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Decomposition of the scattering amplitude into shadow and surface components
with inclusion of spin-orbit coupling
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We propose a decomposition of the scattering amplitude into shadow and surface components for proton
scattering against calcium isotopes as targets at 21 MeV. We account for spin-orbit coupling effects for the optical
potential in the nonrelativistic limit. Our calculations show very good agreement with experimental trends.
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I. INTRODUCTION

In 1993, da Silveira and coworkers [1] proposed a decom-
position of the scattering amplitude into shadow and surface
components for the qualitative understanding of angular
distributions in elastic collisions between ions and neutron-rich
nuclei. The decomposition proposed allows the isolation of
the contributions from the nuclear attraction while neglecting
spin effects. The work by da Silveira decomposes the general
Eq. (1) into Eqs. (3) and (4) according to the scheme of
Eq. (2), that is,

f (θ ) = 1

2ik

∞∑
�=0

(2� + 1)(e2i�� − 1)P�(cos θ ), (1)

f (θ ) = fshad(θ ) + fsurf(θ ), (2)

with

fshad = 1

2ik

∞∑
�=0

(2� + 1)(η� e2iσ� − 1)P�(cos θ ), (3)

and

fsurf = 1

2ik

∞∑
�=0

(2� + 1)η� e2iσ� (e2iδ� − 1)P�(cos θ ), (4)

where σ� is the Coulomb phase shift, and δ� = Re�� − σ�. The
shadow amplitude is interpreted by da Silveira and coworkers
as the scattering amplitude of incident particles interacting
via the Coulomb force with an absorbing nonreflective target,
whose opacity is given in � space by η�, according to the strong
absorption model (SAM) by Blair.

The surface amplitude term has significant contributions in
a narrow window centered at � ≈ �0. As a consequence of the
extended Babinet principle [2], the oscillations of |fsurf(θ )|2
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and |fshad(θ )|2 must be out of phase with respect to each other.
In this work, we present a methodology for the decomposition
of the dispersion amplitude that accounts for spin effects. We
applied our methodology to studying the scattering between
protons and calcium isotopes in the 21 MeV regime in the
nonrelativistic limit.

II. RESULTS AND DISCUSSIONS

Following the optical model proposed by Melkanoff [3],
which includes spin-orbit coupling, the two dispersion ampli-
tudes for the collisions between spin 0 and spin 1/2 particles
are given by

A(θ ) = fc(θ ) + k−1
∞∑

�=0

e2iσ�
[
(� + 1)C�+1/2

� + �C
�−1/2
�

]
×P�(cos θ ), (5)

B(θ ) = (ik)−1
∞∑

�=1

e2iσ�
[
C

�+1/2
� − C

�−1/2
�

]
P 1

� (cos θ ), (6)

with

C
j

� = − i

2

[
e2iδ

j

� − 1
]
. (7)

The amplitude expansion coefficients C
j

� and the imaginary
part of the complex nuclear shifts |ηj

� | are related by

C
j

� = 1

2i

[∣∣ηj

�

∣∣e2iReδ
j

� − 1
]
. (8)

Here, η
j

� is the reflection coefficient and |ηj

� | = e−2Imδ
j

� . The
analytical scattering amplitude for the Coulomb potential is

fc(θ ) = 1

2ik

∞∑
�=0

(2� + 1)[e2iσ� − 1]P�(cos θ ), (9)
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TABLE I. Nonrelativistic optical model parameters. The energies (Tp, V ,W,WI , Vex, Vso ) are
given in MeV, and distances (r0, a0, rso, aso rI , aI , rex, aex) in fm.

Process Tp V r0 a0 W WI rso

p-40Ca 21.0 52.14 1.155 0.747 0.0 7.85 0.959
p-42Ca 21.0 55.57 1.112 0.764 0.0 8.13 1.066
p-44Ca 21.0 52.86 1.142 0.722 0.0 8.87 1.047
p-48Ca 21.0 54.82 1.147 0.795 0.0 9.69 0.833

Process rI aI Vso aso Vex rex aex

p-40Ca 1.265 0.541 3.19 0.558 0.009 1.001 0.302
p-42Ca 1.266 0.621 3.85 0.660 −0.008 0.844 0.124
p-44Ca 1.286 0.602 6.16 0.791 0.032 0.901 0.228
p-48Ca 1.333 0.541 6.52 0.724 0.0 – –

where σ� is the Coulomb phase shift and η = Z1Z2e
2/h̄v is

the Sommerfeld parameter. The differential cross section is
calculated as

σ (θ ) = |A(θ )|2 + |B(θ )|2. (10)

The second term in Eq. (10) gives a negligible contribution
to the cross section, therefore it is eliminated from further
calculations. Replacing Eqs. (8) and (9) into Eq. (5), we obtain

A(θ ) = 1

2ik

∞∑
�=0

[(� + 1)|η�+1/2|e2iσ� e2iReδ�+1/2

+ �|η�−1/2|e2iσ�e2iReδ�−1/2 − (2� + 1)]

×P�(cos θ ). (11)

Breaking Eq. (11) into two components

A(θ ) = 1

2ik

∞∑
�=0

[(
� + 1

2

)
|η�+1/2|e2iσ�

+
(

� + 1

2

)
|η�−1/2|e2iσ� − (2� + 1)

]
P�(cos θ )

+ 1

2ik

∞∑
�=0

[
(� + 1)|η�+1/2|e2iσ� e2iReδ�+1/2

+ �|η�−1/2|e2iσ� e2iReδ�−1/2 −
(

� + 1

2

)
|η�+1/2|e2iσ�

−
(

� + 1

2

)
|η�−1/2|e2iσ�

]
P�(cos θ ), (12)

by writing Eq. (12) in the form A(θ ) = Ashad(θ ) + Asurf(θ ), the
second summation represents the surface component. Some
algebra leads to

Ashad(θ ) = 1

2ik

∞∑
�=0

(2� + 1)

[
e2iσ�

2
(|η�+1/2| + |η�−1/2|) − 1

]

×P�(cos θ ). (13)

Not taking into account spin effects in Eq. (12) reduces it
to Eqs. (3) and (4). We used Numerov’s algorithm [4,5] to
numerically solve the radial part of Schrödinger’s equation
in order to obtain the C

j

� , which contain the complex phase
shifts δ

j

� . In Schrödinger’s equation, we used the optical-model

potential (OMP) for proton-Ca isotopes proposed by Frahn [6]:

U (r) = Vc(r) − Vf (x0) + i4aIWI

d

dr
f (xI ) − iWf (xI )

+ (Vso + iWso)
4

r

df (xS0)

dr
S · L − Vex(−1)�f (xex).

(14)

When decomposing Eq. (12) into shadow and surface
components, Asurf contains the real part of the phase shifts,
which in turn are related to the surface effects, while the
imaginary part of the phase shifts is exclusively placed on
the Ashad term in Eq. (13).

The optical potential contains a total of 14 parameters, 8 are
geometrical (r0, a0, rI , aI , rso, aso, rex, aex), and the remaining
6 (V,W,WI , Vso, Tp, Vex) are included to account for the
dynamics of the process. It can be noticed from Table I that the
WI and rI parameters increase with the A of the isotope and
therefore are related to skin effects. The imaginary component
of the potential is responsible for the absorption of incident
particles whose contributions are included in the δ

j

� associated
to the shadow component. This shadow component dominates
the Coulomb region and exhibits a Fraunhofer diffraction
pattern that resembles the optical shadowed regions [7]; the
real part of the optical nuclear potential is associated with
the surface component [8]. The parameters in the potential
are adjusted to give the best fit to the experimental data,
using standard χ2 minimization procedures as described in
the paper by McCamis and coworkers [9]. Table I shows the
parameters given in Ref. [9] for the potential (14); they used
a dispersive optical-model analysis (DOMA) in which Vc is
the electrostatic Coulomb potential and represented by the
potential for a uniformly charged sphere as

Vc =




ZZ′e2

2R

[
3 −

(
r
R

)2
]

, r � R,

ZZ′e2/r, r > R.

(15)

Here R is the Coulomb radius R = rcA
1/3, and rc is the radius

parameter as determined from electron scattering experiments.
Values given by Frosch et al. are 1.316, 1.306, 1.285, and
1.240 fm for 40,42,44,48Ca, respectively [10]. The radial form
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FIG. 1. 21 MeV proton scattering against 40Ca targets. Experi-
mental points provided by Van Oers [12].

factors are Woods-Saxon functions

f (xa) = [1 + exp(xa)]−1, (16)

with

xa = r − raA
1/3

aa

. (17)

In calculations of the Coulomb phase shifts, we used the
relationship [11]

σ = σ0 +
�∑

s=1

tan−1
(η

s

)
, (18)

where σ0 may be approximated for all η by

σ0 = −η + η

2
ln(η2 + 16) + 7

2
tan−1

(η

4

)

−
[
tan−1 η + tan−1

(η

2

)
+ tan−1

(η

3

)]
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FIG. 2. 21 MeV proton scattering against 42Ca targets. Experi-
mental points provided by Van Oers [12].

10 20 30 40 50 60 70
θ

0.001

0.01

0.1

1

σ/
σ

Experimental
Shadow
Surface

c. m.

 R

(deg)

 44
 Ca(p,p) 

 44
 Ca

FIG. 3. 21 MeV proton scattering against 44Ca targets. Experi-
mental points provided by Van Oers [12].

− η

12
(
η2 + 16

) [
1 + 1

30

(η2 − 48)

(η2 + 16)2

+ 1

105

(η4 − 160η2 + 1280)

(η2 + 16)4

]
. (19)

Figure 1 shows comparative results for the calculation
of |Ashad(θ )|2 and |Asurf(θ )|2 against experimental points
provided by Van Oers [12] for the scattering of protons with
40Ca targets at 21 MeV. Figures 2, 3, and 4 show the scattering
of 21 MeV protons when colliding with 42Ca, 44Ca, and 48Ca,
respectively.

It is observed from Figs. 1–4 that the Coulomb region
is better described by the shadow component, while the
surface component adequately describes the experimental
behavior beyond the Coulomb region. Since the repulsive
Coulomb potential lowers the nuclear attraction effects, we
studied proton scattering against target nuclei with equal Z,
so we effectively obtained information about neutron effects
on the surface; we used the parameters of Ref. [9] for the
optical potential. The correct behavior of our decomposition
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FIG. 4. 21 MeV proton scattering against 48Ca targets. Experi-
mental points provided by W. T. H. Van Oers [12].
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was tested by modifying the real part and noticing that
only the surface component was changed [13], leaving the
shadow term unaltered; in this way, we were able to study
skin effects. Skin effects can also be studied via alternative
SAM parametrizations, such as those proposed by McIntyre
et al. [14] and Franh and Venter [15] among others; in
those methodologies, the functions vary softly and reduce the
ambiguities of the optical potential; the surface transparency
could be treated via DOMA [16].

III. CONCLUSIONS

In the present work, we study the scattering amplitude for
proton collisions against calcium isotopes in the 21 MeV
regime with the inclusion of spin effects. In the
Coulomb region, tendencies are |Ashad(θ )|2/σR → 1 and
|Asurf(θ )|2/σR → 0 as θ decreases, in agreement with previous

reports. The shadow component, written as a function of the
imaginary part of the phase shifts only, dominates the Coulomb
region where a Fraunhofer-like diffraction pattern is observed;
the surface component contains the real part of the phase
shifts linked to surface effects. Inclusion of spin-orbit coupling
in the potential allows us to calculate phase shifts. Such an
approach could be used to study other effects such as the p-n
interactions.
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