH’[ f1% 4 g] = TH[f'*4] +
T [g] for systems where the interaction energy can be
neglected, it takes the form of hydrodynamic equations for
the perfect fluid with “source”,

AT = GPlgl, (11)
where
GPlgl = —a,T"[g]. (12)

The equation that takes into account the conservation of
particle number has a similar form:

dn"[ £ = Slgl, (13)

where
S[gl = —a,n"[g]. (14)

To find an approximate solution of Egs. (11)—(14), one can
solve the equations

QT f' =0, (15)
dn"[ 9] =0, (16)

and, thereby, utilize the hydrodynamic variables in the perfect
fluid approximation. Namely, the hydrodynamic variables in
this approximation can be used to calculate the deviation from
local equilibrium g(x, p) according to Eq. (10) and, then,
“source” terms GP[g] and S[g] on the right-hand sides of
Egs. (11) and (13). Then the left-hand sides of these equations
are functionals of local equilibrium functions and have the
simple ideal fluid forms, while the right-hand sides associated
with a “source” are explicit functions which describe a devia-
tion from the local equilibrium and depend on hydrodynamic
variables in the perfect fluid approximation:

WTP[f1UT up, )] = GPTig, i, i, 7], (A7)
" [ f1NT, uy, W] = S[Tia ull, pig. 73], (18)

where, for one component Boltzmann gas with elastic colli-
sions only, the relaxation time 7. is the inverse of collision

rate in ideal fluid, R9(x, p), and has the following form (in
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the co-moving frame):

1

_ pid
T R
L[ &k (_Ek—u,-dm)
“ ) e Tra(x)
_ 2
x o (s) Y28~ 4mT) (19)
2E, E;

Here E, = \/p> + m?, Ex = VK> +m?,s = (p + k)? is the
squared c.m. energy of the pair, and o (s) is the corresponding
cross section. A solution (7'(x), u,(x), u(x)) of Egs. (17),
(18) accounts for the back reaction of the emission process
on hydro-evolution and provides us with the hydrodynamic
parameters which finally should be used to calculate the locally
equilibrated part f1°(x, p) of the complete distribution func-
tion f(x, p). Then, the distribution function obtained in this
way, f(x, p) = 10T, u,, u] + g[Tia. uld, pig, 7,9]. satisfies
the conservation laws, takes into account the nonequilibrium
peculiarities of the evolution and is constructed in agreement
with the corresponding EoS. Of course, this scheme allows us
to make the next iterations in solving Eq. (1). Note also that
because the “source” term on the right-hand side of Eq. (17) is
a known function, the causality is preserved in this description
of dissipative systems.

III. KINETICS OF THE FREEZE-OUT IN
HYDRO-KINETIC APPROACH

The approach developed in the previous section allows us
to study an important problem: under which conditions the
Landau/Cooper-Frye prescription (CFp) of sudden freeze-out
is valid and how, then, to define the corresponding 3D
freeze-out hypersurface. The CFp is traditionally utilized when
hydrodynamics is applied to describe the later stage of the
matter evolution in A + A collisions, and also is a basic
ingredient of various hydro-motivated parametrizations (see,
e.g., [9,21]). A widely used heuristic freeze-out criterion for
finding the freeze-out hypersurface of a violently expanding
system is either the comparability of the hydrodynamic rate
of expansion with the kinetic rate of collisions [22] or of
the mean free path of particles with the geometrical size of
the system [6,23]. While the problem was extensively studied
before (see, e.g., Refs. [7,8,15,24]), a complete understanding
of the conditions allowing the utilization of the sharp freeze-out
approximation (that corresponds formally to sudden transition
from local equilibrium to free streaming) of spectra formation
and an unambiguous definition of the corresponding freeze-out
hypersurface are still absent. A discussion in this section based
on the analytic approximation to a calculation of momentum
spectra could be, in our opinion, useful for understanding the
conditions of applicability of the CFp and improvement of it,
if necessary.

Let us integrate over space variables distribution (3) to
represent the particle momentum density at large enough time,
t — oo, when particles in the system stop to interact:

d*N ;
E(I)En(t’p):/drf(tyrvp)' (20)
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The result can be presented in the general form found in
Ref. [15]:

n(t — oo, p) = f d*rf(to, r, pYP(to, 1, p)

t
+ / d’r / dt' F&n (' r, pyP(t, 1, p).
fo
(1)

The term F&"(x, p) corresponds to “gain” term in the
Boltzmann equation and is associated with the number of
particles which came to the phase-space point (x, p) just after
the interaction in the system. The probability P(x, p) for a
particle to escape the system from space-time point x = (¢/, r)
is expressed explicitly in terms of the rate of collisions R along
the world line of the free particle with momentum p,

P, r, p) = exp (—/ dsR <s, r+ £(s —1t), p>> )
t Po

(22)

The first term in Eq. (21) describes the contribution to the
momentum spectrum from particles that are emitted from
the very initial time, while the second one describes the
continuous emission with emission density § = F&"P from
4D volume delimited by the initial and final (where particles
stop to interact) 3D hypersurfaces [15]. In a particular case,
whiph we consider in this article, R(x, p) = 1/7(x, p) and
F&0(x, p) = f'x, p)/Tw(x, p).

To provide straightforward calculations leading to the
Cooper-Frye approximation let us shift the spacial variables,
r=r+ %(to —1'), in the second term of Eq. (21) aiming
to eliminate the variable ¢’ in the argument of the function
R = 1/ in (22). Then

n(t, p) = f d’rf(t, r, p)

d 1
X exp —f ds
{ to Trel(ss r + %(S - t0)7 p) }

t
+ /a’3r’/ dr’ f'e (t’, v+ 2 g, p)
Iy pO

x Q(t', ¥, p), (23)

where
1
Tl (1, 0 + £t = 19), p)

! 1
X exp —f ds i .
{ v Tra(s, ¥+ %(S — 10), p) }

(24)

o', r', p) =

Here, f'°9, 1, are functionals of temperature, hydrodynamic
four-velocity, and chemical potential, and these quantities are
governed by hydrodynamic equations (11)—(14). Note that

/ d ! /
Q(t 7r/7 p) = EP(I srsp)s (25)
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where P(t',r’, p) is connected with the escape probability
P, r, p):

! 1
P, Y, p) =exp —/ ds
t Trel(sar/+ %(S _t())v p)

_p (r’, v+ 2@ =), p> . (26)
Po

Therefore

/ dr'o@',r', p)=1—"P(t, 1, p). Q7

fo

The 4D emission density has the form

S ¥, p) = 1 (rﬁ ¢ ), p) o', ¥, p).
0
(8)

In order to have a tractable approach and set up the
conditions of validity of CFp, let us assume that at each r’
and p there is a maximum in ¢’ of the emission function
S(¢’, ¥, p) inside the interval [#, ], and that the position of the
maximum, 7’ = 7 (r', p),is mainly conditioned by Q(¢', ¥, p).
Then corresponding hypersurface . (r, p) is defined by the
conditions

do(t',r', p) _0 29)
dr’ v—y
cowr.pl (30)
dr” =] ’
and, utilizing Eq. (24), we get
dtrel(t/v r/ + %(t/ - t())v p))t'—t’
— =1, 31
I (31)
dzfrel([/v r' + %(I/ - Io), p)‘ .
=S, (32)

dt/z

where d/dt’ is the full time derivative.

Let us demonstrate that Eqs. (31), (32) generalize the
heuristic freeze-out criterion [22]. According to the latter, the
freeze-out happens when

Tscat ~ Texp » (33)

where T, (x) is the mean time interval between successive
scattering events,

1
(vo)(x)n(x)
v is the relative velocity between the scattering particles, n(x)
is the particle number density and o is the corresponding
total cross section and the sharp brackets mean an average

over the local thermal distribution. The inverse hydrodynamic
expansion rate Teyp(x) is the collective expansion time scale,

()__<;ua )‘1__<;8n>‘1 35)
o ="0" ) T Gimar)

Tscat(X) = (34)
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where t* is the proper time in the local rest frame of the fluid.

To demonstrate that the heuristic freeze-out criterion (33)
follows from Egs. (31) and (32) under certain conditions, we
note first that Ty, (x) is similar to rrig]*, see Eq. (19). Then,
rewriting Eq. (31) in the form

a d
(—, +2 —) Tt ¥, p) =1, (36)
ot po dr t'=t; r=r'+ (1, —to)
we get from the above equation that
—1
1 0 n p o
Trel(ty, T, ) dt’" ~ po or
(wen)
X /
frel([ , I, p) z/:[(/x,r:r/.i,_%(té_lo)
1
= — . 37
rrel(tg» r, p) t’:t;,r:rq—%(l(’,—to)

Now, if we turn to the local rest frame of fluid and neglect
there the momentum dependence of the above equation, as
well as deviations from local equilibrium, we get, accounting
for Egs. (19) and (34), that the left-hand side of Eq. (37)
is approximately — (1-2)|,._,. while the right-hand side is
1/7i% (12, 1) & 1 /Tea(t, T¥), recovering thereby the crite-
rion (33) of the freeze-out. One can note, however, that unlike
the heuristic definition (33) the true freeze-out hypersurface
t' (r', p) depends on momentum® and thereby particles of
different momenta freeze-out on different hypersurfaces. This
result has already been observed in [13] in terms of escape
probabilities.

Now, we proceed to the Cooper-Frye representation of the
freeze-out process. For this aim it is convenient to introduce a

new variable in the second term of Eq. (23), namely,
/ p / /
r=r + —(@, (@, p)—1). (38)
Po
Then
;. P
r=r— —((r, p) — ), (39
Po

and the corresponding Jacobian is

or! 0ty
det [—r} —1-2% (40)

al’j Po or

3The momentum dependence of freeze-out hypersurface is condi-
tioned by both momentum and spacial dependencies of 7. . Note
that the momentum dependence of the relaxation time was explicitly
demonstrated recently in Ref. [25] based on the numerical results of
parton cascade simulations.
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This function is positive as will be shown below. Then Eq. (23)
takes the form

n(t — 0o, p)

=/d%ﬂmnpﬂwmnp%+/d%<l—BE&)

Po Br
! p
X / dr’ f'e (r’,r+—(t’—tg),p>
ty pO

x Q (t’, r— 2, p)— 1), p) . @1
Po

To estimate the accuracy of the Cooper-Frye approximation
let us apply the saddle-point method for the calculation of the
second term in Eq. (41) by the use of expansion of the funct-
ion In (', ¥ — £ (1, (r, p) — 1), p) = In[r3 (', v + &' -
to(r, p), PYP(t',x + (' — 1,(r, p), p)] [see Eq. (24)] near
the point of maximum in ¢':

0 (r’, r— 2 p) — 1), p)
Po

€xp (_ j:,)o ds r,el(x‘,r-&-p%l(s—ta(r,p))

Tl'el(td (ra p)ﬂ rv p)
x exp(—(t' — t,(r, p))*/2D*(r, p)),  (42)

~

where

Trel(tfr(r’ P)7 r, P)
Tt ¥+ 2(1' 1), p)
dt;z

D(r, p) =

V'=te (r, p).X'=r— 22 (15 (¥, p)—10)

(43)

Let us suppose that probability P(t, r, p) for particles
to escape just at the initial moment is negligible, except,
of course, the periphery of the system at ¢t =#y which,
however, gives a relatively small contribution to the spectra.
Then, taking into account that in the region of freeze-out the
particle suffers the last collision and, thus, j:o dstrgl1 (s,r+

%(s —t,(r,p), p) =1 (rrgll is the rate of collisions), and also
accounting for the normalizing condition (27) for Q, one can
integrate Eq. (42) over ¢’ and estimate the temporal width of
the emission zone

1
D(rs p) = \/T_jftrel(ta’ r, p)

> P
X exp (/ dsrrgll(s’r+_0(s_td(r5 p)a P))
1y p
x~ Trel(taa r, p) (44)

The above relation means that at the freeze-out hypersurface
TreiTpy = 1, see Eq. (43).

Therefore if the temporal homogeneity length A(r, p) of
the distribution function f'°d near the four-point (¢, (r, p), r)
is much larger then the width of the emission zone, A(r, p) >
Ta(r, p), then one can approximate f'°(¢/,r + %(t’ —
), p) by fleq(t,,, r, p) in Eq. (41) and perform integration
over ¢’ accounting for normalizing condition (27). As a result
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we get momentum spectra in the Cooper-Frye form:

pn(t — oo, p) = / do,p" f'%x, p),  (45)
a(p)
where
3 dty
doyp" =d’r | po — PE . (46)

Now let us summarize the conditions for the utilization of
the Landau/Cooper-Frye approximation of sudden freeze-out.
They are the following:

(i) For each momentum p, there is a region of r where
the emission function as well as the function Q [see
Eq. (24)] have a sharp maximum with temporal width
D(r, p). The formal conditions of the maximum are
defined by Egs. (29), (30).

(ii)) The width of the maximum, which in the case of
one component system is just the relaxation time
(inverse of collision rate), should be smaller than the
corresponding temporal homogeneity length of the
distribution function: A(r, p) > D(r, p) =~ T (T, p).

(iii)) The contribution to the spectra from the residual region
of r where the saddle point method [Gaussian approxi-
mation (42) and/or condition 7, < A] is violated does
not affect essentially the particle momentum density.
In other words, the space regions where for fixed
momentum p either there is no sharp maximum of
the emission function or phase-space density changes
very rapidly are not important for spectra formation.
Note, that this condition is most questionable and has
to be checked in realistic dynamical approaches for
freeze-out, like hydro-kinetics, or transport models with
appropriate initial conditions for hadronic phase.

(iv) The escape probabilities P(zy, r, p) for particles to
be liberated just from the initial hypersurface #, are
small almost in the whole spacial region (except maybe
peripheral points) and so, one can neglect the first
integral in Eq. (41).

If the conditions (i)—(iv) are satisfied, then the momentum
spectra can be presented in Cooper-Frye form in spite of the
fact that there is no sudden freeze-out and the decaying region
has afinite temporal width D(x, p) =~ T,.(t,(r, p), r, p). Also,
what is very important, such a generalized Cooper-Frye
representation is related to the freeze-out hypersurface that
depends on momentum p and does not necessarily enclose the
initially dense matter (it will be demonstrated in the next
section by numerical calculations of emission functions).

In as much as the hypersurface 7, (r, p) corresponds to the
maximum of the emission of the particles with momentum
p into vacuum, these particles cannot be emitted from
point (#,(r, p), r) inward of the system. In the latter case
neither the emission function S nor function Q can have
a maximum at this phase-space point; in fact, their values
are near zero. Even formally, in the Gaussian approximation
(42) for Q, validated in the region of its maximal value,
the integral f:o dst (s, T+ %(s —ty(r, p), p) > 1, if the
particle world line crosses almost the whole system. The
latter results in @ — 0 and, therefore, completely destroys
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the saddle-point approximation (42) for Q. If the particle
crosses some non-space-like part of the hypersurface o moving
inward of the system, it corresponds to the condition p*do,, <
0 [7]. Hence always the value p*do,(p) in the generalized
Cooper-Frye formula (45) is positive: p*do,(p) > 0 across
the hypersurface where a fairly sharp maximum of the
emission of particles with momentum p is situated; and so
the requirement p“do,(p) > 0 is a necessary condition for
t,(r, p) to be a true hypersurface of the maximal emission.
It means that hypersurfaces of maximal emission for a given
momentum p may be open in space-time, not enclosing the
high-density matter at initial time #y, and different for different
p- In other words, the momentum dependence of the freeze-out
hypersurface, defined by Eqgs. (31) and (32), naturally restricts
the freeze-out to those particles for which p“do,(r, p) is
positive.

Therefore, there are no negative contributions to the particle
momentum density from non-space-like sectors of the freeze-
out hypersurface, that is a well-known shortcoming of the
Cooper-Frye prescription [7,8]; the negative contributions
could appear only as a result of utilization of improper
freeze-out hypersurface that roughly ignores its momentum
dependence and so is common for all p. If, anyhow, such a
common hypersurface will be used, e.g., as the hypersurface
of the maximal particle number emission (integrated over p),
there is no possibility to justify the approximate expression
for momentum spectra similar to Eq. (45). Also, in that case
there is no common phenomenological prescription, based
on Heaviside step functions 0(p,do,), which allows one
to eliminate the negative contributions to the momentum
spectra when p*do, < 0. The prescription, proposed in
[7], eliminates the negative contributions in the way which
preserves the number of particles in the fluid element crossing
the freeze-out hypersurface related to the maximum of total
(averaged over p) particle emission. Therefore it takes into
account that at the final stage the system is the only holder
of emitted particles. Another prescription [8] ignores the
particle number conservation considering decaying hadronic
system rather as a star—practically unlimited reservoir of
emitted photons/particles. Both prescriptions have a problem
with momentum-energy conservation laws at freeze-out. The
approach developed here overcomes all above-mentioned
problems by considering the continuous dynamical freeze-out
that is consistent with Boltzmann equations and conservation
laws.

One can see from Eq. (42) that in the general case with
nonzero thickness of the emission layer, D >~ 1, # 0, the
emission density S (28) cannot be approximated by means of
the local equilibrium distribution function f£'® smeared by
a (proper) time factor exp(—(t — 19)?/87%) with constant 7,
and 872. Such an ansatz cannot be used in place of the proper
emission function as it is often utilized in hydro-inspired
parametrizations (see, e.g., Ref. [21]) to take into account
the gradual character of the freeze-out process in heavy ion
collisions. In fact, parameters o and 8§72 should be dependent
at least on the spacial coordinates, as it is explained in detail
in Refs. [9,15]. Equations (42) and (43) demonstrate that they
depend on particle momentum as well and that the emission is
not locally isotropic.
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IV. PIONIC EMISSION IN SPECIFIC HYDRO-KINETIC
MODELS

In this section we present and discuss the results of
numerical calculations obtained in a few concrete realizations
of the hydro-kinetic model (HKM). For the sake of simplicity
we consider the emission of only one particle species (negative
pions, 7 ~) from the expanding fireball. Also we employ here
the ideal fluid approximation for hydrodynamic variables in the
integral representation (3) to calculate the emission densities
and momentum spectra of pions. This approximation results
in a little (less than 10% for our calculations) violation of
the conservation laws. We describe, in all simulations, the
locally equilibrated state of hadrons by relativistic Boltzmann
distributions.

The numerical results presented in this section were
obtained on the basis of our original numerical 3D ideal hydro-
code that was developed based on the relativistic Godunov-
type HLLE algorithm, described in detail in Ref. [26]. We
use Bjorken coordinates [27]t = +/12 — 22, p = tanh~!(z/1),
instead of Cartesian ones, the corresponding transformation
of hydrodynamic equations and conservative variables are
described, e.g., in Refs. [2,28]. A second order of accuracy
in time of this algorithm is achieved by using the predictor-
corrector scheme. To achieve second order of accuracy in space
we apply a linear distribution of conservative variables inside
each fluid cell. Having determined the evolution in the ideal
fluid approximation, we proceed in calculating the emission
densities using numerical (tabulated) space-time dependencies
of collective velocities and thermodynamic quantities. An
8- and 16-point Gaussian quadrature method implemented in
ROQT [29] are used to calculate the escape probability for each
space-time position and particle momentum. To calculate the
resulting 4D integrals for particle spectra we use Monte Carlo
method and check convergence of the results with increasing
number of sampling points. We use ROOT for the results output
also.

First, we present our results on a specific toy-HKM
that describes expanding one component relativistic ideal
Boltzmann gas (p = nT) of w~ with presumed conservation
of particle number to demonstrate that our hydro-kinetic
approach agrees with the main features of particle emission
in the midrapidity region of relativistic heavy ion collisions,
known from results of many transport code simulations. We
also compare the particle momentum spectra from HKM with
ones obtained by means of the Cooper-Frye prescription with
standard isothermal freeze-out hypersurface.

We assume the following Bjorken-type initial conditions
at 7, = 1 fm/c for HKM calculations: initial longitudinal flow
vy, = z/t without transverse collective expansion, ideal Boltz-
mann gas of 7~ in chemical (local) equilibrium as the initial
particle distribution, boost-invariance of the system in the
longitudinal direction and cylindrical symmetry with Woods-
Saxon initial energy density profile in the transverse plane,

€0

e(ti,rr) = W,

(47)

where Rr =7.3 fm, § =0.67 fm are associated with
the density profile of the Au nucleus, and the maximal
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energy density in the center of the system, €y = 0.4 GeV/fm?,
corresponding to the temperature 7 =~ 320 MeV of chemically
equilibrated pions. To find the momentum spectra in the
HKM, the relaxation time t.; = pot,y/p"u, needs to be
specified. For this aim we utilize the expression given by
Eq. (19) that represents the rate of binary collisions for one
component Boltzmann gas. As for the cross section, we carry
out calculations for two distinct (artificial) values: o = 40 mb
and 0 =400 mb. We performed ideal hydro-calculations
till 7, =30 fm/c when the system becomes very rarefied,
therefore the interactions are nearly ceased and momentum
spectra are almost frozen. The values of u,(x), T(x), and
u(x) near midrapidity, n =~ 0, are used then to calculate the
emission function S(¢', r’, p), Eq. (28), and, utilizing Egs. (23)
and (24) to evaluate the momentum spectra at hypersurface
7 = 77 . Note that the transformation of Eqgs. (23) and (24)
for evolution parameter t instead of ¢ with corresponding
substitution for the initial conditions can be easily done in a
straightforward manner.

The results for the pion emission density integrated over
the transverse momenta pr = (prcos¢, prsing) at zero
longitudinal momentum, p; = 0,

(SN py0 = / S(x. p)dpr. 48)

as a function of transverse radius ry and Bjorken proper
time t are shown in Figs. 1 and 2 for 0 =40 mb and
o =400 mb, respectively. The integrated emission function
is multiplied by a “geometric” factor t, because of kinematics
in hyperbolic coordinates: t - S(z, r7) is associated with the
probability for particles with any transverse momentum to be
emitted in the central unit of rapidity within the proper time
interval [T, T + dt] and transverse radius [r7, rr + drr]. As
one can see in these figures, the maximum of emission is
more pronounced and occupies narrower space-time area for
larger cross sections than for smaller ones, which is certainly
a result of higher medium opacity for higher rate of collisions.
Therefore the freeze-out is rather gradual process for the low
(o = 40 mb) value of the cross section in the expanding gas,
and one could hardly expect the validity of the Cooper-Frye
prescription there. Figures 3 and 4 show the dependence of
the emission function S on the angle between the position
and momentum vectors at the particle emission point in the
transverse plane.

To check the reliability of the conventional CFp applied at
the isotherm 7' = Ty ~ m versus the hydro-kinetic picture of
the continuous particle emission, we compared the transverse
momentum spectrum of emitted pions in HKM with the one
calculated in CFp. We performed an integration of the emission
function over a space-time four-volume till 7 = 30 fm/c to ob-
tain the momentum spectrum of pions in the HKM. The emis-
sion of particles already free at the initial moment z; was also
accounted for in such a calculation. On the other hand, we uti-
lized CFp for an isothermal hypersurface with Ty = 120 MeV
and locally equilibrated distribution function on it. The value
of the freeze-out temperature, 7y = 120 MeV, is near tempera-
tures corresponding to maximum of the emission function inte-
grated over transverse momenta for an expanding gas of pions
with o = 400 mb. Such a hypersurface, as well as the velocity
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FIG. 1. Space-time dependence of the emission function inte-
grated over transverse momenta at p; = 0, for an expanding gas
of pions with cross section 40 mb, initially with longitudinally
boost-invariant flow and Woods-Saxon energy density profile in the
transverse plane.

and chemical potential distributions on it were extracted from
a pure hydrodynamic calculation. The results for my-spectra

(mr = ,/p% + m?) are presented in Fig. 5. One can see the
increase of the effective temperature (inverse slope) in the

case of small cross section (o =40 mb) compared to pure
hydrodynamic calculations with Cooper-Frye prescription.
This happens because, if the collision rate is small, particles
can escape easily from the early stages of the evolution when
T > Ty (see Fig. 3). While the transverse collective velocity
for particles that escape at higher temperatures 7 > Ty is
smaller than the one for particles which suffer freeze-out
according to CFp at T = T, the resulted gain in collective
velocity does not lead, typically, to an increase of the effective
temperature calculated according to ideal hydro-equations
because of the energy transfer from transverse to longitudinal
degrees of freedom. Then the utilization of CFp with Ty ~ m
leads to a noticeable decrease of the inverse slope compared
to the hydro-kinetic result (see Fig. 5). Apparently, the high
collision rate that occurs for o = 400 mb prevents an early
escaping and, consequently, leads to a gradual freeze-out
in the rather dilute medium at low temperatures T < Ty.
The interactions at this stage do not change the momentum
spectrum essentially justifying, thereby, the utilization of CFp
for the Ty = 120 MeV isotherm.
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FIG. 2. Same as in Fig. 1 but for a cross section equal to 400 mb.

Now, let us consider a more sophisticated hydro-kinetic
model accounting for some realistic features of the evolution
of fireballs created in ultrarelativistic heavy ion collisions.
We focus on the midrapidity hadronic emission at RHIC
energies. Note that resonance decay contributions to pion
spectra are not taken into account in the present version
of HKM. Therefore, we do not compare our results with
experimental data. Our aim here is to study the influence

FIG. 3. Emission function for an expanding gas of pions with
cross section 40 mb at T = 2 fm/c as a function of the angle between
the position and transverse momentum vectors of the escaping particle
at the distance rr = 6 fm from the axis for different absolute values
of transverse momentum.

PHYSICAL REVIEW C 78, 034906 (2008)

S(pT,q)), 6=400mb

FIG. 4. Same as in Fig. 3 but for cross section 400 mb, 7 =
4 fm/c, and rr = 8 fm.

of different types of initial conditions and equations of state
on hadronic emission processes. Special attention is paid to
the lifetime of the system that undergoes a phase transition,
because, as is well known, the long evolution time is one of
the main shortcomings of hydrodynamic and kinetic models
aiming to describe the quark-gluon plasma (QGP) to hadron
gas (HG) transition in relativistic heavy ion collisions: it leads
to an overestimate of the the corresponding lifetime scale found
in HBT analysis [30].

First of all, to solve the relativistic hydrodynamic equations,
an equation of state needs to be specified. Because the
thermal model analysis of the particle number ratios at RHIC
demonstrates almost zero baryon chemical potential [31],
we utilize an EoS with zero net baryon density. According
to lattice QCD calculations, the deconfinement transition at
a vanishing baryon chemical potential is a rapid crossover
rather than a first order phase transition with singularities
in the bulk thermodynamic observables [32]. Therefore for

10

T spectra | ---------- HKM, 6=400mb
----- HKM, 6=40mb
—— CFp, T1=120 MeV|

10

d?N/(2r m_dm_dy) [GeV?]

1= ™
*111111111111111111111111111111111111111111111111'

0.1 02 03 04 05 06 07 08 09
m; - m [GeV]

FIG. 5. Transverse spectra of pions escaped until v = 30 fm/c
from an expanding fireball calculated in HKM, with cross sections
40 mb and 400 mb, compared to the spectrum according to CFp
applied to the local equilibrium distribution at hypersurface 7, =
120 MeV.
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the calculations presented here, we use for high temperatures
a realistic EoS [33] adjusted to the QCD lattice data with
a crossover transition at about 7. ~ 175 MeV and matched
with an ideal chemically equilibrated multicomponent hadron
resonance gas at T = T.. For temperatures in the interval T, <
T < T, Ty, = 160 MeV, we utilize an EoS [33] of an ideal
chemically equilibrated multicomponent hadron resonance
gas, and for T < T, we obtain and utilize an EoS of a
multicomponent [34] hadron resonance gas with a chemical
composition frozen at T = T¢,. The resonance mass spectrum
extends over all mesons and baryons with masses below 2.6
GeV [34]; corresponding electronic tables where taken from
the FASTMC event generator [35]. The value of the chemical
freeze-out temperature, T, = 160 MeV, is chosen because it
is near chemical decoupling temperatures [31] extracted from
the measured hadron abundance ratios at RHIC.*
Then, to calculate the equations of state p = p(T, uy,
ey n), € =€(T, uy, ..., uy,) of the chemically frozen ideal
hadron resonance gas, one needs to know how the chemical
potential u; of each particle species and energy density
depend on temperature when the hadron gas, being in an
initially known state (all T, €cp, uih are known), expands
adiabatically. It can be done in the following way. Firstly,

“ "

note that the concentration of any particle species “i",

i T» i
o= ) => i, (49)
n(T, i, ...\ ty)
is fixed by its initial value at T, and, so,
ni(T,pmj)  Kj

does not change with temperature for 7' < T,,. Here n; is
the number density of particle species “i” and, in Boltzmann
approximation,

Qji+1
n=————

2m?
where K, (1) = %fj:)o dzexp[—u coshz + nz], with Reu >
0, is the modified Bessel function of order n (n =0, 1, ...).

The energy density and pressure of the chemically frozen
mixture of ideal Boltzmann gases are

Tm? exp(wi/ T)Ka(m;/T), (51)

e=n(T, p1, ..., tn) Y_kie;(T),  p(T, ..., )T,
(52)
where &  Kim/T)
6 =—= + 3T. (53)

=m—
n; Kx(m;/T)

Then, taking into account the thermodynamic identity

et p=sT+) wn (54)

and, accounting for the constancy of entropy density to particle
number density ratio, s /n, during an ideal hydro-evolution, we

“Note to avoid the misunderstanding that the decay of resonances
during the hydrodynamic expansion of hadronic matter agrees with
the chemical freeze-out concept but could influence an EoS and
particle spectra, we neglect here this effect just for simplicity reasons.
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divide the above identity by (nT') and get

e(T) e(Tw)\ (1) pi(Ten)
ZK’( T T )_Zkl< T Ton )

(35)

Equations (55) and (50), (51) define w;(T) for all particle
species “i” and, thereby, complete the thermodynamic trajec-
tory (for T < T¢,) of the system and all their components:
€(T), p(T), n;(T) in isentropic expansion starting from Tgp.
Of course, the equations of state of the chemically frozen
hadron resonance gas (52) can be reduced now to p(€) on this
particular thermodynamic trajectory.

For comparison, we also perform ideal hydro-calculations
with the EoS taken from Ref. [36], where a strong first
order phase transition is assumed. The corresponding EoS are
presented in Figs. 6, 7, 8.

To calculate the pionic emission function and momentum
spectra by means of HKM, the rate of collisions needs to be
specified. We use the expression for the collision rate (in the
co-moving system) that accounts for binary collisions of pions

with any “i” hadronic species,
_Eri — i)
(2 )3 T(x)

SS*(X p) Z/
Vs = (m —mp)2(s — (m +m;)?)

X o;(§
i(s) 2E, Er,

(56)

g =2ji+ 1), E, =/p* +m? Er; = \[K +mj,

s = (p + k)? is the squared c.m. energy of the pair, and o;(s)
is the total cross section in the corresponding binary collision.
For the latter, we utilize a Breit-Wigner resonance formula
with +/s-dependent parametrization of decay widths as in
Ref. [37]. All relevant resonance states from [34], used in the
FASTMC event generator [35]—359 different species—are

Here
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FIG. 6. Pressure versus energy density for Laine and Schroder
EoS with crossover transition; for Hirano and Tsuda EoS with strong
first order phase transition; and for chemically frozen ideal hadron
resonance gas.
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FIG. 7. Temperature versus energy density for Laine and
Schroder EoS with crossover transition; for Hirano and Tsuda EoS
with strong first order phase transition; and for chemically frozen
ideal hadron resonance gas.

taken into account for the calculation of o;(s). Suppression
of bulk pionic emission from very high energy density stage
of matter evolution where quark-gluon degrees of freedom
are dominated is assured in our approach by abrupt increase
of the collision rate (56) that is conditioned by a drastic
increase of hadronic density at T > T, in Eq. (56). Note, to
avoid a misunderstanding, we utilize the relaxation rate (56)
to calculate the pionic emission for T > T, for the sake of
simplicity only. In a more advanced approach the gradual
disappearance of pions and other hadronic degrees of freedom
during the crossover transition as well as the scattering of
pions with quarks, gluons, etc., should be taken into account.
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FIG. 8. Chemical potential of pions (in the Boltzmann approx-
imation) versus energy density for Laine and Schroder EoS with
crossover transition; for Hirano and Tsuda EoS with strong first order
phase transition; and for chemically frozen ideal hadron resonance
gas.
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FIG. 9. Space-time dependence of the pionic emission function
integrated over the transverse momenta for an expanding fireball with
crossover transition, initially with longitudinally boost-invariant flow
and Woods-Saxon energy density profile in the transverse plane.

Here we just expect that it will lead to the same effect of
drastic suppression of the pionic emission from the region
occupied by QGP.

As for the initial conditions, we first perform calculations
with a Woods-Saxon initial energy density profile (47) in
the transverse directions at t; =1 fm/c. The values of
parameters we choose for illustrative calculations are €y =
6 GeV/fm?, Ry = 7.3 fm, and 8§ = 0.67 fm. It results in the
initial temperature at the central “plateau” T = 247 MeV.
These initial conditions at midrapidity are similar to the ones
used in Ref. [38], where the transverse energy density distri-
bution at 7; = 1 fm/c was parametrized by a flat region with
Gaussian smearing near the edge. The hydro-evolution starts
at 7; = 1 fm/c with initial Bjorken flow without transverse
velocity (vy = 0), assuming a complete chemical equilibrium
at T > T, and a chemically frozen evolution below T,

The pr-integrated pion emission function at midrapidity is
shown in Fig. 9 for an EoS with a crossover transition and in
Fig. 10 for an EoS with strong first order phase transition
taken from Ref. [36]. One can see that the utilization of
the EoS with a crossover transition leads to a significant
decrease of the system lifetime because of a more effective
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FIG. 10. Same as in Fig. 9 but for a strong first order phase
transition.
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FIG. 11. Space-time dependence of the pionic emission function
of an expanding fireball with crossover transition and Woods-Saxon
initial energy density profile in the transverse plane, at ¢ = 0 and
different values of pr: (a) pr = 0.3 GeV, (b) pr = 0.6 GeV, (c)
pr = 1.2 GeV.

acceleration of the system [39] in expansion and, therefore, is
more reliable in view of RHIC data indicating a rather short
lifetime of the system [30].° Results for a non-p-integrated
emission function are presented in Fig. 11. They demonstrate

5The same conclusion was reached recently in Ref. [40] based on
the analysis of effects of different forms of the sound velocity function
on the hydrodynamic evolution of matter created in ultrarelativistic
heavy ion collisions.
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FIG. 12. Space-time dependence of the pionic emission function
integrated over transverse momenta for an expanding fireball with
crossover transition, initially with longitudinally boost-invariant flow
and Gaussian energy density profile in the transverse plane.

the tendency of high-pr particles to be emitted early from the
periphery of the system, whereas low-py particles are mostly
emitted at the late stage of evolution from the center of the
system when the system becomes fairly rarefied because of
the expansion. It corresponds to results of Ref. [14], where the
same conclusion was drawn based on partonic cascade model
calculations.

While the system lifetime is reduced if the EoS with a
crossover transition is utilized, it could still be too high for
reproducing measured values of the HBT radii at RHIC [30].
To study the influence of the initial conditions on the lifetime
of the system, we perform hydro-kinetic calculations also for
a Gaussian initial energy density profile, instead of a Woods-
Saxon one:

2

€(zi, 1) = €oexp (—%) , (57)

T

where Ry = 7.3 fm and the normalization constant is €y =
6.0 GeV/fm3, so that the total energy in any rapidity slice
remains the same as for the Woods-Saxon initial density
profile. The transverse momentum integrated pion emission
function at midrapidity is shown in Fig. 12. One can readily
note a considerable decrease of the “averaged” emission time
due to a faster transverse velocity development because of the
initial gradients of density in the whole transverse region and,
therefore, fast cooling. Also we checked the validity of the
Cooper-Frye prescription for spectra at two assumed freeze-
out hypersurfaces corresponding to the isotherms 7 = 75 MeV
and T = 160 MeV (see Fig. 13), here the value of the freeze-
out temperature, Ty =75 MeV, is chosen because it is near
temperatures corresponding to a maximum of the emission
function integrated over transverse momenta. We find that the
effective temperature of the spectrum approximately coincides
with the one calculated according to CFp at hypersurfaces
T =75 MeV for pr <0.5GeV and T = 160 MeV for pr >
1 GeV, respectively (see Fig. 14). The spectrum calculated
with HKM is concave, as shown in Ref. [13], and demonstrates
that the utilization of a simple p-independent isothermal CFp
for modeling freeze-out for such systems could seriously
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FIG. 13. Isothermal hypersurfases of an expanding fireball with
crossover transition and Gaussian initial energy density profile in the
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FIG. 14. Transverse spectrum of pions escaped until T = 30 fm/c
from an expanding fireball with crossover transition calculated in
HKM versus spectra calculated according to CFp applied to the local
equilibrium distribution at 7, = 75 MeV and T, = 160 MeV.
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FIG. 15. Same as in Fig. 12 but with an initial nonzero transverse
flow added.

underestimate the effective temperature of the momentum
spectra.

Next, in addition to the Gaussian energy-density profile,
we consider also a (pre-equilibrium) nonzero initial flow in
the transverse direction. We set

> %)
vyp =tanh {03 — |, (58)
Rr

and recalculate the normalization of energy density profile,
which is €y = 5.32 GeV/fm?, so that the total energy of any
rapidity slab of matter in midrapidity remains the same. The
results in the shape of the emission function are shown in
Fig. 15. One can see that the inclusion of the initial transverse
flow leads, as expected, to an even faster expansion of matter
and, thereby, to more reduction of the mean emission time.

V. CONCLUSIONS

We have developed the formalism of the hydro-kinetic
model [15] intended for a detailed study of the space-time
picture of hadronic emission from rapidly expanding fireballs
in A 4 A collisions and, in this way, for an evaluation of the
observed particle spectra and correlations. The approach devel-
oped is consistent with Boltzmann equations and conservation
laws, and accounts also for the opacity effects.

Our analysis and numerical calculations show that the
widely used phenomenological Landau/Cooper-Frye prescrip-
tion for the calculation of pion (or other particles) spectra is too
rough if the freeze-out hypersurface is considered as common
for all momenta of pions. The Cooper-Frye formula, however,
could be applied in a generalized form, accounting for the
direct momentum dependence of the freeze-out hypersurface
o (p), corresponding to the maximum of the emission function
S(t(r, p), r, p) at fixed momentum p in an appropriate region
of r. If such a hypersurface o(p) is found, the conditions
of applicability of the Cooper-Frye formula for given p is
that the width of the maximum, which in the simple cases—
e.g., for one component system or at domination of elastic
scatterings—is just the relaxation time (inverse of collision
rate), should be smaller than the corresponding temporal
homogeneity length of the distribution function.
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The first approximation within this method is done for
fireballs undergoing 3D azimuthal symmetric Bjorken-type
relativistic expansion. For realistic cross sections, the standard
CFp, related to the fixed isotherm, underestimates the effective
temperature of the observed spectra since, during an ideal hy-
drodynamic expansion, the effective temperature of hadronic
transverse spectra is typically decreasing, but particles with
relatively high momenta can escape from the system at an
early hot stage. The latter process is accounted for by the
proposed method.

The recent HBT data at RHIC energies restrict a possible
maximal value of the system lifetime, that is a serious problem
for hydro-kinetic “hybrid” models [11] of matter evolution
in relativistic heavy ion collisions. We studied the effects of
the type/order of phase transition implemented in the EoS, as
well as of different kinds (Woods-Saxon and Gaussian) of an
initial transverse profile, on the duration of pionic emission.
We found that a realistic EoS, motivated by lattice QCD,
produces a faster transverse expansion, reducing therefore the
lifetime of the system as compared with the results based on
the EoS with first order phase transition. The most serious
reduction of the lifetime is observed for the initial Gaussian
density profile, because for this profile there are initial pressure
gradients over the whole transverse slice of the system already
at the initial moment. It is worth noting that the Gaussian-type
energy density profile naturally appears [41] in the color glass
condensate representation of the initial state of colliding nuclei
(for review see, e.g., Ref. [42]) in high energy collisions.
Also the inclusion of the initial nonzero transverse collective
velocity leads to faster expansion of the matter and, thereby,
provides an additional decrease of the emission time. We
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studied the effects of inclusion of such flow in the initial
conditions for hydro-kinetic model calculations and found
that a moderate initial flow developed at the very early
prethermal stage of the evolution of finite partonic systems
into vacuum [43] results in a noticeable decrease of the system
lifetime. It could indicate a way for resolving the HBT puzzle
in the hydro-kinetic approach. Further developments of the
hydro-kinetic approach and description of the data will be the
subject of a follow-up work.
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