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Hadronization line in stringy matter
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The equation of state of the string model with linear strings comes close to describing the lattice quantum
chromodynamics results and allows for the E/N ≈ 6T0 = 1 GeV relation found in phenomenological statistical
model. The E/N value is derived from the zero pressure condition in quark matter and is a fairly general result.
The baryochemical potential dependence of the hadron gas can be met if it is interpreted in the framework of an
additive quark model. The conclusion is reached that stringy models explain the E/N = 6T0 relation naturally
and independently of the value of the string tension.
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I. INTRODUCTION

The phenomenological success of the statistical hadroniza-
tion model has been emphasized, questioned, and criticized
repeatedly over the years. All experimental results of heavy-
ion collisions on particle yields at energies ranging from
GSI Schwerionen Synchrotron to the Relativistic Heavy Ion
Collider are consistent with results falling in a narrow stripe
in the parameter space of temperature and baryochemical
potential. There are several descriptions of this so-called
chemical freeze-out curve; for recent articles on this topic,
see Refs. [1–9]. For a comprehensive review, see Ref. [10].

In this article we intend to explain the rather high value
of the energy per particle, E/N ≈ 1 GeV for a system of
quarks and gluons with an equation of state containing a term
depending on the color density. As a matter of fact the convex
shape of this curve (cf. Fig. 3) is in agreement with several ther-
modynamic approaches incorporating fermions and bosons as
ideal gases. The main puzzle is the quantitative value, because
1 GeV is six times higher than the associated hadronization
temperature, T0 ≈ 167 MeV. We aim to understand how this
value can be obtained starting from a massless quark-gluon
plasma (QGP) by adding a color-density term.

On the hadronic side, considering massive matter, el-
ementary nonrelativistic thermodynamics leads to E/N =
m + 3T/2. With the known values cited above this requires
an average mass in the range of the ρ-meson mass, m ≈
750 MeV. This value satisfies m � T , so the nonrelativistic
approximation turns out to be acceptable.

However, such a high mass on the quark matter side
cannot be a constituent mass; it can be the result only of
strong interactions. A well-known example for treating this
interaction as a mean field, the original MIT bag model,
with p = κT 4 − B, e = 3κT 4 + B, and n ≈ κT 3 pressure,
energy density, and particle density, respectively, would allow
for E/N = e/n � 4T only, on p � 0. Moreover the equation
of state of the model quark matter has to be in accordance
to results obtained from lattice quantum chromodynamics
(QCD), the only model-independent nonperturbative approach
from field theory to the equation of state at present. We

present a simple thermodynamical model of massless quarks
and gluons whose interactions are described by a free-energy
contribution motivated by strings. This stringy matter will be
studied at vanishing pressure for the hadronization curve and
at high temperature for the lattice equation of state. It is an
interesting conclusion that such stringy models do explain the
E/N = 6T0 relation easily and, remarkably, independent of
the value of the string tension.

II. STRINGY THERMODYNAMICS

There are several ways to treat corrections to an ideal gas
equation of state (EOS). Each model identifies a physical
picture in which the leading-order interactions are calculated.
The lattice QCD and pure Yang Mills EOS approach an
effective massless ideal gas limit at high temperatures, but
it deviates vastly from it around the color deconfinement
temperature. In this article we test the string model picture
for an interacting gluonic plasma, introduced in Refs. [11,12].
A quasiparticle model has been used successfully to extend the
lattice QCD results to finite baryon chemical potential [12–16].
Our approach is different in that we use massless particles but
introduce a density-dependent term in the free energy. There
exist several attempts at obtaining the equation of state starting
from perturbative QCD calculations, see e.g., Refs. [17–19],
or from nonperturbative mass gap equations for gluons [20].

However, we assume that a decreasing proportion of color
charges are still connected by strings at high temperature,
above the crossover value to deconfinement T > Tc. This
assumption is supported by some simple and general properties
of the thermal distribution of relative momentum squared
between pairs of massless particles,

P (Q2) = 〈δ(Q2 − 2E1E2(1 − cos ϑ))〉

=
∫ ∞

0

∫ ∞
Q2/4E1

E1E2f (E1)f (E2)

4
∫ ∞

0

∫ ∞
0 E2

1E
2
2f (E1)f (E2)

. (1)

This distribution has a nonperturbative contribution to the
equation of state stemming from relative momenta below a
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fixed value (Q2 < �2 with say � ≈ 1 GeV):

F =
∫ �2

0
P (Q2) dQ2. (2)

This quantity, not having another energy scale than the
temperature in case of massless particles, is given by a scaled
integral

F =
∫ �2/T 2

0
P(x) dx. (3)

For high temperatures T � � this proportion is approximately
given by F ≈ P(0) �2/T 2, for low temperature, T � � by
F ≈ 1 due to normalization. Because

P(0) =
〈

T

2E

〉2

(4)

is nonzero [cf. Eq. (1)], there is always a nonperturbative
contribution to the equation of state at any temperature; it
just becomes subleading order in the pressure. Nevertheless,
in the interaction measure (e − 3p) such an O(T 2�2) term
mixes to the leading order.

A. Equation of state with strings

A general class of EOS is obtained by taking into account
a term in the free energy proportional to a fractional power
of the density. Here we consider a “color density,” a weighted
sum of the number of particles:

c =
∑

nici . (5)

Colorless objects do not pull strings, nor do they take part in
screening (ending) them. Furthermore, different color charges
like quarks or gluons may have different effective string
constants [21]; this effect is taken into account in the factors
ci .

The contribution to strings of an average length of

〈�〉 ∝ c−γ (6)

shall be multiplied by the density, with γ being a fractional
power between zero and 1. For straight strings in three
dimensions, γ = 1/3.

Because we consider density-dependent modifications of
the EOS at a given temperature, we use the free-energy density,
denoted f , as the fundamental potential. We consider

f = f̃ (ni, T ) + A

1 − γ
c 1−γ . (7)

Here the coefficient A comprises eventual average geometrical
shape factors in addition to the string tension, so it cannot be
taken from the Regge slope of meson resonances directly.
Instead, we fit it to the lattice EOS later. The f̃ is a general
free-energy density for describing a quark-gluon plasma to be
specified later.

The chemical potentials associated to the component i are
given by the derivatives with respect to ni :

µi = µ̃i + Ac−γ ci, (8)

where µ̃i = ∂f̃ /∂ni follows from f̃ . We use so far the
additive form of Eq. (7). The chemical equilibrium establishes,
if possible, at constant values of this chemical potential.
These values are determined by the conserved charges of the
components. For the sake of simplicity we consider here the
baryon charge only (zero for gluons, 1/3 and −1/3 for quarks
and antiquarks, respectively), but further quantities may be
introduced into this scheme easily. From the equations

µi = qiµB (9)

the corresponding number densities can be expressed

n
eq
i = νi(T ,µB ; qi, ci). (10)

In this chemical equilibrium situation the color density defined
in Eq. (5) takes its equilibrium value expressed by the νi-s.

Although the real solution of this system of equations can
be involved in the general case, in some particular systems,
e.g., for a massless ideal gas with strings in the Boltzmann
approximation, it can be given in analytic form (see later). A
remarkable general property, however, can be derived without
the explicit form of this solution. This property related to the
hadronization of the QGP is the energy per particle at the edge
of the stability: when the pressure vanishes. For this purpose
we obtain the entropy density,

s = − ∂f

∂T
= s̃, (11)

the pressure

p =
∑

µini − f = p̃ − γ
A

1 − γ
c 1−γ , (12)

and the energy density

e = f + T s = ẽ + A

1 − γ
c 1−γ . (13)

We note here that in stringy models the mean-field correction
is density dependent and therefore the energy density and
pressure corrections do not compensate each other. As it can
be seen from the above equations [(12) and (13)], the attarctive
pressure correction is −γ times the energy correction. A bag
model-like contribution, i.e., a term proportional to the metric
tensor in the energy-momentum tensor, would arise for γ = 1
only, whereas the lattice equation of state seems to support a
value around γ = 1/3.

At the end point of the mechanical stability p = p0 = 0
and therefore

p̃0 = γA

1 − γ
c 1−γ . (14)

From this the color-weighted density can be obtained at this
point,

c0 =
(

1 − γ

Aγ
p̃0

) 1
1−γ

, (15)

and the energy density is expressed as

e0 = ẽ0 + p̃0/γ. (16)

This is a remarkable result. For massless constituents only
p̃ = T 4φ(µB/T ) and therefore ẽ = 3p̃. For straight strings
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γ = 1/3, so we arrive at e0 = 6p̃0. As long as the Boltzmann
approximation is applicable, for an ideal gas mixture p̃ = nT

with n = ∑
ni , and one concludes that

E

N
= e0/n = 6T0. (17)

With T0 = 167 MeV fitted to hadronization data (and predicted
by lattice QCD as the crossover temperature) one obtains
E/N = 1 GeV at this point. This derivation applies to the
quark-gluon side of the hadronization curve.

B. Chemical equilibrium with strings

From Eqs. (8) and (9) it follows that the equilibrium number
densities in general satisfy

n
eq
i = n

eq
i,A=0(T , qiµB − Ac−γ ci). (18)

Summing with the color weight factors, ci we arrive at an
implicit equation for the effective color (string source) density:

c =
∑

ci n
eq
i,A=0(T , qiµB − Ac−γ ci). (19)

Its solution in general depends on the temperature T , bary-
ochemical potential µB , and the specific color and baryon
charges ci and qi .

Because this implicit equation contains the unknown, c,
on its right-hand side as a given correction to the chemical
potential only, we are able to deduce that there is no solution
beyond a critical point. This point is characterized by the fact
that the derivative of Eq. (19) with respect to c is also satisfied,

1 = γAc−γ−1
∑

c2
i

∂neq

∂µ
(T , qiµB − Ac−γ ci). (20)

We denote the color density in this end point where the
chemical equilibrium ceases to be possible by cE . A further
question is how this end point of possible chemical equilibrium
solutions is related to the zero pressure boundary.

In the particular case of Boltzmann-like dependence on
the chemical potential ∂ni/∂µ = ni/T (i.e., the exponential
of µ/T is a factor in the number density). We note that for
a Boltzmann system with all ci’s equal to either 1 or zero
c2
i = ci and therefore the ratio of Eqs. (19) and (20) gives a

simple condition for the critical color density c = cE :

γ
A

T
c
−γ

E = 1. (21)

In the same approximation one can obtain an analytic solution
to the chemical equilibrium problem. We get

c =

∑

ci=1

χi(T )eqiµB/T


 e−Ac−γ /T (22)

with

χi(T ) = n
eq
i,A=0(T , 0). (23)

The sum in the brackets is a c-independent factor; we denote it
by ϕ(T ,µB ) = T 3a3(µB, T ). The solution of Eq. (22) is given

by

z = γAc−γ

T
= −W

(
−γA

T
ϕ−γ

)
(24)

with W (x) being Lambert’s W function defining the solution of
the transcendental equation WeW = x. The form occurring in
Eq. (24), −W (−x) has a real solution for positive x values only
if x > 1/e. The argument x = e−1 is the end point of stringy
thermodynamics, the end-point temperature is connected to
the effective string tension A as

γ
A

TE

ϕ(TE,µB )−γ = e−1. (25)

For considering massless particles as sources and endings of
strings the factor ϕ = a3T 3 has a special form: a(µB, T ) can be
a function of the ratio µB/T only. At vanishing baryochemical
potential, µB = 0, a is a constant. In this case Eq. (25) can be
resolved for the end-point temperature:

TE = (γAea−3γ )
1

3γ+1 . (26)

In particular for γ = 1/3 it is TE = √
Ae/3a and a =

a(µB/TE). This implicitely determines the end line µB(TE).

III. MASSLESS BOLTZMANN GAS WITH STRINGS AT
µB = 0

In the followings we investigate the one-component mass-
less Boltzmann gas at vanishing net baryon density. In this case
a is constant and the pressure and energy density are expressed
easily with help of explicit chemical equilibrium solution

c = a3T 3

[−W (−x)

x

]−1/γ

(27)

with

x = e−1

(
TE

T

)3γ+1

. (28)

Because for ideal Boltzmann gases the Boyle-Mariotte law
holds, p̃ = cT , and for vanishing mass ẽ = 3p̃, the total
pressure is reconstructed as [cf. Eq. (12)]:

p = cT

(
1 − z

1 − γ

)
, (29)

where z is taken from the solution (24). The energy density is
given by

e = cT

[
3 + z

γ (1 − γ )

]
. (30)

A. High-temperature asymptotics

When comparing with lattice results, the high-temperature
asymptotics of the stringy massless Boltzmann EOS described
implicitly by Eqs. (24), (29), and (30) is particularly important.
In our model T → ∞ is realized by the x → 0 limit [we
consider γ ∈ (0, 1) only]. The Lambert W function has the
series expansion z = −W (−x) = x + x2 + · · · and hence the
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high-temperature (low-x) color density behaves like

c = a3T 3

(
1 − 1

γ
x + · · ·

)
, (31)

the pressure like

p = a3T 4

[
1 − 1

γ (1 − γ )
x + · · ·

]
, (32)

and the energy density like

e = a3T 4

[
3 + 3γ − 2

γ (1 − γ )
x + · · ·

]
. (33)

The interaction measure is given by

e − 3p = a3T 4

[
3γ + 1

γ (1 − γ )
x + · · ·

]
. (34)

This analysis reveals that the high-temperature asymptotics of
the pressure is T 4 as it should be; this fixes the value of a3 by
comparing to lattice EOSs [5.21 for 2+1 flavor QCD, 1.7 for
pure SU(3)].

The power γ can be fixed from the subleading terms (and
leading term in the interaction measure), xT 4. Using Eq. (28)
such terms scale like T 3−3γ . To agree with lattice EOS results,
i.e., xT 4 ∼ T 2, the only possible choice we are left with is
γ = 1/3. This agrees with our statistical argument for leading
nonperturbative effects on the EOS at T > Tc, and in particular
favors the straight string geometry in quark matter.

B. The zero pressure point as reference

Because on the lattice only positive-pressure states can be
achieved by Monte Carlo techniques, the zero pressure point,
T0, is a more physical reference than the end point of chemical
equilibrium. This occurs at z0 = 1 − γ = 2/3 and due to
z = xez at x0 = 2

3e−2/3 ≈ 0.34. However, x0 = e−1(TE/T0)2

due to Eq. (28), so we arrive at T0/TE = (x0e)−1/2 ≈ 1.04. In
the stringy massless Boltzmann quark matter approximation
these two temperatures are quite close to each other. Reference
to the zero pressure point can be taken by substituting x =
x0(T0/T )2 ≈ 0.34(T0/T )2 in general.

With respect to T0 the scaled pressure and interaction
measure are given as

p

T 4
= x3a3

z3

(
1 − 3z

2

)
(35)

e − 3p

T 2
0 T 2

= 9a3x2

z2
x0.

This reveals a factor of 9x0 ≈ 3.04 between the high-
temperature asymptotic values of the scaled interaction mea-
sure (e − 3p)/T 2T 2

0 and scaled pressure p/T 4. Although this
gives a qualitatively correct picture of the quark matter EOS,
unfortunately, for a quantitative comparison, Monte Carlo data
are still spread over a remarkable range (cf. Fig. 1).

The whole temperature dependence of the stringy EOS
in Boltzmann approximation works surprisingly well for the
pressure but is only qualitatively correct for the interaction
measure. This we plot in Fig. 1. The lattice data show the

most sudden jump in the T 2-scaled interaction measure to a
nearly constant value. For comparison, the stringy model has
a somewhat milder rise. Quantitatively, the constant value of
the scaled interaction measure differs from the lattice result in
the pure SU(3) case [22,23] as well as probably also in the full
QCD case [24–27]. The massless Boltzmann approximation
is clearly an oversimplification.

C. Degenerate Fermi gas at T = 0

Another analytically solvable case is represented by the
degenerate Fermi gas at zero temperature with stringy con-
tributions to thermodynamics. In this case, considering only
one type of fermions with color charge ci = 1 the quark
chemical potential fixes the Fermi energy. Let us consider
the case of massless fermions; the Fermi momentum is also
µ = µQ − Ac−1/3, reduced by the stringy interaction. The
chemical equilibrium relates the color density to this potential
via

c = d

6π2
(µQ − Ac−1/3)3, (36)

with a degeneracy factor d = (2S + 1)NcNf = 12 for
light quark matter and µQ = qµB , a value related to the
baryocemical potential.

This value can be expressed by the effective quark chemical
potential (Fermi energy) with introducing the parameter B =
(6π2/d)1/3:

µQ = µ + AB

µ
. (37)

Figure 2 plots µB = 3µQ as a function of the quark µ and
µB = 3µ used in the additive quark model. The stable solution
of Eq. (37) for µ at a given µQ belongs to the higher value
of c:

c =
(

µ +
√

µ2 − 4AB

2B

)3

. (38)

It is easy to see that the critical end-point value of the chemical
potential in the stringy model is given by the minimum of the
expression Eq. (37):

µ
(E)
Q = 2

√
AB. (39)

For smaller µQ there is no equilibrium, the strings pull the
matter infinitely. Because the end point and the zero pressure
points are close to each other both at zero baryochemical
potential and at zero temperature, we conjecture that this is
the case all over the hadronization line.

For obtaining the pressure and energy density we use the
corresponding expressions for a degenerate Fermi gas:

p̃ = d

24π2
(µ − Ac−1/3)4

(40)
ẽ = 3p̃.

On using Eq. (36) this leads to the total pressure

p = 1
4µc − 3

4Ac2/3, (41)
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FIG. 1. Equation of state from lattice and from the massless Boltzmann stringy model. Pure SU(3) gauge theory results [22] to the top;
2+1 flavor QCD results [24,25,27] to the bottom. The scaled pressure (left sides) and interaction measure (right sides) curves are compared.

and to the energy density

e = 3
4µc + 3

4Ac2/3. (42)
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)

µ   (GeV)

Additive Quark Model of Hadrons

Stringy Quark Matter

stringy QM
3 µ

FIG. 2. The baryochemical potential, µB , is plotted as a function
of the Fermi energy of quarks, µ, at T = 0 in the stringy QGP (µB =
3µQ) and in the additive model (µB = 3µ). The minimum point
represents the end point of the stringy model; the corresponding
additive quark model value is the half of it.

At zero pressure, p = 0, the energy per particle becomes
e/n = µ and the value of the chemical potential at this point
can be obtained from Eq. (41) as satisfying µ0c0 = 3Ac

2/3
0 .

Together with Eq. (36) this leads to

µ0 = 3
√

AB/2 = 3

2
√

2
µE ≈ 1.06 µE (43)

at the color density c0 = (2A/B)3/2. If this meets the E/N =
1 GeV line, then at T = 0 µ0 = 1 GeV.

Relating µQ to the hadronic baryochemical potential
depends on the hadronization scenario. First, regarding the
hadrons fitted in the statistical model as objects made in
the constituent (additive) quark model, one considers that
the quark number density is equal to the ideal one at c =
nid (0, µB/3). In this case at the end point of the stringy
equation of state µ

(E)
Q = 2µ(E) = 2µB/3 is taken.

A second, more traditional, hadronization scenario assumes
phase equilibrium between quark and hadronic matter result-
ing in µ

(E)
Q = µB/3. The physical difference between the

two scenarios—beyond the rapidness of the hadronization
process—lies in the treatment of energy stored in the strings:
whether they built in the baryon rest mass constructing one
baryon of each quark triple (µQ = 2µB /three-scenario), or
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FIG. 3. The zero pressure line of the stringy, massless QGP
(labeled by q = 1/3) with two and three quark flavors. We also plotted
the stringy QGP fast hadronization lines with halved baryochemical
potentials corresponding to an additive quark model interpretation
of this process (labeled by q = 2/3). For comparison the statistical
model results (boxes), fit by T = 0.167 − 0.139 µ2

B − 0.053 µ4
B ,

Ref. [8] are indicated.

they just disappear and there will be as many baryons as the
phase equilibrium dictates (µQ = µB /three-scenario).

The corresponding hadronization curves are plotted in
Fig. 3. The p = 0 line (which is close to the end line of
the stringy thermodynamics within a few percentages) is
indicated for a quark-gluon plasma with massless gluons and
Nf = 2 and Nf = 3 massless quark and antiquark flavors
and assuming µB = 3µQ = 6µ, respectively. For comparison
the statistical model results are indicated by filled boxes.
Following our previous comment about the additive quark
model interpretation of the stringy QGP results, the same
hadronization lines are also plotted as functions of three
times the quark Fermi level, µB = 3µ. In this second case
the coverage with the hadronic fit results is intriguing. In
Fig. 4 we plot the energy per particle along the hadronization
line; it is roughly constant for moderately low values of the
baryochemical potential but then decreases somewhat.

Summarizing, the stringy EOS with γ = 1/3 comes close
to describing the T > T0 lattice QCD results and at the
same time offers an explanation for the E/N ≈ 6T0 = 1 GeV
hadronization condition found in the phenomenological statis-
tical model. It differs from the simple bag model, where the
pressure and energy density corrections are opposite and equal
in magnitude; the present density-dependent mean interaction
term represents a more general approach.
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FIG. 4. The energy per particle for a stringy, massless QGP with
three light flavors. Until the value µB ≈ 0.8 GeV the E/N ratio does
not change more than 10%.

Although the massless Boltzmann approximation should be
dropped in the view of lattice EOS data, the E/N value at zero
pressure is a much more general result; it hopefully survives
as a possible physical picture for the quark matter side at
hadronization in relativistic heavy-ion collisions. Admittedly,
there is no reason for the E/N ratios being equal in the
hadronic and quark matter, but it is not easy to imagine how this
value could be doubled from 3T0 to 6T0 at the hadronization
moment.

The baryochemical potential dependence of the hadronic
side fit by the statistical model can be met if the chemical
potential is interpreted in the framework of an additive quark
model (parameterized by the half of the stringy QGP value at
the end point of the stringy model at T = 0).
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